Przedsmak nieskończoności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedsmak nieskończoności"

Transkrypt

1 Przedsmak nieskończoności Co to znaczy "nieskończoność"? Tak często używamy tego słowa, że już nic dla nas nie znaczy. Albo wydaje nam się, że to po prostu "taka niewyobrażalnie wielka liczba". A może chcesz poznać prawdziwą niewyobrażalnie wielką liczbę? Spróbujmy, a na koniec wrócimy do naszej nieskończoności. Poznajemy bohaterkę Jest sobie taka liczba, zwana na cześć swojego wynalazcy liczbą Grahama. Ma ona zastosowanie w pewnej konkretnej teorii matematycznej oraz w praktyce, ale o tym kiedy indziej. Oznacza się ją po prostu literą G: G = liczba Grahama Jest ogromna. Niewyobrażalnie ogromna. Fizycy się śmieją, że zanim byś się nauczył lub nauczyła na pamięć nawet części tej liczby, twoja głowa by implodowała i zamieniła się w czarną dziurę. Bo czarna dziura wielkości twojej głowy zawiera mniej informacji, niż ta liczba (a nic nie zawiera więcej informacji, w przeliczeniu na jednostkę objętości, niż czarna dziura). "Ha, ha, no dobrze, ogromna. Ale jak ogromna? Do czego można ją porównać?" Problem w tym, że nie ma za bardzo do czego. Ale spróbujmy jakoś ją sobie "wyobrazić". Olbrzymie, ale wyobrażalne Może liczba możliwych kombinacji ułożenia kafelków w kostce Rubika to duża liczba? No, całkiem spora: (ponad 43 tryliony). Ale nie wydaje się szczególnie gigantyczna. Mimo jej ogromu najlepsi układają kostkę Rubika w kilka sekund (nawet mi się udało zejść poniżej minuty, więc to nie może być trudne). To może słynny googol jest ogromną liczbą? Czyli jedynka i sto zer. Czy to dużo? Spróbujmy to sobie wyobrazić. Na początek wypełnijmy piaskiem całe pomieszczenie, w którym się znajdujesz. Ile to by było ziarenek piasku? Otóż, jeśli jesteś w przeciętnym pokoju przeciętnego mieszkania, to będzie tylko ~ (~50 bilionów) ziarenek piasku. Być może wydaje ci się, że liczba atomów w obserwowalnym Wszechświecie jest ogromna. Otóż niezbyt. Ta liczba to jedynie: Czyli jedynka z osiemdziesięcioma zerami. Nadal nieco nam brakuje. Nie ograniczajmy się do twojego pokoju, wypełnijmy piaskiem cały znany nam Wszechświat. Ile to będzie ziarenek piasku?

