I N P U T 128 lub 192 lub 256. K L U C Z 128 lub 192 lub 256 A E S RIJNDAEL. O U T P U T 128 lub 192 lub 256

Wielkość: px
Rozpocząć pokaz od strony:

Download "I N P U T 128 lub 192 lub 256. K L U C Z 128 lub 192 lub 256 A E S RIJNDAEL. O U T P U T 128 lub 192 lub 256"

Transkrypt

1 I N P U T 28 lu 92 lu 256 A E S RIJNDAEL K L U C Z 28 lu 92 lu 256 O U T P U T 28 lu 92 lu 256 Źródła. AES Proposal: Rijndael,Joan Daemen, Vincent Rijmen 2. ISO/IEC JTC /SC 27WD 833-3: Encryption algorithms Part 3:Block ciphers (X. Lai) 3. P. Mroczkowski, Rijndael jako nowy standard szyfrowania, IT Security Magazine Nr 6-7 (22-23) czerwiec-lipiec 2.

2

3 Przekształcenie strumieni wejściowych w talice stanu Dd N = 32 gdzie: Dd długość loku danych wejściowych w itach, N ilość kolumn talicy stanu. Dk Nk = 32 gdzie: Dk długość klucza w itach, Nk ilość kolumn talicy klucza. a, a, a,2 a,3... a,n- k, k, k,2 k,3... k,nk- a, a, a,2 a,3... a,n- k, k, k,2 k,3... k,nk- a 2, a 2, a 2,2 a 2,3... a 2,N- k 2, k 2, k 2,2 k 2,3... k 2,Nk- a 3, a 3, a 3,2 a 3,3... a 3,N- k 3, k 3, k 3,2 k 3,3... k 3,Nk- gdzie elementy talicy stanu i talicy klucza są ajtami.

4 Szyfrowanie KLUCZ TEKST JAWNY 2 PK AddRoundKey Runda zerowa 3 ByteSu Oliczanie podklucza PK..Nr- ShiftRow MixColoumn AddRoundKey (Nr-) x runda podstawowa PK Nr ByteSu ShiftRow AddRoundKey Runda końcowa 4 TEKST ZASZYFROWANY 5

5 AddRoundKey S talica stanu na wejściu S talica stanu na wyjściu w n n+n- podklucz dla rundy round gdzie n = round*n wówczas: S ij = S ij w n+j dla i =.. 3, j =.. N-

6 2 Jest to nieliniowe podstawienie typu S-ox wykonywane na każdym ajcie talicy stanu. Składa się ono z dwóch przekształceń:. Wyznaczenie multiplikatywnej odwrotności w ciele wielomianowym skończonym wyznaczonym przez wielomian nieredukowalny m(x) = x 8 + x 4 + x 3 + x + (czyli, w zapisie heksadecymalnym x). Zakłada się, że odwrotnością elementu jest element. 2. Zastosowanie przekształcenia afinicznego (nad GF(2)) określonego następująco: i = i (i+4)mod 8 (i+5)mod 8 (i+6)mod 8 (i+7) mod 8 c i Jest to równoważne zapisowi macierzowemu: = Oa te przekształcenia można staelaryzować (taela 6*6) i zamiast wyznaczać wartości dla każdego ajtu przy pomocy powyższego algorytmu wyierać z wyznaczonej talicy (metoda lookup tale). ByteSu

7

8 3 ShiftRow W przekształceniu ShiftRow w trzech ostatnich wierszach talicy stanu elementy są cyklicznie przesuwane na pozycje o niższyc indeksach kolumn o różną liczę pozycji (ajtów). Wiersz pierwszy nie jest przesuwany, drugi jest przesuwany o S ajtów, wiersz trzeci o S2 a wiersz czwarty o S3 ajtów. Przesunięcia S, S2 i S3 zależą od długości loku N. Wartości te pokazuje poniższa talica. N S S2 S Przekształcenie ShiftRow można zapisać w postaci: s r,c = s r,(c+sr))mod N dla Sr jak w powyższej taeli, c < N, r =,2,3. Ma to efekt przesunięcia ajtów na niższą pozycję w wierszu (tzn. na niższe wartości c w danym wierszu), podczas gdy najniższe ajty przeskakują na szczyt wiersza (tzn. na najwyższe wartości c w danym wierszu).

9 4 MixColumn Przekształcenie MixColumn działa na talicy stanu kolumna po kolumnie, traktując każdą kolumnę jako czteroskładnikowy wielomian postaci s 3,c x 3 + s 2,c x 2 + s,c x + s,c. Kolumny te traktowane jako wielomiany nad GF(2 8 ) są mnożone modulo x 4 + przez stały wielomian a(x) postaci: a(x) = x3 x 3 + x x 2 +ox x + x2. W zapisie macierzowym: S (x) = a(x) s(x), lu s s s s, c, c 2, c 3, c 2 = s s 3s 2s, c, c 2, c 3, c dla c < N. gdzie mnożenia są realizowane modulo x 4 +. Warto pamiętać, że zachodzi tu wygodna zależność, mianowicie x i mod(x 4 + ) = x i mod 4.

