Przedsmak nieskończoności
|
|
- Czesław Mazur
- 8 lat temu
- Przeglądów:
Transkrypt
1 Przedsmak nieskończoności Co to znaczy "nieskończoność"? Tak często używamy tego słowa, że już nic dla nas nie znaczy. Albo wydaje nam się, że to po prostu "taka niewyobrażalnie wielka liczba". A może chcesz poznać prawdziwą niewyobrażalnie wielką liczbę? Spróbujmy, a na koniec wrócimy do naszej nieskończoności. Poznajemy bohaterkę Jest sobie taka liczba, zwana na cześć swojego wynalazcy liczbą Grahama. Ma ona zastosowanie w pewnej konkretnej teorii matematycznej oraz w praktyce, ale o tym kiedy indziej. Oznacza się ją po prostu literą G: G = liczba Grahama Jest ogromna. Niewyobrażalnie ogromna. Fizycy się śmieją, że zanim byś się nauczył lub nauczyła na pamięć nawet części tej liczby, twoja głowa by implodowała i zamieniła się w czarną dziurę. Bo czarna dziura wielkości twojej głowy zawiera mniej informacji, niż ta liczba (a nic nie zawiera więcej informacji, w przeliczeniu na jednostkę objętości, niż czarna dziura). "Ha, ha, no dobrze, ogromna. Ale jak ogromna? Do czego można ją porównać?" Problem w tym, że nie ma za bardzo do czego. Ale spróbujmy jakoś ją sobie "wyobrazić". Olbrzymie, ale wyobrażalne Może liczba możliwych kombinacji ułożenia kafelków w kostce Rubika to duża liczba? No, całkiem spora: (ponad 43 tryliony). Ale nie wydaje się szczególnie gigantyczna. Mimo jej ogromu najlepsi układają kostkę Rubika w kilka sekund (nawet mi się udało zejść poniżej minuty, więc to nie może być trudne). To może słynny googol jest ogromną liczbą? Czyli jedynka i sto zer. Czy to dużo? Spróbujmy to sobie wyobrazić. Na początek wypełnijmy piaskiem całe pomieszczenie, w którym się znajdujesz. Ile to by było ziarenek piasku? Otóż, jeśli jesteś w przeciętnym pokoju przeciętnego mieszkania, to będzie tylko ~ (~50 bilionów) ziarenek piasku. Być może wydaje ci się, że liczba atomów w obserwowalnym Wszechświecie jest ogromna. Otóż niezbyt. Ta liczba to jedynie: Czyli jedynka z osiemdziesięcioma zerami. Nadal nieco nam brakuje. Nie ograniczajmy się do twojego pokoju, wypełnijmy piaskiem cały znany nam Wszechświat. Ile to będzie ziarenek piasku?
2 10 90 Dobrze, powiedzmy, że googol jest już w naszym zasięgu. Możemy pójść od razu o wiele dalej i dojść do liczby o nazwie googolplex, czyli 10 do potęgi googol: Zaczyna się robić ciekawie. Googolplexa można łatwo zapisać tak jak powyżej, ale gdybyśmy chcieli zapisać tę liczbę "normalnie" jako jedynkę i ciąg zer, to zabrakłoby atomów w znanym nam Wszechświecie, żeby to zrobić. Mało tego. Pójdźmy na całość i załóżmy, że umieszczamy pojedynczą cyfrę nie na atomie, ale w tzw. objętości Plancka: 4, m 3 To jest niewyobrażalnie mała objętość, nie dająca się zmierzyć żadnym istniejącym urządzeniem. Objętość protonu (samego protonu, nie mówiąc o atomie!) jest przy tym wręcz kolosalna: ~1, m 3 Ile więc cyfr możemy zapisać w ten sposób? Liczba dostępnych miejsc (czyli liczba objętości Plancka w znanym nam Wszechświecie) to w przybliżeniu: 8,29 x Czyli znów liczba całkiem "zwyczajna" i możliwa do wyobrażenia. I niestety za mała. Ilość cyfr w googolplexie jest o wiele