2 10 90 Dobrze, powiedzmy, że googol jest już w naszym zasięgu. Możemy pójść od razu o wiele dalej i dojść do liczby o nazwie googolplex, czyli 10 do potęgi googol: Zaczyna się robić ciekawie. Googolplexa można łatwo zapisać tak jak powyżej, ale gdybyśmy chcieli zapisać tę liczbę "normalnie" jako jedynkę i ciąg zer, to zabrakłoby atomów w znanym nam Wszechświecie, żeby to zrobić. Mało tego. Pójdźmy na całość i załóżmy, że umieszczamy pojedynczą cyfrę nie na atomie, ale w tzw. objętości Plancka: 4, m 3 To jest niewyobrażalnie mała objętość, nie dająca się zmierzyć żadnym istniejącym urządzeniem. Objętość protonu (samego protonu, nie mówiąc o atomie!) jest przy tym wręcz kolosalna: ~1, m 3 Ile więc cyfr możemy zapisać w ten sposób? Liczba dostępnych miejsc (czyli liczba objętości Plancka w znanym nam Wszechświecie) to w przybliżeniu: 8,29 x Czyli znów liczba całkiem "zwyczajna" i możliwa do wyobrażenia. I niestety za mała. Ilość cyfr w googolplexie jest o wiele większa. Czyli googolplex, jeśli chcielibyśmy ją zapisać jako jedynkę i ciąg zer, nie może się nijak zmieścić w znanym nam Wszechświecie. Jedyne sensowne porównanie, jakie znalazłem, brzmi tak: Gdybyśmy wypełnili szczelnie cały znany Wszechświat drobinami pyłu o rozmiarach 1,5 mikrometra (jednej tysięcznej milimetra), a następnie je ponumerowali, to dopiero liczba możliwych wersji tej numeracji(!) byłaby mniej więcej równa liczbie googolplex. Ciekawostka dla zaawansowanych: googolplex to liczba większa, niż liczba wszelkich możliwych kombinacji istnienia czy nieistnienia oraz stanów wszystkich znanych nam cząstek elementarnych mogących się zmieścić w przestrzeni, którą zajmuje twoje ciało. Ta liczba to jedynie : W praktyce oznacza to ciekawą rzecz: gdyby Wszechświat miał średnicę metrów, to istniałoby ogromne prawdopodobieństwo, że istniałby w tym Wszechświecie więcej niż jeden egzemplarz twojej osoby! Googolplex to rzeczywiście spora liczba, ale bez problemu można ją zapisać i zrozumieć, nawet jeśli cały znany Wszechświat wydaje się na to przyciasny. Tymczasem liczba Grahama nawet nie podniosła powieki i śpi spokojnie, niczym nie zagrożona. Wszystkie powyższe liczby, włącznie z megaolbrzymim i przekraczającym możliwości naszego Wszechświata googolplexem, są przy niej nie tyle śmiesznie małe, co po prostu bez znaczenia w ogóle. Nawet nie zaczęliśmy się zbliżać do czegoś porównywalnego z liczbą Grahama, a już "zużyliśmy" cały Wszechświat! Powiedzmy, że w przypadku googolplexa w pewnym sensie zbliżyliśmy się jedynie do miejsca, w którym zaczyna się droga prowadząca do liczby Grahama. Jednak jeśli chcemy dowiedzieć się

3 czegokolwiek konkretnego o naszej bohaterce, musimy spróbować innego podejścia. Krok po kroczku Zacznijmy od czegoś prostego. Jednym ze sposobów na uzyskanie dużej liczby jest dodawanie do siebie kolejnych liczb: 3+3+3=9 Znamy zapis, który pozwala nam skrócić całość do: 3 3=9 Zaszalejmy: 3 3 3=27 Albo prościej: 3 3 =27 Znowu zaszalejmy: 3 33 =3 27 = (ponad 7,6 biliona) Zobacz: dodaliśmy tylko jedno "pięterko" potęgowania, a nagle przeskoczyliśmy z 27 do ponad 7 bilionów(!). Jesteśmy na dobrej drodze, jednak liczba Grahama jest tak wielka, że zwyczajne dodawanie pięterek kolejnych potęg nie wystarczy. Trzeba sięgnąć po coś mocniejszego. Czas na strzałki, czyli notację strzałkową. Nie będę tutaj wyjaśniał, jak ona dokładnie działa, zamiast tego podam konkretne przykłady, które doprowadzą nas do celu. Zawrót głowy Jedna strzałka po prostu zastępuje potęgowanie: 3 3=3 3 =27 Wprowadzając podwójną strzałkę definiujemy ilość pięterek potęgowania. Zróbmy trzy pięterka z trójkami: 3 3 = 3 33 = 3 27 = Zwiększmy z 3 do 4 pięterek: 3 4 = = 3 To już jest spora liczba, ale nadal wyobrażalna (a w każdym razie łatwo zapisywalna). Co się jednak stanie, gdy dodamy trzecią strzałkę? 3 3 =??? Ta liczba to "trzy do potęgi trzy do potęgi trzy do potęgi trzy" i tak razy. Czyli ponad siedem bilionów pięterek! A już przy czterech pięterkach otrzymaliśmy bardzo ogromną liczbę. Liczba 3 3 jest już poza zasięgiem naszej wyobraźni. Zostawia daleko w tyle wszystko, co potrafimy sobie wyobrazić, wszystkie wcześniej wymieniane wielkie liczby, łącznie z googolplexem. Choćby podniesione do kwadratu. Ale to i tak nie jest nawet