10 Oliczanie podkluczy Klucze Rundowe są wyprowadzane z Klucza Szyfrowania zgodnie ze Schematem Klucza. Schemat ten składa się z procesu Rozszerzenia Klucza i Wyoru Klucza Rundy. Podstawowa zasada jest następująca: Całkowita licza itów Kluczy Rundowych jest równa iloczynowi długości loku i liczy rund plus jeden. (np. dla długości loku 28 itów i rund potrzenych jest 48 itów kluczy rundowych). Klucz Szyfrowania jest rozszerzany do Rozszerzonego Klucza. Klucze Rundowe są poierane z Rozszerzonego Klucza w ten sposó, że pierwszy Klucz Rundowy składa się z pierwszych N słów, drugi z następnych N słów itd. Ilość wykonywanych rund Nr długość loku danych długość klucza Nk = 4 Nk = 6 Nk = 8 N = N = N =

11 Ilość podkluczy/ długość podklucza długość loku danych [it]/n dł. klucza [it]/nk 28/4 92/6 256/8 28/4 /28 3/92 5/256 92/6 3/28 3/92 5/ /8 5/28 5/92 5/256 Rozszerzony Klucz jest liniowym wektorem 4-ajtowych słów oznaczony W[N*(Nr+)]. Pierwsze Nk słów zawiera Klucz Szyfrowania. Wszystkie pozostałe słowa są zdefiniowane rekursywnie przy pomocy słów o mniejszych indeksach. Schemat ten zależy od wartości Nk; jedna wersja jest dla Nk 6, a druga dla Nk > 6. Dla Nk = 6, mamy: KeyExpansion(CipherKey,W) { for( i= ; i<nk ; i++ ) W[i] = CipherKey[i]; for( j=nk ; j<n*(nr+) ; j += Nk ) { W[j] = W[j-Nk] ^ SuByte(Rotl(W[j-])) ^ Rcon[j/Nk] ; for( i= ; i<nk && i+j < N*(Nr+); i++ ) W[i+j] = W[i+j-Nk] ^ W[i+j-] ; } }

12 Pierwsze Nk słów wypełnianych jest słowami klucza szyfrującego. Każde następne słowo W[i] jest równe poprzedniemu słowu W[i-] XORowane ze słowem Nk pozycji wcześniejszym W[i-Nk]. Dla pozycji ędących wielokrotnością Nk przekształcenie jest wykonywane na W[i-] Najpierw jest wykonywane cykliczne przesunięcie ajtów w słowie (oznaczone Rotl), następnie realizuje się SuByte, czyli zastosowanie lookup tale do wszystkich czterech ajtów słowa. Wynik jest XORowany ze słowem W[j-Nk] i ze stałą rundową (oznaczoną Rcon). Dla Nk > 6, mamy: KeyExpansion(CipherKey,W) { for( i = ; i < Nk ; i++ ) W[i] = CipherKey[i] ; for( j = Nk ; j < N*(Nr+) ; j += Nk ) { W[j] = W[j-Nk] ^ SuByte(Rotl(W[j-])) ^ Rcon[j/Nk] ; for(i = ; i < 4 ; i++ ) W[i+j] = W[i+j-Nk] ^ W[i+j-]; W[j+4] = W[j+4-Nk] ^ SuByte(W[j+3]); for(i = 5; i < Nk ; i++ ) W[i+j] = W[i+j-Nk] ^ W[i+j-]; } }

13 Różnica w porównaniu ze schematem dla Nk 6 polega na tym, że jeśli i-4 jest wielokrotnością Nk wówczas przed XORowaniem W[i-] jest poddawane przekształceniu SuByte. Wyór klucza rundy Klucz rundy i znajduje się w uforze kluczy rundowych od W[N*i] do W[N*(i+)-]. k k k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k k k 2 k 3 k 4... Klucz rundy Klucz rundy... Rysunek przedstawia rozszerzanie klucza i wyieranie Klucza Rundy dla N = 6 i Nk = 4. Uwaga: Schemat Klucza może yć stosowany ez używania explicite wektora W[N*(Nr+)]. W implementacjach, gdzie trzea oszczędzać RAM Klucze Rundowe mogą yć wyznaczane w locie korzystając z ufora Nk słów prawie nie zwiększając ociążenia oliczeniowego.