większa. Czyli googolplex, jeśli chcielibyśmy ją zapisać jako jedynkę i ciąg zer, nie może się nijak zmieścić w znanym nam Wszechświecie. Jedyne sensowne porównanie, jakie znalazłem, brzmi tak: Gdybyśmy wypełnili szczelnie cały znany Wszechświat drobinami pyłu o rozmiarach 1,5 mikrometra (jednej tysięcznej milimetra), a następnie je ponumerowali, to dopiero liczba możliwych wersji tej numeracji(!) byłaby mniej więcej równa liczbie googolplex. Ciekawostka dla zaawansowanych: googolplex to liczba większa, niż liczba wszelkich możliwych kombinacji istnienia czy nieistnienia oraz stanów wszystkich znanych nam cząstek elementarnych mogących się zmieścić w przestrzeni, którą zajmuje twoje ciało. Ta liczba to jedynie : W praktyce oznacza to ciekawą rzecz: gdyby Wszechświat miał średnicę metrów, to istniałoby ogromne prawdopodobieństwo, że istniałby w tym Wszechświecie więcej niż jeden egzemplarz twojej osoby! Googolplex to rzeczywiście spora liczba, ale bez problemu można ją zapisać i zrozumieć, nawet jeśli cały znany Wszechświat wydaje się na to przyciasny. Tymczasem liczba Grahama nawet nie podniosła powieki i śpi spokojnie, niczym nie zagrożona. Wszystkie powyższe liczby, włącznie z megaolbrzymim i przekraczającym możliwości naszego Wszechświata googolplexem, są przy niej nie tyle śmiesznie małe, co po prostu bez znaczenia w ogóle. Nawet nie zaczęliśmy się zbliżać do czegoś porównywalnego z liczbą Grahama, a już "zużyliśmy" cały Wszechświat! Powiedzmy, że w przypadku googolplexa w pewnym sensie zbliżyliśmy się jedynie do miejsca, w którym zaczyna się droga prowadząca do liczby Grahama. Jednak jeśli chcemy dowiedzieć się
3 czegokolwiek konkretnego o naszej bohaterce, musimy spróbować innego podejścia. Krok po kroczku Zacznijmy od czegoś prostego. Jednym ze sposobów na uzyskanie dużej liczby jest dodawanie do siebie kolejnych liczb: 3+3+3=9 Znamy zapis, który pozwala nam skrócić całość do: 3 3=9 Zaszalejmy: 3 3 3=27 Albo prościej: 3 3 =27 Znowu zaszalejmy: 3 33 =3 27 = (ponad 7,6 biliona) Zobacz: dodaliśmy tylko jedno "pięterko" potęgowania, a nagle przeskoczyliśmy z 27 do ponad 7 bilionów(!). Jesteśmy na dobrej drodze, jednak liczba Grahama jest tak wielka, że zwyczajne dodawanie pięterek kolejnych potęg nie wystarczy. Trzeba sięgnąć po coś mocniejszego. Czas na strzałki, czyli notację strzałkową. Nie będę tutaj wyjaśniał, jak ona dokładnie działa, zamiast tego podam konkretne przykłady, które doprowadzą nas do celu. Zawrót głowy Jedna strzałka po prostu zastępuje potęgowanie: 3 3=3 3 =27 Wprowadzając podwójną strzałkę definiujemy ilość pięterek potęgowania. Zróbmy trzy pięterka z trójkami: 3 3 = 3 33 = 3 27 = Zwiększmy z 3 do 4 pięterek: 3 4 = = 3 To już jest spora liczba, ale nadal wyobrażalna (a w każdym razie łatwo zapisywalna). Co się jednak stanie, gdy dodamy trzecią strzałkę? 3 3 =??? Ta liczba to "trzy do potęgi trzy do potęgi trzy do potęgi trzy" i tak razy. Czyli ponad siedem bilionów pięterek! A już przy czterech pięterkach otrzymaliśmy bardzo ogromną liczbę. Liczba 3 3 jest już poza zasięgiem naszej wyobraźni. Zostawia daleko w tyle wszystko, co potrafimy sobie wyobrazić, wszystkie wcześniej wymieniane wielkie liczby, łącznie z googolplexem. Choćby podniesione do kwadratu. Ale to i tak nie jest nawet