4 mały ułamek liczby Grahama Lecz jesteśmy na dobrej drodze. Czas zrobić krok naprzód. Najpierw trzeba dodać jeszcze jedną strzałkę: 3 3 = g 1 Skoro poprzednia liczba jest totalnie nie do wyobrażenia, to tę możemy śmiało nazwać idiotycznie wielką. I to jest wreszcie malutki kroczek na drodze do liczby Grahama. Idźmy dalej: g 2 = 3 g 1 3 Ta liczba to dwie trójki, które pomiędzy sobą mają tyle strzałek, ile wynosi poprzednia liczba. Jeśli tamtą nazwaliśmy idiotycznie wielką, to ta jest zapewne kretyńsko-idiotycznie wielka. Idźmy dalej: g 3 = 3 g 2 3 (debilnie wielka liczba) g 4 = 3 g 3 3 (debilnie-kretyńsko-idiotycznie wielka liczba) i tak dalej, aż dojdziemy do: g 64 = 3 g 63 3 = G I to jest dopiero liczba Grahama. Przypomnijmy, że poza wszelką możliwą skalę wyobrażenia wyszliśmy już przy liczbie 3 3, zanim w ogóle doszliśmy do pierwszego kroku, czyli liczby 3 3 = g 1. Nikt nie wie (i pewnie nigdy się nie dowie), jaka jest pierwsza cyfra liczby Grahama. Możemy jedynie obliczać ostatnie cyfry. 500 ostatnich cyfr liczby Grahama wygląda tak: Możemy ciągnąć te obliczenia i poznawać kolejne cyfry, ale nie wystarczy całego czasu Wszechświata i całej przestrzeni Wszechświata, żeby poznać lub zapisać w sposób tradycyjny choćby mały ułamek tej liczby. A jednak potrafimy ją zapisać używając specjalnej notacji, no i potrafimy ją wykorzystać w praktyce. Być może to jest bardziej niesamowite od samej wielkości liczby Grahama. Odpocznijmy Uf. Jeśli nie zakręciło ci się w głowie, to znaczy, że prawdopodobnie nic nie rozumiesz. A jeśli rozumiesz wszystko, to twoja głowa prawdopodobnie niebawem implduje i zamieni się w czarną dziurę. A to tylko zwykła liczba.

5 Niewyobrażalnie wielka, ale jednak zwykła liczba. Dalej za nią stoi nieskończenie wiele liczb. Przecież jeśli potrafimy zapisać liczbę Grahama: g 64 = 3 g 63 3 = G ( 3 3 = g 1 ) to z łatwością możemy przeskoczyć do liczby, która zostawia liczbę Grahama daleko w tyle. Wystarczy zmienić "64" w tym wzorze na liczbę Grahama na przykład. Sama liczba Grahama stanie się wtedy pomijalnie mała. A każda nowa liczba nadal będzie pomijalnie mała przy nieskończoności. Bo nieskończoność to nie jest po prostu jakaś niewyobrażalnie wielka liczba. Nieskończoność to nie jest w ogóle żadna liczba, tylko pewna idea. Ale o tym kiedy indziej. Michał Terajewicz, Przypisy:

Programowanie w Baltie klasa VII

Programowanie w Baltie klasa VII Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.

Bardziej szczegółowo

Zadania z obliczania odległości

Zadania z obliczania odległości Zadania z obliczania odległości 1. Długość linii kolejowej wynosi 85 km. Linia ta na mapie wynosi 17 cm. Jaka jest skala tej mapy. Na początek zapiszmy dane w postaci proporcji: 17 cm 85 km musimy teraz

Bardziej szczegółowo

Zadania z obliczania powierzchni

Zadania z obliczania powierzchni Zadania z obliczania powierzchni 1. Jezioro zajmuje powierzchnię 7 030 ha. Jaką powierzchnię w cm 2 zajmie ono na mapie w skali 1:200 000? Najpierw ustalmy ile cm 2 w terenie odpowiada cm 2 na mapie. Do

Bardziej szczegółowo

Co to jest niewiadoma? Co to są liczby ujemne?

Co to jest niewiadoma? Co to są liczby ujemne? Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?

Bardziej szczegółowo

Dzielenie sieci na podsieci

Dzielenie sieci na podsieci e-damiangarbus.pl Dzielenie sieci na podsieci dla każdego Uzupełnienie do wpisu http://e-damiangarbus.pl/podzial-sieci-na-podsieci/ Dwa słowa wstępu Witaj, właśnie czytasz uzupełnienie do wpisu na temat

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Temat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym

Temat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

17. Naprzemienne odejmowanie

17. Naprzemienne odejmowanie 17. Naprzemienne odejmowanie W starej chińskiej księdze Dziewięć Działów Arytmetyki znajduje się przepis na skracanie ułamków, który w skrócie przytoczymy tak: Chcesz skrócić ułamek Najpierw zobacz, czy

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

PRZELICZANIE JEDNOSTEK MIAR

PRZELICZANIE JEDNOSTEK MIAR PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,

Bardziej szczegółowo

Irena Sidor-Rangełow. Mnożenie i dzielenie do 100: Tabliczka mnożenia w jednym palcu

Irena Sidor-Rangełow. Mnożenie i dzielenie do 100: Tabliczka mnożenia w jednym palcu Irena Sidor-Rangełow Mnożenie i dzielenie do 100: Tabliczka mnożenia w jednym palcu Copyright by Irena Sidor-Rangełowa Projekt okładki Slavcho Rangelov ISBN 978-83-935157-1-4 Wszelkie prawa zastrzeżone.

Bardziej szczegółowo

Jak nauczyć dziecko odpowiedzialności? 5 skutecznych sposobów

Jak nauczyć dziecko odpowiedzialności? 5 skutecznych sposobów Jak nauczyć dziecko odpowiedzialności? 5 skutecznych sposobów fot.: Thinkstock Jak nauczyć dziecko odpowiedzialności? Najlepiej własnym przykładem. Jak nauczyć dziecko odpowiedzialności? Dobre pytanie,

Bardziej szczegółowo

Prognozowanie rozgrywki grą planszową

Prognozowanie rozgrywki grą planszową Prognozowanie rozgrywki grą planszową - Cześć Anka! Co ty tam gryzmolisz? - Witaj dowcipasku. A ja po prostu projektuję grę planszową dla uczniów podstawówki. Nawet nie masz pojęcia Marku, jak są ciekawe

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Dodawanie ułamków i liczb mieszanych o różnych mianownikach

Dodawanie ułamków i liczb mieszanych o różnych mianownikach Dodawanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z dodawaniem ułamków

Bardziej szczegółowo

Ile waży arbuz? Copyright Łukasz Sławiński

Ile waży arbuz? Copyright Łukasz Sławiński Ile waży arbuz? Arbuz ważył7kg z czego 99 % stanowiła woda. Po tygodniu wysechł i woda stanowi 98 %. Nieważne jak zmierzono te %% oblicz ile waży arbuz teraz? Zanim zaczniemy, spróbuj ocenić to na wyczucie...

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,

Bardziej szczegółowo

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek

Bardziej szczegółowo

Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska

Sortowanie. Tomasz Żak  zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak

Bardziej szczegółowo

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY Witaj w podróży. Jest to podróż matematyczna oparta na historii mojej, Jamesa, która jednak nie wydarzyła się naprawdę. Kiedy byłem dzieckiem, wynalazłem maszynę -

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

to jest właśnie to, co nazywamy procesem życia, doświadczenie, mądrość, wyciąganie konsekwencji, wyciąganie wniosków.

to jest właśnie to, co nazywamy procesem życia, doświadczenie, mądrość, wyciąganie konsekwencji, wyciąganie wniosków. Cześć, Jak to jest, że rzeczywistość mamy tylko jedną i czy aby na pewno tak jest? I na ile to może przydać się Tobie, na ile to może zmienić Twoją perspektywę i pomóc Tobie w osiąganiu tego do czego dążysz?