14 xtime xtime realizuje mnożenie wielomianu w(x) przez x modulo nieredukowalny wielomian m(x), gdzie m(x) = x 8 + x 4 + x 3 + x + lu w postaci heksadecymalnej m(x) = x. x*w(x) x2 * xw xw<<, czyli res = xw<<. Jeśli w 7 == to res jest wynikiem, a jeśli w 7 == to wynikiem jest res^x. Rotl Funkcja Rotl() ierze słowo czteroajtowe [a,a,a 2,a 3 ], wykonuje permutację cykliczną i zwraca słowo [a,a 2,a 3,a ].

15 SuByte Funkcja SuByte ierze czteroajtowe słowo i przekształca każdy ajt stosując podstawienie typu S-ox jak to przedstawiono w 2 - ByteSu. Rcon Stałe rundowe są niezależne od Nk i definiuje się je następująco: Rcon[i] = (RC[i],,, ) gdzie RC[i] = x i-, co rekurencyjnie RC[] = RC[i] = xtime(rcon[i-])

16 KLUCZ Odszyfrowywanie TEKST ZASZYFROWANY 6 PK Nr AddRoundKey InvShiftRow InvByteSu Odwrotna runda końcowa 7 Oliczanie podklucza PK Nr-.. AddRoundKey InvMixColoumn InvShiftRow (Nr-) x Odwrotna runda podstawowa 8 InvByteSu PK AddRoundKey Odwrotna runda zerowa TEKST JAWNY

17 6 InvShiftRow Przekształcenie InvShiftRow jest przekształceniem odwrotnym do ShiftRow. W przekształceniu InvShiftRow w trzech ostatnich wierszach talicy stanu elementy są cyklicznie przesuwane na pozycje o wyższych indeksach kolumn o różną liczę pozycji (ajtów). Wiersz pierwszy nie jest przesuwany, drugi jest przesuwany o S ajtów, wiersz trzeci o S2 a wiersz czwarty o S3 ajtów. Przesunięcia S, S2 i S3 zależą od długości loku N. W szczególności przekształcenie InvShiftRow można zapisać w postaci: s r,(c-sr)mod N = s r,c dla Sr jak w taeli, c < N, r =,2,3. Ma to efekt przesunięcia ajtów na wyższą pozycję w wierszu (tzn. na wyższe wartości c w danym wierszu), podczas gdy najwyższe ajty przeskakują na spód wiersza (tzn. na najniższe wartości c w danym wierszu).

18 7 InvByteSu InvByteSu jest odwrotnością przekształcenia ByteSu. Jest to nieliniowe podstawienie typu S-ox wykonywane na każdym ajcie talicy stanu. Składa się ono z dwóch przekształceń:. Zastosowanie przekształcenia afinicznego (nad GF(2)) określonego następująco: i = (i+2)mod 8 (i+5)mod 8 (i+7) mod 8 c i Jest to równoważne zapisowi macierzowemu: = Wyznaczenie multiplikatywnej odwrotności w ciele wielomianowym skończonym wyznaczonym przez wielomian nieredukowalny m(x) = x 8 + x 4 + x 3 + x + (czyli, w zapisie heksadecymalnym x). Zakłada się, że odwrotnością elementu jest element. Oa te przekształcenia można staelaryzować (taela 6*6) i zamiast wyznaczać wartości dla każdego ajtu przy pomocy powyższego algorytmu wyierać z wyznaczonej talicy (metoda lookup tale).

19

20 8 InvMixColumn Przekształcenie MixColumn jest odwrotnością przekształcenia MixColumn.Działa ono na talicy stanu kolumna po kolumnie, traktując każdą kolumnę jako czteroskładnikowy wielomian postaci s 3,c x 3 + s 2,c x 2 + s,c x + s,c. Kolumny te traktowane jako wielomiany nad GF(2 8 ) są mnożone modulo x 4 + przez stały wielomian a(x) postaci: a - (x) = x x 3 + xd x 2 +ox9 x + xe. W zapisie macierzowym: s (x) = a - (x) s(x), lu s s s s, c, c 2, c 3, c e = 9 d e 9 d d e 9 9s d s s es, c, c 2, c 3, c dla c < N. gdzie mnożenia są realizowane modulo x 4 +. Warto pamiętać, że zachodzi tu wygodna zależność, mianowicie x i mod(x 4 + ) = x i mod 4.