4 mały ułamek liczby Grahama Lecz jesteśmy na dobrej drodze. Czas zrobić krok naprzód. Najpierw trzeba dodać jeszcze jedną strzałkę: 3 3 = g 1 Skoro poprzednia liczba jest totalnie nie do wyobrażenia, to tę możemy śmiało nazwać idiotycznie wielką. I to jest wreszcie malutki kroczek na drodze do liczby Grahama. Idźmy dalej: g 2 = 3 g 1 3 Ta liczba to dwie trójki, które pomiędzy sobą mają tyle strzałek, ile wynosi poprzednia liczba. Jeśli tamtą nazwaliśmy idiotycznie wielką, to ta jest zapewne kretyńsko-idiotycznie wielka. Idźmy dalej: g 3 = 3 g 2 3 (debilnie wielka liczba) g 4 = 3 g 3 3 (debilnie-kretyńsko-idiotycznie wielka liczba) i tak dalej, aż dojdziemy do: g 64 = 3 g 63 3 = G I to jest dopiero liczba Grahama. Przypomnijmy, że poza wszelką możliwą skalę wyobrażenia wyszliśmy już przy liczbie 3 3, zanim w ogóle doszliśmy do pierwszego kroku, czyli liczby 3 3 = g 1. Nikt nie wie (i pewnie nigdy się nie dowie), jaka jest pierwsza cyfra liczby Grahama. Możemy jedynie obliczać ostatnie cyfry. 500 ostatnich cyfr liczby Grahama wygląda tak: Możemy ciągnąć te obliczenia i poznawać kolejne cyfry, ale nie wystarczy całego czasu Wszechświata i całej przestrzeni Wszechświata, żeby poznać lub zapisać w sposób tradycyjny choćby mały ułamek tej liczby. A jednak potrafimy ją zapisać używając specjalnej notacji, no i potrafimy ją wykorzystać w praktyce. Być może to jest bardziej niesamowite od samej wielkości liczby Grahama. Odpocznijmy Uf. Jeśli nie zakręciło ci się w głowie, to znaczy, że prawdopodobnie nic nie rozumiesz. A jeśli rozumiesz wszystko, to twoja głowa prawdopodobnie niebawem implduje i zamieni się w czarną dziurę. A to tylko zwykła liczba.
5 Niewyobrażalnie wielka, ale jednak zwykła liczba. Dalej za nią stoi nieskończenie wiele liczb. Przecież jeśli potrafimy zapisać liczbę Grahama: g 64 = 3 g 63 3 = G ( 3 3 = g 1 ) to z łatwością możemy przeskoczyć do liczby, która zostawia liczbę Grahama daleko w tyle. Wystarczy zmienić "64" w tym wzorze na liczbę Grahama na przykład. Sama liczba Grahama stanie się wtedy pomijalnie mała. A każda nowa liczba nadal będzie pomijalnie mała przy nieskończoności. Bo nieskończoność to nie jest po prostu jakaś niewyobrażalnie wielka liczba. Nieskończoność to nie jest w ogóle żadna liczba, tylko pewna idea. Ale o tym kiedy indziej. Michał Terajewicz, Przypisy:
Programowanie w Baltie klasa VII
Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.
Zadania z obliczania odległości
Zadania z obliczania odległości 1. Długość linii kolejowej wynosi 85 km. Linia ta na mapie wynosi 17 cm. Jaka jest skala tej mapy. Na początek zapiszmy dane w postaci proporcji: 17 cm 85 km musimy teraz
Zadania z obliczania powierzchni
Zadania z obliczania powierzchni 1. Jezioro zajmuje powierzchnię 7 030 ha. Jaką powierzchnię w cm 2 zajmie ono na mapie w skali 1:200 000? Najpierw ustalmy ile cm 2 w terenie odpowiada cm 2 na mapie. Do
Co to jest niewiadoma? Co to są liczby ujemne?
Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?
Dzielenie sieci na podsieci
e-damiangarbus.pl Dzielenie sieci na podsieci dla każdego Uzupełnienie do wpisu http://e-damiangarbus.pl/podzial-sieci-na-podsieci/ Dwa słowa wstępu Witaj, właśnie czytasz uzupełnienie do wpisu na temat
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Temat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Podział sieci na podsieci wytłumaczenie
Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże
ZMIERZYĆ SIĘ Z KALKULATOREM
ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka
17. Naprzemienne odejmowanie
17. Naprzemienne odejmowanie W starej chińskiej księdze Dziewięć Działów Arytmetyki znajduje się przepis na skracanie ułamków, który w skrócie przytoczymy tak: Chcesz skrócić ułamek Najpierw zobacz, czy
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
PRZELICZANIE JEDNOSTEK MIAR
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Irena Sidor-Rangełow. Mnożenie i dzielenie do 100: Tabliczka mnożenia w jednym palcu
Irena Sidor-Rangełow Mnożenie i dzielenie do 100: Tabliczka mnożenia w jednym palcu Copyright by Irena Sidor-Rangełowa Projekt okładki Slavcho Rangelov ISBN 978-83-935157-1-4 Wszelkie prawa zastrzeżone.
Jak nauczyć dziecko odpowiedzialności? 5 skutecznych sposobów
Jak nauczyć dziecko odpowiedzialności? 5 skutecznych sposobów fot.: Thinkstock Jak nauczyć dziecko odpowiedzialności? Najlepiej własnym przykładem. Jak nauczyć dziecko odpowiedzialności? Dobre pytanie,
Prognozowanie rozgrywki grą planszową
Prognozowanie rozgrywki grą planszową - Cześć Anka! Co ty tam gryzmolisz? - Witaj dowcipasku. A ja po prostu projektuję grę planszową dla uczniów podstawówki. Nawet nie masz pojęcia Marku, jak są ciekawe
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Dodawanie ułamków i liczb mieszanych o różnych mianownikach
Dodawanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z dodawaniem ułamków
Ile waży arbuz? Copyright Łukasz Sławiński
Ile waży arbuz? Arbuz ważył7kg z czego 99 % stanowiła woda. Po tygodniu wysechł i woda stanowi 98 %. Nieważne jak zmierzono te %% oblicz ile waży arbuz teraz? Zanim zaczniemy, spróbuj ocenić to na wyczucie...
Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:
Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek
Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska
Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak
WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY
WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY Witaj w podróży. Jest to podróż matematyczna oparta na historii mojej, Jamesa, która jednak nie wydarzyła się naprawdę. Kiedy byłem dzieckiem, wynalazłem maszynę -
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
to jest właśnie to, co nazywamy procesem życia, doświadczenie, mądrość, wyciąganie konsekwencji, wyciąganie wniosków.
Cześć, Jak to jest, że rzeczywistość mamy tylko jedną i czy aby na pewno tak jest? I na ile to może przydać się Tobie, na ile to może zmienić Twoją perspektywę i pomóc Tobie w osiąganiu tego do czego dążysz?
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Systemy liczbowe. System dziesiętny
Systemy liczbowe System dziesiętny Dla nas, ludzi naturalnym sposobem prezentacji liczb jest system dziesiętny. Oznacza to, że wyróżniamy dziesięć cytr. Są nimi: zero, jeden, dwa, trzy, cztery, pięć, sześć,
JAK POMÓC DZIECKU KORZYSTAĆ Z KSIĄŻKI
JAK POMÓC DZIECKU KORZYSTAĆ Z KSIĄŻKI ŻEBY WYNIOSŁO Z NIEJ JAK NAJWIĘCEJ KORZYŚCI www.sportowywojownik.pl KORZYŚCI - DLA DZIECI: Korzyści, jakie książka Sportowy Wojownik zapewnia dzieciom, można zawrzeć
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni
Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Drogi Czytelniku W tej książce pragnę nauczyć Cię matematyki. W prosty i przyjazny sposób wytłumaczę Ci teorię i przećwiczymy ją na
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Jak odczuwać gramatykę
Jak odczuwać gramatykę Przez lata uważałem, że najlepszym sposobem na opanowanie gramatyki jest powtarzanie. Dzisiaj wiem, że powtarzanie jest skrajnie nieefektywnym sposobem nauki czegokolwiek, także
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Jak wytresować swojego psa? Częs ć 7. Zostawanie na miejscu
Jak wytresować swojego psa? Częs ć 7 Zostawanie na miejscu Zostawanie na miejscu Zostawanie na miejscu jest jedną z przydatniejszych komend, którą powinien opanować nasz pies. Pomaga zarówno podczas treningów
Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów):
Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Ok. Średnia to środek zbioru. Zazwyczaj mamy podane także odchylenie
Wokół Problemu Steinhausa z teorii liczb
Wokół Problemu Steinhausa z teorii liczb Konferencja MathPAD 0 Piotr Jędrzejewicz Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu Celem referatu jest przedstawienie sposobu wykorzystania
[WYSYŁANIE MAILI Z PROGRAMU EXCEL]
c 20140612- rev. 2 [WYSYŁANIE MAILI Z PROGRAMU EXCEL] ZAWARTOŚĆ Wstęp... 3 Funkcje w excelu... 4 Funkcja Hiperłącza... 7 Dodawanie odbiorców... 8 Uzupełnianie tytułu... 8 Wpisywanie treści... 8 Znane problemy...
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
% POWTÓRZENIE. 1) Procent jako część całości. 1% to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub
ZSO nr w Tychach http://www.lo.tychy.pl % POWTÓRZENIE ) Procent jako część całości. % to po prostu część całości. Stąd wynika, że procenty możemy zapisywać jako ułamki zwykłe lub 00 dziesiętne. Dla przykładu:
Co ma wspólnego czarna dziura i woda w szklance?
Co ma wspólnego czarna dziura i woda w szklance? Czarne dziury są obiektami tajemniczymi i fascynującymi, aczkolwiek część ich właściwości można oszacować przy pomocy prostych równań algebry. Pokazuje
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
Przekształcanie wykresów.
Sławomir Jemielity Przekształcanie wykresów. Pokażemy tu, jak zmiana we wzorze funkcji wpływa na wygląd jej wykresu. A. Mamy wykres funkcji f(). Jak będzie wyglądał wykres f ( ) + a, a stała? ( ) f ( )
Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
Copyright 2015 Monika Górska
1 To jest moje ukochane narzędzie, którym posługuję się na co dzień w Fabryce Opowieści, kiedy pomagam swoim klientom - przede wszystkim przedsiębiorcom, właścicielom firm, ekspertom i trenerom - w taki
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.
Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą
Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro
6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry
Tworzenie protonów neutronów oraz jąder atomowych
Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Jak logik przewozi kozę przez rzekę?
Jak logik przewozi kozę przez rzekę? 1. Koza i kapusta 1.1. Problem Na lewym brzegu rzeki, na przystani promowej, znajdują się: chłop, koza i kapusta. Prom jest samoobsługowy (może obsługiwać go tylko
Procenty % % oznacza liczbę 0, 01 czyli / 100
% oznacza liczbę 0, 01 czyli / 100 p p % oznacza iloczyn p 0,01 100 Procenty % Wyrażenie p % liczby x oznacza iloczyn 1 Łacińskie pro cent oznacza na 100 Stosuje się także oznaczający 0,001 Łacińskie pro
Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?
Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz
Zatem może wyjaśnijmy sobie na czym polega różnica między człowiekiem świadomym, a Świadomym.
KOSMICZNA ŚWIADOMOŚĆ Kiedy mowa jest o braku świadomi, przeciętny człowiek najczęściej myśli sobie: O czym oni do licha mówią? Czy ja nie jesteś świadomy? Przecież widzę, słyszę i myślę. Tak mniej więcej
Lekcja 5 - PROGRAMOWANIE NOWICJUSZ
Lekcja 5 - PROGRAMOWANIE NOWICJUSZ 1 Programowanie i program według Baltiego Najpierw sprawdźmy jak program Baltie definiuje pojęcia programowania i programu: Programowanie jest najwyższym trybem Baltiego.
Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich
Odejmowanie ułamków i liczb mieszanych o różnych mianownikach
Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Ankieta. Instrukcja i Pytania Ankiety dla młodzieży.
Ankieta Instrukcja i Pytania Ankiety dla młodzieży www.fundamentywiary.pl Pytania ankiety i instrukcje Informacje wstępne Wybierz datę przeprowadzenia ankiety w czasie typowego spotkania grupy młodzieżowej.
Wzór na rozwój. Karty pracy. Kurs internetowy. Nauki ścisłe odpowiadają na wyzwania współczesności. Moduł 3. Data rozpoczęcia kursu
2 slajd Cele modułu 3 Kurs internetowy Wzór na rozwój Nauki ścisłe odpowiadają na wyzwania współczesności Poznasz przykładowy przebieg działań w projekcie edukacyjnym zrealizowanym w ramach projektu Wzór
Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,
NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1)
NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1) CZYTANIE A. Mówi się, że człowiek uczy się całe życie. I jest to bez wątpienia prawda. Bo przecież wiedzę zdobywamy nie tylko w szkole, ale również w pracy, albo
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA
Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Zamiana ułamków na procenty oraz procentów na ułamki
Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko
Wstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Sprawozdania z wycieczki po Szlaku Piastowskim
Wycieczka z cyklu: Szlak Piastowski W dniach 29 i 30 maja klasy 3a i 3b pojechały ze swoimi wychowawcami p. I. Wiącek i p. G. Ćwikła na wycieczkę, której trasa i nazwa wiążą się z dynastią Piastów: od
Wstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Izabella Mastalerz siostra, III kl. S.P. Nr. 156 BAJKA O WARTOŚCIACH. Dawno, dawno temu, w dalekim kraju istniały następujące osady,
Laura Mastalerz, gr. IV Izabella Mastalerz siostra, III kl. S.P. Nr. 156 BAJKA O WARTOŚCIACH Dawno, dawno temu, w dalekim kraju istniały następujące osady, w których mieszkały wraz ze swoimi rodzinami:
MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm
MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria
TAJEMNICE NIESKOŃCZONOŚCI
Wydział Matematyki i Informatyki Studenckie Interdyscyplinarne Koło Naukowe Dydaktyki Matematyki 1. Przedstawienie się. 2. Wstęp pytania do publiczności. TAJEMNICE NIESKOŃCZONOŚCI W tej części chcę poznać
Zaplanuj Twój najlepszy rok w życiu!
Sukces na Twoich warunkach Zaplanuj Twój najlepszy rok w życiu! "Naszą najgłębszą obawą nie jest to, że jesteśmy zbyt słabi, ale to, że jesteśmy zbyt potężni. To nasz blask nas przeraża, nie ciemność.
Copyright 2015 Monika Górska
1 Wiesz jaka jest różnica między produktem a marką? Produkt się kupuje a w markę się wierzy. Kiedy używasz opowieści, budujesz Twoją markę. A kiedy kupujesz cos markowego, nie zastanawiasz się specjalnie
Umiesz Liczyć Licz Kalorie
Umiesz Liczyć Licz Kalorie Cześć! W tym krótkim poradniku wytłumaczę Ci dlaczego według mnie jedzenie wszystkiego w odpowiednich ilościach pozwoli utrzymać świetną sylwetkę przez całe życie. Tak dobrze
LEKCJA 1. Diagram 1. Diagram 3
Diagram 1 LEKCJA 1 - zaawansowanie czarnych zdecydowanie lepsze, - szansa dojścia czarnych do damki, - przynajmniej jeden kamień białych ginie, ale od czego jest ostatnia deska ratunku - KOMBINACJA! Ale
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Jarosław Wróblewski Matematyka Elementarna, lato 2010/11
Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Dowód osobisty. Dowód osobisty mówi, kim jesteś, jakie masz imię i nazwisko, gdzie mieszkasz. Dowód osobisty mówi, że jesteś obywatelem Polski.
Dowód osobisty Dowód osobisty mówi, kim jesteś, jakie masz imię i nazwisko, gdzie mieszkasz. Dowód osobisty mówi, że jesteś obywatelem Polski. Dowód osobisty musi posiadać każdy, kto ma 18 lat. Dowód osobisty