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Systemy liczbowe. System dziesiętny

Systemy liczbowe. System dziesiętny Systemy liczbowe System dziesiętny Dla nas, ludzi naturalnym sposobem prezentacji liczb jest system dziesiętny. Oznacza to, że wyróżniamy dziesięć cytr. Są nimi: zero, jeden, dwa, trzy, cztery, pięć, sześć,

Bardziej szczegółowo

JAK POMÓC DZIECKU KORZYSTAĆ Z KSIĄŻKI

JAK POMÓC DZIECKU KORZYSTAĆ Z KSIĄŻKI JAK POMÓC DZIECKU KORZYSTAĆ Z KSIĄŻKI ŻEBY WYNIOSŁO Z NIEJ JAK NAJWIĘCEJ KORZYŚCI www.sportowywojownik.pl KORZYŚCI - DLA DZIECI: Korzyści, jakie książka Sportowy Wojownik zapewnia dzieciom, można zawrzeć

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2 1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest

Bardziej szczegółowo

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Drogi Czytelniku W tej książce pragnę nauczyć Cię matematyki. W prosty i przyjazny sposób wytłumaczę Ci teorię i przećwiczymy ją na

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Jak odczuwać gramatykę

Jak odczuwać gramatykę Jak odczuwać gramatykę Przez lata uważałem, że najlepszym sposobem na opanowanie gramatyki jest powtarzanie. Dzisiaj wiem, że powtarzanie jest skrajnie nieefektywnym sposobem nauki czegokolwiek, także

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Jak wytresować swojego psa? Częs ć 7. Zostawanie na miejscu

Jak wytresować swojego psa? Częs ć 7. Zostawanie na miejscu Jak wytresować swojego psa? Częs ć 7 Zostawanie na miejscu Zostawanie na miejscu Zostawanie na miejscu jest jedną z przydatniejszych komend, którą powinien opanować nasz pies. Pomaga zarówno podczas treningów

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów):

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Ok. Średnia to środek zbioru. Zazwyczaj mamy podane także odchylenie

Bardziej szczegółowo

Wokół Problemu Steinhausa z teorii liczb

Wokół Problemu Steinhausa z teorii liczb Wokół Problemu Steinhausa z teorii liczb Konferencja MathPAD 0 Piotr Jędrzejewicz Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu Celem referatu jest przedstawienie sposobu wykorzystania

Bardziej szczegółowo

[WYSYŁANIE MAILI Z PROGRAMU EXCEL]

[WYSYŁANIE MAILI Z PROGRAMU EXCEL] c 20140612- rev. 2 [WYSYŁANIE MAILI Z PROGRAMU EXCEL] ZAWARTOŚĆ Wstęp... 3 Funkcje w excelu... 4 Funkcja Hiperłącza... 7 Dodawanie odbiorców... 8 Uzupełnianie tytułu... 8 Wpisywanie treści... 8 Znane problemy...

Bardziej szczegółowo

Materiały dla finalistów

Materiały dla finalistów Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

% POWTÓRZENIE. 1) Procent jako część całości. 1% to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub

% POWTÓRZENIE. 1) Procent jako część całości. 1% to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub ZSO nr w Tychach http://www.lo.tychy.pl % POWTÓRZENIE ) Procent jako część całości. % to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub 00 dziesiętne. Dla przykładu:

Bardziej szczegółowo

Co ma wspólnego czarna dziura i woda w szklance?

Co ma wspólnego czarna dziura i woda w szklance? Co ma wspólnego czarna dziura i woda w szklance? Czarne dziury są obiektami tajemniczymi i fascynującymi, aczkolwiek część ich właściwości można oszacować przy pomocy prostych równań algebry. Pokazuje

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Przekształcanie wykresów.

Przekształcanie wykresów. Sławomir Jemielity Przekształcanie wykresów. Pokażemy tu, jak zmiana we wzorze funkcji wpływa na wygląd jej wykresu. A. Mamy wykres funkcji f(). Jak będzie wyglądał wykres f ( ) + a, a stała? ( ) f ( )

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu: RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma

Bardziej szczegółowo

Copyright 2015 Monika Górska

Copyright 2015 Monika Górska 1 To jest moje ukochane narzędzie, którym posługuję się na co dzień w Fabryce Opowieści, kiedy pomagam swoim klientom - przede wszystkim przedsiębiorcom, właścicielom firm, ekspertom i trenerom - w taki

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu. Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Jak logik przewozi kozę przez rzekę?

Jak logik przewozi kozę przez rzekę? Jak logik przewozi kozę przez rzekę? 1. Koza i kapusta 1.1. Problem Na lewym brzegu rzeki, na przystani promowej, znajdują się: chłop, koza i kapusta. Prom jest samoobsługowy (może obsługiwać go tylko

Bardziej szczegółowo

Procenty % % oznacza liczbę 0, 01 czyli / 100

Procenty % % oznacza liczbę 0, 01 czyli / 100 % oznacza liczbę 0, 01 czyli / 100 p p % oznacza iloczyn p 0,01 100 Procenty % Wyrażenie p % liczby x oznacza iloczyn 1 Łacińskie pro cent oznacza na 100 Stosuje się także oznaczający 0,001 Łacińskie pro

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

Zatem może wyjaśnijmy sobie na czym polega różnica między człowiekiem świadomym, a Świadomym.

Zatem może wyjaśnijmy sobie na czym polega różnica między człowiekiem świadomym, a Świadomym. KOSMICZNA ŚWIADOMOŚĆ Kiedy mowa jest o braku świadomi, przeciętny człowiek najczęściej myśli sobie: O czym oni do licha mówią? Czy ja nie jesteś świadomy? Przecież widzę, słyszę i myślę. Tak mniej więcej

Bardziej szczegółowo

Lekcja 5 - PROGRAMOWANIE NOWICJUSZ

Lekcja 5 - PROGRAMOWANIE NOWICJUSZ Lekcja 5 - PROGRAMOWANIE NOWICJUSZ 1 Programowanie i program według Baltiego Najpierw sprawdźmy jak program Baltie definiuje pojęcia programowania i programu: Programowanie jest najwyższym trybem Baltiego.

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42 Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich

Bardziej szczegółowo

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

Ankieta. Instrukcja i Pytania Ankiety dla młodzieży.

Ankieta. Instrukcja i Pytania Ankiety dla młodzieży. Ankieta Instrukcja i Pytania Ankiety dla młodzieży www.fundamentywiary.pl Pytania ankiety i instrukcje Informacje wstępne Wybierz datę przeprowadzenia ankiety w czasie typowego spotkania grupy młodzieżowej.

Bardziej szczegółowo

Wzór na rozwój. Karty pracy. Kurs internetowy. Nauki ścisłe odpowiadają na wyzwania współczesności. Moduł 3. Data rozpoczęcia kursu

Wzór na rozwój. Karty pracy. Kurs internetowy. Nauki ścisłe odpowiadają na wyzwania współczesności. Moduł 3. Data rozpoczęcia kursu 2 slajd Cele modułu 3 Kurs internetowy Wzór na rozwój Nauki ścisłe odpowiadają na wyzwania współczesności Poznasz przykładowy przebieg działań w projekcie edukacyjnym zrealizowanym w ramach projektu Wzór

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42 Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1)

NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1) NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1) CZYTANIE A. Mówi się, że człowiek uczy się całe życie. I jest to bez wątpienia prawda. Bo przecież wiedzę zdobywamy nie tylko w szkole, ale również w pracy, albo

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

Zamiana ułamków na procenty oraz procentów na ułamki

Zamiana ułamków na procenty oraz procentów na ułamki Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko

Bardziej szczegółowo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Sprawozdania z wycieczki po Szlaku Piastowskim

Sprawozdania z wycieczki po Szlaku Piastowskim Wycieczka z cyklu: Szlak Piastowski W dniach 29 i 30 maja klasy 3a i 3b pojechały ze swoimi wychowawcami p. I. Wiącek i p. G. Ćwikła na wycieczkę, której trasa i nazwa wiążą się z dynastią Piastów: od

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Izabella Mastalerz siostra, III kl. S.P. Nr. 156 BAJKA O WARTOŚCIACH. Dawno, dawno temu, w dalekim kraju istniały następujące osady,

Izabella Mastalerz siostra, III kl. S.P. Nr. 156 BAJKA O WARTOŚCIACH. Dawno, dawno temu, w dalekim kraju istniały następujące osady, Laura Mastalerz, gr. IV Izabella Mastalerz siostra, III kl. S.P. Nr. 156 BAJKA O WARTOŚCIACH Dawno, dawno temu, w dalekim kraju istniały następujące osady, w których mieszkały wraz ze swoimi rodzinami:

Bardziej szczegółowo

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria

Bardziej szczegółowo

TAJEMNICE NIESKOŃCZONOŚCI

TAJEMNICE NIESKOŃCZONOŚCI Wydział Matematyki i Informatyki Studenckie Interdyscyplinarne Koło Naukowe Dydaktyki Matematyki 1. Przedstawienie się. 2. Wstęp pytania do publiczności. TAJEMNICE NIESKOŃCZONOŚCI W tej części chcę poznać

Bardziej szczegółowo

Zaplanuj Twój najlepszy rok w życiu!

Zaplanuj Twój najlepszy rok w życiu! Sukces na Twoich warunkach Zaplanuj Twój najlepszy rok w życiu! "Naszą najgłębszą obawą nie jest to, że jesteśmy zbyt słabi, ale to, że jesteśmy zbyt potężni. To nasz blask nas przeraża, nie ciemność.

Bardziej szczegółowo

Copyright 2015 Monika Górska

Copyright 2015 Monika Górska 1 Wiesz jaka jest różnica między produktem a marką? Produkt się kupuje a w markę się wierzy. Kiedy używasz opowieści, budujesz Twoją markę. A kiedy kupujesz cos markowego, nie zastanawiasz się specjalnie

Bardziej szczegółowo

Umiesz Liczyć Licz Kalorie

Umiesz Liczyć Licz Kalorie Umiesz Liczyć Licz Kalorie Cześć! W tym krótkim poradniku wytłumaczę Ci dlaczego według mnie jedzenie wszystkiego w odpowiednich ilościach pozwoli utrzymać świetną sylwetkę przez całe życie. Tak dobrze

Bardziej szczegółowo

LEKCJA 1. Diagram 1. Diagram 3

LEKCJA 1. Diagram 1. Diagram 3 Diagram 1 LEKCJA 1 - zaawansowanie czarnych zdecydowanie lepsze, - szansa dojścia czarnych do damki, - przynajmniej jeden kamień białych ginie, ale od czego jest ostatnia deska ratunku - KOMBINACJA! Ale

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11 Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

Dowód osobisty. Dowód osobisty mówi, kim jesteś, jakie masz imię i nazwisko, gdzie mieszkasz. Dowód osobisty mówi, że jesteś obywatelem Polski.

Dowód osobisty. Dowód osobisty mówi, kim jesteś, jakie masz imię i nazwisko, gdzie mieszkasz. Dowód osobisty mówi, że jesteś obywatelem Polski. Dowód osobisty Dowód osobisty mówi, kim jesteś, jakie masz imię i nazwisko, gdzie mieszkasz. Dowód osobisty mówi, że jesteś obywatelem Polski. Dowód osobisty musi posiadać każdy, kto ma 18 lat. Dowód osobisty

Bardziej szczegółowo