Rijndael szyfr blokowy

Rijndael szyfr blokowy Rijndael szyfr blokowy Andrzej Chmielowiec 24 lipca 2002 1 Podstawy matematyczne Kilka operacji w standardzie Rijndael jest zdefiniowanych na poziomie bajta, przy czym bajty reprezentują elementy ciała

Bardziej szczegółowo

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE 1 Tryby pracy szyfrów blokowych Rzadko zdarza się, by tekst jawny zawierał tylko 64 bity, czyli 8 znaków kodu ASCII. Zwykle

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

CAST, 3DES, GOST, IDEA, RC2, RC4,

CAST, 3DES, GOST, IDEA, RC2, RC4, Wykład 5 Temat: Inne symetryczne algorytmy kryptograficzne: Blowfish, CAST, 3DES, GOST, IDEA, RC2, RC4, Rijndael (AES). 5.1. Blowfish Algorytm Blowfish (pol. rozdymka) został zaprojektowany by spełnić

Bardziej szczegółowo

Wykład 5. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES

Wykład 5. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES. Podwójny algorytm DES Podwójny algorytm DES Wykład 5 Mimo złożonej operacji szyfrowania DES tekst zaszyfrowany jest narażony na kryptoanalizę (łamanie szyfru). Z tego powodu dla poprawienia bezpieczeństwa szyfru stosuje się

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

2 Kryptografia: algorytmy symetryczne

2 Kryptografia: algorytmy symetryczne 1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu.

Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu. Wykład 4 Temat: Algorytm symetryczny Twofish: cele projektowane, budowa bloków, opis algorytmu, wydajność algorytmu. W roku 1972 Narodowe Biuro Standardów (obecnie Narodowy Instytut Standardów i Technologii

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Metody szyfrowania danych

Metody szyfrowania danych K o d o w a n i e i k o m p r e s j a Zadanie 2 Metody szyfrowania danych Celem ćwiczenia jest zapoznanie się z podstawowymi metodami szyfrowania danych z użyciem kluczy symetrycznych i asymetrycznych.

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.) Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący

Bardziej szczegółowo

Bezpieczeństwo systemów i sieci komputerowych

Bezpieczeństwo systemów i sieci komputerowych Bezpieczeństwo systemów i sieci komputerowych Kryptologia (2) Szyfry blokowe Szyfry kaskadowe Propozycja Shannona Bezpieczny szyfr można zbudować operując na dużych przestrzeniach komunikatów i kluczy

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

SCHEMAT OCENIANIA poziom rozszerzony arkusz I

SCHEMAT OCENIANIA poziom rozszerzony arkusz I SCHEMAT OCENIANIA poziom rozszerzony arkusz I Zadanie TEST Prawidłowa odpowiedź a 54 jeden klucz jest wykorzystywany do szyfrowania i deszyfrowania c 5 d (n 4)/ e licencja umożliwia twórcom programów zachowanie

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków

Bardziej szczegółowo

Architektury akceleratorów kryptograficznych opartych o układy programowalne. Marcin Rogawski

Architektury akceleratorów kryptograficznych opartych o układy programowalne. Marcin Rogawski Architektury akceleratorów kryptograficznych opartych o układy programowalne. Marcin Rogawski rogawskim@prokom.pl Plan referatu: Budowa akceleratora kryptograficznego; Struktura programowalna element fizyczny;

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3 3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne Algorytmy kryptograficzne (1) Przestawieniowe zmieniają porządek znaków według pewnego schematu, tzw. figury Podstawieniowe monoalfabetyczne

Bardziej szczegółowo

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze. Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Sumy kwadratów kolejnych liczb naturalnych

Sumy kwadratów kolejnych liczb naturalnych Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =

Bardziej szczegółowo

Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU

Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU Janusz Szmidt, Marcin Barański Wojskowy Instytut Łączności 13 XII 2018 NTRU - abstract We describe NTRU, a new public key cryptosystem. NTRU

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

1. Maszyny rotorowe Enigma

1. Maszyny rotorowe Enigma Połączenie podstawowych metod szyfrowania, czyli pojedynczych podstawień lub przestawień, daje szyfr złoŝony nazywany szyfrem kaskadowym lub produktowym (ang. product cipher). Szyfry takie są połączeniem

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

1.1. Standard szyfrowania DES

1.1. Standard szyfrowania DES 1.1. Standard szyrowania DES Powstał w latach siedemdziesiątych i został przyjęty jako standard szyrowania przez Amerykański Narodowy Instytut Standaryzacji (ang. American National Standards Institute

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja

Bardziej szczegółowo

Szyfry kaskadowe. permutacyjnej (SPP).

Szyfry kaskadowe. permutacyjnej (SPP). Szyfry kaskadowe Szyfrem kaskadowym nazywamy szyfr, który jest złożeniem funkcji szyfrujących. W stosowanych w praktyce szyfrach kaskadowych jako funkcje składowe najczęściej stosowane są podstawienia

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Szyfry kaskadowe. Szyfry kaskadowe

Szyfry kaskadowe. Szyfry kaskadowe Szyfry kaskadowe Szyfrem kaskadowym nazywamy szyfr, który jest złożeniem funkcji szyfrujących. W stosowanych w praktyce szyfrach kaskadowych jako funkcje składowe najczęściej stosowane są podstawienia

Bardziej szczegółowo

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo