Mikroekonomia B.4. Mikołaj Czajkowski

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mikroekonomia B.4. Mikołaj Czajkowski"

Transkrypt

1 Mikroekonomia B.4 Mikołaj Czajkowski

2 Minimalizacja kosztów Minimalizacja kosztów (przy zadanej wielkości produkcji) Pozwala wyprowadzić funkcję TC i rozwiązać problem maksymalizacji zysków wykorzystując tylko jedną zmienną (q) W długim okresie można zmienić ilości wszystkich nakładów Ile czynników zatrudnić, żeby najtaniej wyprodukować daną ilość? Graficznie która kombinacja czynników na izokwancie najtańsza? Analitycznie minimalizacja kosztów przy ograniczeniu

3 Ceny czynników produkcji Czynniki produkcji ceny (stałe) apitał Jeśli wynajęcie koszt wynajęcia za jednostkę r (rent) Jeśli zakup stopa procentowa + deprecjacja Stopa procentowa koszt alternatywny (pieniądze można zainwestować inaczej) Deprecjacja kapitał z czasem traci na wartości Przykład: Mieszkanie w bloku z wielkiej płyty oszt mieszkania (60 m 2 ) = PN Utracone oprocentowanie (5%) inflacja (1%) = 4% Deprecjacja (zał. trwałość bloku 50 lat) = 2% rocznie Razem koszt: 6% Razem koszt posiadania w pierwszym roku: Praca wynajęcie za jednostkę w (wage) ( 0,04 + 0,02) = 24000

4 Izokoszta Pokazuje wszystkie kombinacje czynników produkcji, które łącznie kosztują tyle samo Np. jeśli jedynymi czynnikami kapitał i praca to: TC = r + w Dla różnych wartości TC równanie będzie wskazywać inne kombinacje czynników

5 Nachylenie izokoszty Przekształcając równanie izokoszty (na osi pionowej ): TC = r Więc nachylenie izokoszty to W jaki sposób kapitał można zastępować pracą bez zmiany kosztów w r w r

6 Izokoszta TC 1 > TC 2 TC 1 r+w TC 2 r+w Nachylenie = w r

7 Minimalizacja kosztów graficznie Rozwiązanie wewnętrzne: nachylenie izokwanty = nachylenie izokoszty (styczność) MRTS w = r Izokwanta q 0 = f(,) 0 0

8 Minimalizacja kosztów rozwiązanie wewnętrzne Wniosek: Jeśli rozwiązanie wewnętrzne, to: MRTS = w = w = r w r r

9 Minimalizacja kosztów rozwiązanie wewnętrzne Przykład: w w = 10 PN, r = 20 PN tórego czynnika producent zatrudni więcej? Zależy od krańcowych produktywności Zakładając, że () ma taką samą postać jak () i obie malejące: = r Wybierając czynnik, którego kolejną jednostkę chcemy zatrudnić bierzemy zawsze ten, dla którego /koszt jest aktualnie większa Zwiększanie zatrudnienia czynnika obniża W optimum zatrudnimy więcej tańszego czynnika Inaczej jeśli /w /r to opłaca się zastępować jeden czynnik drugim czynnika którego ilość zwiększamy maleje; czynnika, którego ilość zmniejszamy rośnie Opłaca się zastępować jeden czynnik drugim dopóki ich krańcowa produktywność przez koszt się nie zrównają A co jeśli czynników niemalejące?

10 Minimalizacja kosztów graficznie Zmiana cen czynników produkcji relatywnie droższe niż => mniej wykorzystywane 1 0 Nowe ceny czynników nachylenie w r 1 < w r 1 0 Początkowe ceny czynników w nachylenie 0 0 r 0 1 0

11 Minimalizacja kosztów zmiana cen czynników Izokoszta bardziej stroma w r 1 < w r (np. rośnie koszt pracy w > w ) 1 0 w = r Więc aby równanie było spełnione, relatywna ilość zatrudnienia kapitału w stosunku do pracy musi wzrosnąć (bo krańcowa produktywność malejąca)

12 Minimalizacja kosztów formalnie Dane: q = f(,) w, r Firma minimalizuje koszty TC = w + r przy ograniczeniu: f(,) = q 0 Metoda mnożników agrange a (taki sam wynik dla minimalizacji kosztów dla danego q 0 i dla maksymalizacji produkcji przy danym TC 0 )

13 Metoda mnożników agrange a Metoda mnożników agrange a w pigułce 1. Zapisz funkcję agrange a (agrangian),, λ = w+ r λ f, q ( ) ( ) ( ) 2. FOC: zróżniczkuj po wszystkich zmiennych (,, λ) i przyrównaj do 0 = 0, = 0, = 0 λ 3. Rozwiąż układ równań 0

14 Metoda mnożników agrange a ( ),, λ = w+ r λ f, q ( ) ( ) f (, ) f (, ) = w λ = 0 w= λ = λ f (, ) f (, ) = r λ = 0 r = λ = λ = f (, ) q0 = 0 f (, ) = q0 λ w λ = = r λ r w f (, ) = q0 0

15 Mnożnik agrange a λ mnożnik agrange a stopień, w jakim optymalne rozwiązanie funkcji celu zmienia się ze zmianą ograniczenia U nas: jak można zmniejszyć koszt, jeśli krańcowo zmniejszyć produkcję Cena-cień (shadow price),, λ = w+ r λ f, q ( ) ( ) ( ) Czyli krańcowy koszt zmiany wielkości produkcji 0

16 Rozwiązanie brzegowe graficznie UWAGA: warunek działa tylko dla wypukłych izokwant i tylko dla rozwiązań wewnętrznych! ( > 0i > 0) 1 Rozwiązanie brzegowe w < r 0 Rozwiązanie wewnętrzne w = r 1 = 0 0

17 Rozwiązanie brzegowe graficznie Dla izokwant funkcji Cobba-Douglasa osie asymptotami, a izokwanty wypukłe, więc zawsze rozwiązanie wewnętrzne Rozwiązanie brzegowe możliwe jeśli σ >1 np. dla doskonałych substytutów (liniowa izokwanta) σ =1 σ <1 σ >1 min min

18 Metoda mnożników agrange a przykład Funkcja produkcji Cobba-Douglasa Ceny czynników produkcji: w = 10, r = 2 Ile zatrudnić czynników produkcji, aby minimalizując koszty wyprodukować q = 100 jednostek? 0,2 0,8 Minimalizujemy przy ograniczeniu =100 (,, λ ) (,, λ) = λ( 0,2 0,8 100) 0,2 0,2 = 10 λ ( 0,8 ) = 0 (,, λ ) 0,8 0,8 = 2 λ ( 0,2 ) = 0 (,, λ ) 0,2 0,8 = = 0 λ 0,2 0,8 q = 10 0,8 = = 2 0,2 0,2 0,8 = 100 0,2 0,2 0,8 0,8

19 Metoda mnożników agrange a przykład 4 5 = 0,2 0,8 = = 5 0,8 0,2 4 = = = 119,54 ( 0,8) 0,8 4 = = 95,63 5 Zużywamy więcej tego czynnika, którego krańcowa produktywność w stosunku do jego ceny jest relatywnie większa 0,2 0,8 q = r = 2, w= 10

20 Popyty warunkowe na czynniki produkcji Dla każdego zestawu q, w, r możemy obliczyć minimalizujące koszty wielkości i Wielkości i można więc wyrazić, jako funkcje zmiennych q, w, r Popyt warunkowy firmy na czynniki produkcji α β = q = w r α β = q β = w α β 1 α 1 β α r αw α β = q = βr β α = βr w r = αw α 1 αw r α β α β β + + = q = q βr αw β 1 α βr α+ βαw = q = q αw βr α β β α + β

21 Popyty warunkowe graficznie Popyt warunkowy na = f(q,w,r) Dla stałych w i r q Ścieżka ekspansji q Popyt warunkowy na = f(q,w,r)

22 Ścieżka ekspansji Pokazuje najtańsze kombinacje czynników produkcji pozwalających na osiągnięcie danej produkcji Izoklina dla aktualnej relacji cen czynników produkcji

23 Ścieżka ekspansji Niesie tę samą informację, co długookresowa krzywa TC ażdy punkt styczności izokwanty z minimalną izokosztą determinuje koszt danej wielkości produkcji PN PN B C Ścieżka ekspansji Nachylenie d d A 200 q 300 q

24 Ścieżka ekspansji w krótkim okresie SR niektóre czynniki stałe R wszystkie czynniki zmienne R ścieżka ekspansji 2 1 P SR ścieżka ekspansji Q 2 Q

25 Ścieżka ekspansji w krótkim i długim okresie SRTC przewyższa RTC, dla danego q, z wyjątkiem punktu, w którym krótkookresowe ograniczenie ilości stałego czynnika jest jednocześnie optymalnym długookresowym wyborem jego ilości Więc RTC ma zawsze przynajmniej jeden punkt wspólny z każdą SRTC

26 Typowe rozwiązania brzegowe Rozwiązanie brzegowe możliwe np. gdy (żaden czynnik nie jest niezbędny ) σ >1 Na przykład czynniki doskonale substytucyjne Optymalnie zatrudnić tylko ten czynnik, dla którego większe X r > w P X Izokoszta nachylenie Izokwanta nachylenie w r

27 Typowe rozwiązania brzegowe Jeśli czynniki to doskonałe substytuty to firma zatrudni ten, którego krańcowa produktywność w stosunku do ceny większa Podobnie dla innych rozwiązań brzegowych

28 Typowe rozwiązania brzegowe Dla czynników doskonale substytucyjnych Popyty warunkowe: (, ) f = α + β q > =, = 0 r w α q < = 0, = r w β = q = α + β r w oszt całkowity: r TC = r = q dla α r w TC = w = q dla β r w w

29 Case study dyskryminacja kobiet obiety i mężczyźni na rynku pracy Zał. 1: obiety i mężczyźni = doskonałe substytuty Zał. 2: Produktywność kobiet i mężczyzn taka sama Co powinien robić minimalizujący koszty pracodawca? Izokwanty proste o nachyleniu -1 Jeśli płace takie same to nie ma znaczenia kogo zatrudnić Jeśli płace kobiet niższe to minimalizujący koszty pracodawca zatrudni tylko kobiety W efekcie popyt na kobiety rośnie, cena rośnie

30 Case study dyskryminacja kobiet Empirycznie płace kobiet niższe Wyjaśnienie à la Pieńkowska : obiety dyskryminowane przez firmy (firmy nie minimalizują kosztów) Cena kobiet niższa niż mężczyzn, ale dyskryminujący pracodawca zatrudni kobietę tylko jeśli różnica w pensji przewyższa wartość dyskryminacji => Firmy nie minimalizją kosztów? Wyjaśnienie à la orwin-mikke : Mężczyźni i kobiety różni => mają różne przewagi komparatywne w różnych zawodach => Różna produktywność? => Brak substytucyjności? Empirycznie różny udział kobiet i mężczyzn w różnych zawodach

31 Typowe rozwiązania brzegowe Dla czynników komplementarnych f (, ) = min { α, β } O ile żaden z czynników nie jest za darmo ani nieskończenie drogi rozwiązanie na wierzchołku izokwanty 1 α = β Popyt warunkowy na to q = α Popyt warunkowy q na to = β q q TC = r + w α β

32 Produkcja w wielu zakładach Firma posiada dwie fabryki, w każdej inna funkcja kosztów: Firma chce wyprodukować łącznie q = q 1 + q 2 jednostek Minimalizuje łączne koszty: TC = TC q + TC q Przy ograniczeniu: q + q = q Funkcja agrange a: = ( ) TC = f ( q ) TC f q Warunki pierwszego rzędu: q q λ TC ( q ) 1 1 = = 1 q1 TC ( q ) 2 2 = = 2 q2 = q + q q = 1 2 λ λ ( ) ( ) ( q, q, λ) = TC ( q ) + TC ( q ) λ( q + q q) MC = λ MC = λ q + q = q MC = MC 1 2

33 Produkcja w wielu zakładach Gdy rozwiązanie wewnętrzne: jeśli firma produkuje w wielu zakładach i MC rosnącymi funkcjami wielkości produkcji to rozkłada produkcję tak, żeby krańcowe koszty w każdym były równe Wyprodukowanie ostatniej jednostki kosztuje tyle samo w każdym zakładzie. W przeciwnym przypadku, np: MC > MC 1 2 Ostatnia jednostka tańsza w 2 niż w 1 zakładzie, więc opłaca się przenieść produkcję ostatniej jednostki z 1 do 2 zakładu. MC rosnące po q, więc MC 1 zmaleje, MC 2 wzrośnie itd. dopóki MC MC opłaca się przestać dopiero gdy MC = MC 1 > 2 1 2

34 Produkcja w wielu zakładach Uwaga możliwe rozwiązania brzegowe: Np. jeśli w 2 zakładach istnieją koszty quasi-stałe (stałe, ale nie są ponoszone, jeśli produkcja w tym zakładzie = 0) Może być opłacalne produkowanie wszystkiego w jednym zakładzie i nieponoszenie kosztów stałych drugiego Np. jeśli koszt krańcowy w obu fabrykach stały i w jednej zawsze niższy niż w drugiej

35 Produkcja w wielu zakładach Przykład 1 ( ) TC ( q ) 3 2 TC1 q1 = 10q1 + 5q1 + q1+ 10 dla q1 > = 0 dla q1 = 0 ( ) TC2 q2 = 5q2 + 7q2 + q dla q2 > TC2( q2) = 0 dla q2 = Czy opłaca się produkować w obu zakładach, rozkładając koszty tak, żeby MC 1 = MC 2, czy wszystko wyprodukować tylko w jednym? To zależy od wielkości produkcji (jeśli koszt krańcowy w 1 przewyższy koszt produkcji pierwszej jednostki w 2 zakładzie, opłaca się otworzyć oba) 0 0

36 Produkcja w wielu zakładach Przykład 2 MC 2 2 ( ) = ( ) TC q q ( ) MC q 2q = ( ) TC q = 0,5q + 10q MC q q 2 2 = MC 1 (q 1 ) MC 2 (q 2 ) MC(q 1 + q 2 ) 10 Dla q < 5 tylko jeden zakład Dla q 5 oba i produkcja rozłożona tak, aby MC 1 = MC 2 q

37 Quiz Prawda czy fałsz: 1. Jeśli ceny czynników produkcji są stałe, izokoszta jest prostą 2. Jeśli izokwanta jest ściśle wypukła, minimalizujące koszty produkcji ilości czynników spełniają zależność MRTS = - w/r 3. Jeśli na osi poziomej jest, a na osi pionowej nachylenie izokoszty to - w/r 4. Dla funkcji produkcji typu Cobba-Douglasa minimalizujące koszty rozwiązanie zawsze jest wewnętrzne 5. Popyt warunkowy to funkcja mówiąca ile powinno się zatrudnić czynnika produkcji w zależności od produkowanej ilości oraz cen czynników 6. Optymalnie rozłożona produkcja między wiele zakładów oznacza, że krańcowe koszty w każdym zakładzie muszą być równe 7. Dla czynników doskonale komplementarnych, zmiana ich cen nie powoduje zmiany popytu na nie 8. Dla czynników doskonale substytucyjnych, zmiana ich cen nie powoduje zmiany popytu na nie

38 iteratura V: 20, 21 P: :09:49

Minimalizacja kosztu

Minimalizacja kosztu Minimalizacja kosztu Minimalizacja kosztów polega na uzyskiwaniu danej wielkości produkcji po najniższym możliwym koszcie Graficznie która kombinacja czynników na izokwancie najtańsza? Analitycznie minimalizacja

Bardziej szczegółowo

Podstawy ekonomii TEORIA PRODUKCJI

Podstawy ekonomii TEORIA PRODUKCJI Podstawy ekonomii TEORIA PRODUKCJI Opracowanie: dr Tomasz Taraszkiewicz Proces i funkcja produkcji Proces produkcji proces transformacji czynników wytwórczych na produkty gotowe, przy czym uzyskane efekty

Bardziej szczegółowo

Maksymalizacja zysku

Maksymalizacja zysku Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek

Bardziej szczegółowo

Podaż firmy. Zakładamy, że firmy maksymalizują zyski

Podaż firmy. Zakładamy, że firmy maksymalizują zyski odaż firmy Zakładamy, że firmy maksymalizują zyski Inne cele działalności firm: Maksymalizacja przychodów Maksymalizacja dywidendy Maksymalizacja zysków w krótkim okresie Maksymalizacja udziału w rynku

Bardziej szczegółowo

Teoria produkcji i wyboru producenta Lista 8

Teoria produkcji i wyboru producenta Lista 8 Definicje Teoria produkcji i wyboru producenta Lista 8 krótki i długi okres stałe i zmienne czynniki produkcyjne produkt krzywa produktu całkowitego produkt krańcowy prawo malejącego produktu krańcowego

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

TEORIA PRODUKCJI Przemysław Kusztelak

TEORIA PRODUKCJI Przemysław Kusztelak TEORIA PRODUKCJI Przemysław Kusztelak Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego Informacja wstępna Mikroekonomiczna teoria producenta zajmuje się analizą zachowań przedsiębiorstw na rynku.

Bardziej szczegółowo

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F

Bardziej szczegółowo

Mikroekonomia A.4. Mikołaj Czajkowski

Mikroekonomia A.4. Mikołaj Czajkowski Mikroekonomia A.4 Mikołaj Czajkowski Funkcja użyteczności Jeśli preferencje są racjonalne i ciągłe mogą zostać opisane za pomocą funkcji użyteczności Funkcja użyteczności to funkcja, która spełnia warunki:

Bardziej szczegółowo

Przychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi:

Przychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS (constant returns to scale) Rosnące

Bardziej szczegółowo

Wprowadzenie Po co uczyć (się) teorii ekonomii?

Wprowadzenie Po co uczyć (się) teorii ekonomii? Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą

Bardziej szczegółowo

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi

Bardziej szczegółowo

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego NATURALNA STOPA BEZROBOCIA Naturalna stopa bezrobocia Ponieważ

Bardziej szczegółowo

Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników

Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Koszty produkcji Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Którą wybrać ceny czynników Funkcja produkcji + ceny czynników -> funkcja

Bardziej szczegółowo

Nazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt)

Nazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt) Nazwisko i Imię... Numer albumu... A 1. Utrata wartości dobra kapitałowego w ciągu roku będąca rezultatem wykorzystania tego dobra w procesie produkcji nazywana jest: (2 pkt) ujemnym przepływem pieniężnym

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników

Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Koszty produkcji Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Którą wybrać ceny czynników Funkcja produkcji + ceny czynników -> funkcja

Bardziej szczegółowo

Korzyści i. Niekorzyści skali. produkcji

Korzyści i. Niekorzyści skali. produkcji utarg (przychód) Koszt ekonomiczny utarg (przychód) Zakres tematyczny: Koszty w krótkim i długim okresie 1. Koszty pojęcie 2. Rodzaje kosztów wg różnych kryteriów 3. Krzywe kosztów 4. Zależności pomiędzy

Bardziej szczegółowo

Mikroekonomia B.2. Mikołaj Czajkowski

Mikroekonomia B.2. Mikołaj Czajkowski Mikroekonomia B.2 Mikołaj Czajkowski Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Popyt

2010 W. W. Norton & Company, Inc. Popyt 2010 W. W. Norton & Company, Inc. Popyt Własności Funkcji Popytu Statyka porównawcza funkcji popytu pokazuje jak zmienia się funkcja popytu x 1 *(p 1,p 2,y) i x 2 *(p 1,p 2,y) gdy zmianie ulegają ceny

Bardziej szczegółowo

Ekonomia. Wykład dla studentów WPiA

Ekonomia. Wykład dla studentów WPiA Ekonomia Wykład dla studentów WPiA Wykład 8: Podstawy popytu na czynniki produkcji: pracę i kapitał. Technologia produkcji. Decyzje konsumentów: podaż pracy i kapitału. Współzależność działania rynków

Bardziej szczegółowo

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego NATURALNA STOPA BEZROBOCIA Naturalna stopa bezrobocia Ponieważ bezrobocie frykcyjne

Bardziej szczegółowo

Mikroekonomia B.3. Mikołaj Czajkowski

Mikroekonomia B.3. Mikołaj Czajkowski Mikroekonomia B.3 Mikołaj Czajkowski Koszty produkcji Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Którą wybrać ceny czynników Funkcja

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria konsumenta

Zadania z ekonomii matematycznej Teoria konsumenta Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x

Bardziej szczegółowo

Mikroekonomia B.5. Mikołaj Czajkowski

Mikroekonomia B.5. Mikołaj Czajkowski Mikroekonomia B.5 Mikołaj Czajkowski Firma konkurencyjna Konkurencyjna firma: Traktuje ceny czynników produkcji jako stałe Traktuje cenę rynkową jako stałą Jest cenobiorcą Założenie firma maksymalizuje

Bardziej szczegółowo

88. Czysta stopa procentowa. 89. Rynkowa (nominalna) stopa procentowa. 90. Efektywna stopa procentowa. 91. Oprocentowanie składane. 92.

88. Czysta stopa procentowa. 89. Rynkowa (nominalna) stopa procentowa. 90. Efektywna stopa procentowa. 91. Oprocentowanie składane. 92. 34 Podstawowe pojęcia i zagadnienia mikroekonomii 88. zysta stopa procentowa zysta stopa procentowa jest teoretyczną ceną pieniądza, która ukształtowałaby się na rynku pod wpływem oddziaływania popytu

Bardziej szczegółowo

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki ograniczające są funkcjami liniowymi ekonomiczne wykorzystanie Programowania Liniowego do opisu sytuacji decyzyjnej

Bardziej szczegółowo

Wprowadzenie Po co uczyć (się) teorii ekonomii?

Wprowadzenie Po co uczyć (się) teorii ekonomii? Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą

Bardziej szczegółowo

Wykład VII. Równowaga ogólna

Wykład VII. Równowaga ogólna Wykład VII Równowaga ogólna Efektywnośd w produkcji Założenia: 2 czynniki produkcji: kapitał (K) i praca (L) Produkcja 2 dóbr: żywnośd (f) i ubrania (c) Doskonała konkurencja na rynku czynników produkcji,

Bardziej szczegółowo

Model Davida Ricardo

Model Davida Ricardo Model Davida Ricardo mgr eszek incenciak 15 lutego 2005 r. 1 Założenia modelu Analiza w modelu Ricardo opiera się na następujących założeniach: istnieje doskonała konkurencja na rynku dóbr i rynku pracy;

Bardziej szczegółowo

Ekonomia. Wykład dla studentów WPiA. Wykład 5: Firma, produkcja, koszty

Ekonomia. Wykład dla studentów WPiA. Wykład 5: Firma, produkcja, koszty Ekonomia Wykład dla studentów WPiA Wykład 5: Firma, produkcja, koszty Popyt i podaż kategorie rynkowe Popyt i podaż to dwa słowa najczęściej używane przez ekonomistów Popyt i podaż to siły, które regulują

Bardziej szczegółowo

MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA

MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA WYKŁAD VI: MODEL IS-LM/AS-AD OGÓLNE RAMY DLA ANALIZY MAKROEKONOMICZNEJ Linia FE: Równowaga na rynku pracy Krzywa IS: Równowaga na rynku dóbr Krzywa LM: Równowaga

Bardziej szczegółowo

Podstawy ekonomii KOSZTY I ICH KLASYFIKACJA. Opracowanie: dr Tomasz Taraszkiewicz

Podstawy ekonomii KOSZTY I ICH KLASYFIKACJA. Opracowanie: dr Tomasz Taraszkiewicz Podstawy ekonomii KOSZTY I ICH KLASYFIKACJA Opracowanie: dr Tomasz Taraszkiewicz Koszty i ich klasyfikacja Istota podejścia ekonomicznego sprowadza się do traktowania kosztu jako kosztu ekonomicznego czyli

Bardziej szczegółowo

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Czas trwania kolokwium wynosi 45 minut. Należy rozwiązać dwa z trzech zamieszczonych poniżej zadań. Za każde zadanie można uzyskać maksymalnie

Bardziej szczegółowo

Determinanty dochodu narodowego. Analiza krótkookresowa

Determinanty dochodu narodowego. Analiza krótkookresowa Determinanty dochodu narodowego Analiza krótkookresowa Produkcja potencjalna i faktyczna Produkcja potencjalna to produkcja, która może być wytworzona w gospodarce przy racjonalnym wykorzystaniu wszystkich

Bardziej szczegółowo

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej)

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej) Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej) Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego PKB jako miara dobrobytu Produkcja w gospodarce

Bardziej szczegółowo

Ekonomia menedżerska. Koszty funkcjonowania decyzje managerskie. Prof. Tomasz Bernat Katedra Mikroekonomii

Ekonomia menedżerska. Koszty funkcjonowania decyzje managerskie. Prof. Tomasz Bernat Katedra Mikroekonomii Ekonomia menedżerska Koszty funkcjonowania decyzje managerskie Prof. Tomasz Bernat Katedra Mikroekonomii Kluczowe pojęcia: v Przychody, koszty i zysk przedsiębiorstwa v Koszty księgowe i ekonomiczne v

Bardziej szczegółowo

TEST. [2] Funkcja długookresowego kosztu przeciętnego przedsiębiorstwa

TEST. [2] Funkcja długookresowego kosztu przeciętnego przedsiębiorstwa Przykładowe zadania na kolokwium: TEST [1] Zmniejszenie przeciętnych kosztów stałych zostanie spowodowane przez: a. wzrost wielkości produkcji, b. spadek wielkości produkcji, c. wzrost kosztów zmiennych,

Bardziej szczegółowo

Mikroekonomia. Zadanie

Mikroekonomia. Zadanie Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 18.11.2007r. Mikroekonomia WNE UW 1 Funkcję produkcji pewnego produktu wyznacza wzór F(K,L)=2KL 1/2. Jakim wzorem

Bardziej szczegółowo

Mikroekonomia. Joanna Tyrowicz POWTORZENIE ZADAN Mikroekonomia WNE UW 1

Mikroekonomia. Joanna Tyrowicz  POWTORZENIE ZADAN Mikroekonomia WNE UW 1 Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz POWTORZENIE ZADAN Mikroekonomia WNE UW 1 Funkcję produkcji pewnego produktu wyznacza wzór F(K,L)=2KL 1/2. Jakim

Bardziej szczegółowo

Zestaw 3 Optymalizacja międzyokresowa

Zestaw 3 Optymalizacja międzyokresowa Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym

Bardziej szczegółowo

Monopol statyczny. Problem monopolisty: Π(q) = p(q)q c(q)

Monopol statyczny. Problem monopolisty: Π(q) = p(q)q c(q) Monopol Jest jedna firma Sama ustala cenę powyżej kosztu krańcowego Zyski nadzwyczajne (największe osiągalne) Stoi przed podobnymi ograniczeniami co firmy doskonale konkurencyjne: -Ograniczenia technologiczne

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria produkcji

Zadania z ekonomii matematycznej Teoria produkcji Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A

Bardziej szczegółowo

Makroekonomia 1 Wykład 5: Klasyczny model gospodarki zamkniętej

Makroekonomia 1 Wykład 5: Klasyczny model gospodarki zamkniętej Makroekonomia 1 Wykład 5: Klasyczny model gospodarki zamkniętej Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego PKB jako miara dobrobytu Produkcja w gospodarce Mierzyć już umiemy,

Bardziej szczegółowo

Monopol. Założenia. Skąd biorą się monopole? Jedna firma

Monopol. Założenia. Skąd biorą się monopole? Jedna firma Założenia Jedna firma Monopol Siłą rzeczy musi ona sama ustalić cenę Cena rynkowa zależy od ilości sprzedawanej przez firmę Produkt nie posiada substytuty Dużo kupujących (krzywa popytu opadająca) Istnieją

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki

Bardziej szczegółowo

JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI

JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI Zadanie 1: Uzupełnij tabelę, gdzie: TP produkt całkowity AP produkt przeciętny MP produkt marginalny L nakład czynnika produkcji, siła robocza (liczba

Bardziej szczegółowo

Lista 7 i 8 Zysk księgowy i alternatywny Koszty alternatywne Koszty i utargi krańcowe Koszty produkcji w krótkim i długim okresie czasu

Lista 7 i 8 Zysk księgowy i alternatywny Koszty alternatywne Koszty i utargi krańcowe Koszty produkcji w krótkim i długim okresie czasu Zadanie 1. Pan Smith prowadzi prywatny biznes. W ubiegłym roku jego utarg wyniósł 55000, a koszty bezpośrednie 27000. Kapitał finansowy włożony w działalność zakładu wynosił przez cały rok 25000. Stopa

Bardziej szczegółowo

Mikroekonomia. Produkcja i koszty

Mikroekonomia. Produkcja i koszty Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 13.10.007r. Mikroekonomia WNE UW 1 Produkcja i koszty W BIZNESIE jest to czynność, w ramach której zasoby są przetwarzane

Bardziej szczegółowo

PRODUKCYJNOŚĆ PRZEDSIĘBIORSTWA

PRODUKCYJNOŚĆ PRZEDSIĘBIORSTWA PRODUKCYJNOŚĆ PRZEDSIĘBIORSTWA CASE STUDY NA DOBRY POCZĄTEK Scania zwiększa zatrudnienie FAKTY KRYZYS I PO KRYZYSIE? Potrzeba zwiększenia produkcji wynika głównie z wciąż dużego popytu w Brazylii Jednak

Bardziej szczegółowo

MODEL KONKURENCJI DOSKONAŁEJ.

MODEL KONKURENCJI DOSKONAŁEJ. Wykład 4 Konkurencja doskonała i monopol 1 MODEL KONKURENCJI DOSKONAŁEJ. EFEKTYWNOŚĆ RYNKU. MONOPOL CZYSTY. KONKURENCJA MONOPOLISTYCZNA. 1. MODEL KONKURENCJI DOSKONAŁEJ W modelu konkurencji doskonałej

Bardziej szczegółowo

Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI

Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI 1. Dobrami podrzędnymi nazywamy te dobra: a. które nie mają bliskich substytutów b. na które popyt maleje w miarę wzrostu dochodów konsumenta, przy pozostałych

Bardziej szczegółowo

Makroekonomia I. Jan Baran

Makroekonomia I. Jan Baran Makroekonomia I Jan Baran Model klasyczny a keynesowski W prostym modelu klasycznym zakładamy, że produkt zależy jedynie od nakładów czynników produkcji i funkcji produkcji. Nie wpływają na niego wprowadzone

Bardziej szczegółowo

Analiza cykli koniunkturalnych model ASAD

Analiza cykli koniunkturalnych model ASAD Analiza cykli koniunkturalnych model AS odstawowe założenia modelu: ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) punktem odniesienia analizy jest obserwacja poziomu

Bardziej szczegółowo

MODEL AS-AD. Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie.

MODEL AS-AD. Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie. MODEL AS-AD Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie. KRZYWA AD Krzywą AD wyprowadza się z modelu IS-LM Każdy punkt

Bardziej szczegółowo

Makroekonomia 1 Wykład 12: Zagregowany popyt i zagregowana podaż

Makroekonomia 1 Wykład 12: Zagregowany popyt i zagregowana podaż Makroekonomia 1 Wykład 12: Zagregowany popyt i zagregowana podaż Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego Horyzont czasu w makroekonomii Długi okres Ceny są elastyczne i

Bardziej szczegółowo

5. Utarg krańcowy (MR) można zapisać jako: A)

5. Utarg krańcowy (MR) można zapisać jako: A) 1. Na rynku pewnego dobra działają dwie firmy, które zachowują się zgodnie z modelem Stackelberga. Firmy ponoszą stałe koszty krańcowe równe 24. Odwrócona linia popytu na tym rynku ma postać: P = 480-0.5Q.

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

12. Funkcja popytu jest liniowa. Poniższa tabela przedstawia cztery punkty na krzywej popytu:

12. Funkcja popytu jest liniowa. Poniższa tabela przedstawia cztery punkty na krzywej popytu: 1. Dla której z poniższych funkcji popytu elastyczność cenowa popytu jest równa -1 i jest stała na całej długości krzywej popytu? A) Q = -5 + 10 B) Q = 40-4 C) Q = 30000-1 D) Q = 2000-2 E) Q = 100-3 F)

Bardziej szczegółowo

Model dopasowywania się cen na rynku

Model dopasowywania się cen na rynku Model dopasowywania się cen na rynku autor: Milena Ścisłowska Uniwersytet Kardynała Stefana Wyszyńskiego, wydział Matematyczno Przyrodniczy Warszawa 2013 Prosty model rynku - kupujący i sprzedający na

Bardziej szczegółowo

Użyteczność W. W. Norton & Company, Inc.

Użyteczność W. W. Norton & Company, Inc. 4 Użyteczność 2010 W. W. Norton & Company, Inc. Funkcja Użyteczności ufunkcja użyteczności jest sposobem przypisania liczb każdemu koszykowi, bardziej preferowane koszyki otrzymują wyższe liczby. 2010

Bardziej szczegółowo

P R I N C I P L E S O F

P R I N C I P L E S O F 4 Siły rynkowe czyli popyt i podaż P R I N C I P L E S O F MICROECONOMICS F O U R T H E D I T I O N N. G R E G O R Y M A N K I W PowerPoint Slides by Ron Cronovich 2007 Thomson South-Western, all rights

Bardziej szczegółowo

Mikroekonomia A.3. Mikołaj Czajkowski

Mikroekonomia A.3. Mikołaj Czajkowski Mikroekonomia A.3 Mikołaj Czajkowski Preferencje Konsumenci mają preferencje wybierają te koszyki, które dają im najwyższe zadowolenie Relacja preferencji umożliwia porównywanie 2 koszyków xy, X x ściśle

Bardziej szczegółowo

(aby była to nauka owocna) 23 lutego, 2016

(aby była to nauka owocna) 23 lutego, 2016 (aby była to nauka owocna) Uniwersytet Warszawski 23 lutego, 2016 1 / 21 2 / 21 3 / 21 Plan zajęć - etap (1) 1. Technologia 1 (czynniki produkcji, funkcja produkcji, krótki / długi okres, produktywność

Bardziej szczegółowo

Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki

Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Gospodarczej Analiza postępowania konsumenta może być prowadzona

Bardziej szczegółowo

Jak mierzyć reakcję popytu lub podaży na zmianę ceny?

Jak mierzyć reakcję popytu lub podaży na zmianę ceny? Jak mierzyć reakcję popytu lub podaży na zmianę ceny? Oczywistym miernikiem jest nachylenie krzywych popytu i podaży Np. obniżka ceny o 1 zł każdorazowo powoduje zwiększenie popytu na kajzerki o 20 sztuk

Bardziej szczegółowo

Model klasyczny. popyt na czynnik. ilość czynnika

Model klasyczny. popyt na czynnik. ilość czynnika Model klasyczny W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y C + I + G + NX W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki produkcji (K i

Bardziej szczegółowo

Negatywne skutki monopolu

Negatywne skutki monopolu Negatywne skutki monopolu Strata dobrobytu społecznego z tytułu: (1) mniejszej produkcji i wyższej ceny (2) kosztów poszukiwania renty, które ponoszą firmy w celu osiągnięcia monopolistycznej pozycji na

Bardziej szczegółowo

Krzywa IS Popyt inwestycyjny zależy ujemnie od wysokości stóp procentowych.

Krzywa IS Popyt inwestycyjny zależy ujemnie od wysokości stóp procentowych. Notatka model ISLM Model IS-LM ilustruje równowagę w gospodarce będącą efektem jednoczesnej równowagi na rynku dóbr i usług, a także rynku pieniądza. Jest to matematyczna interpretacja teorii Keynesa.

Bardziej szczegółowo

Wykład 17: Elastycznościowe podejście do bilansu płatniczego. Warunek Marshalla-Lernera. Gabriela Grotkowska

Wykład 17: Elastycznościowe podejście do bilansu płatniczego. Warunek Marshalla-Lernera. Gabriela Grotkowska Międzynarodowe Stosunki Ekonomiczne Makroekonomia gospodarki otwartej i finanse międzynarodowe Wykład 17: Elastycznościowe podejście do bilansu płatniczego. Warunek Marshalla-Lernera. Gabriela Grotkowska

Bardziej szczegółowo

Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa.

Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. 1. Możliwości finansowe konsumenta opisuje równanie: 2x + 4y = 1. Jeżeli dochód konsumenta

Bardziej szczegółowo

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU 1. POPYT Popyt (zapotrzebowanie) - ilość towaru, jaką jest skłonny kupić nabywca po ustalonej cenie rynkowej, dysponując do tego celu odpowiednim dochodem

Bardziej szczegółowo

Rynki i konkurencja. Siły rynkowe czyli popyt i podaż. W tym rozdziale odpowiemy na pytania:

Rynki i konkurencja. Siły rynkowe czyli popyt i podaż. W tym rozdziale odpowiemy na pytania: 4 Siły rynkowe czyli popyt i podaż R I N C I L E S O F MICROECONOMICS F O U R T H E D I T I O N N. G R E G O R Y M A N K I W oweroint Slides by Ron Cronovich 2007 Thomson South-Western, all rights reserved

Bardziej szczegółowo

Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM

Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM Konsumpcja, inwestycje Utrzymujemy założenie o stałości cen w gospodarce. Stopa procentowa wiąże ze

Bardziej szczegółowo

Polityka fiskalna i pieniężna

Polityka fiskalna i pieniężna Ćwiczenia z akroekonomii II Polityka fiskalna i pieniężna Deficyt budżetowy i cykle koniunkturalne na wstępie zaznaczyliśmy, że wielkość deficytu powinna zależeć od tego w jakiej fazie cyklu koniunkturalnego

Bardziej szczegółowo

Makroekonomia I ćwiczenia 13

Makroekonomia I ćwiczenia 13 Makroekonomia I ćwiczenia 13 Prawo Okuna, Krzywa Philipsa Kilka uwag przed kolokwium Tomasz Gajderowicz Agenda Prawo Okuna, Krzywa Philipsa Kilka uwag przed kolokwium Zadanie 1 (inflacja i adaptacyjne

Bardziej szczegółowo

Rynek W. W. Norton & Company, Inc.

Rynek W. W. Norton & Company, Inc. 1 Rynek 2010 W. W. Norton & Company, Inc. Modelowanie Ekonomiczne uco wpływa na co w systemie ekonomicznym? una jakim poziomie uogólnienia możemy modelować zjawisko ekonomiczne? uktóre zmienne są egzogeniczne,

Bardziej szczegółowo

MIKROEKONOMIA. mgr Maciej Szczepankiewicz. Katedra Nauk Ekonomicznych. semestr zimowy 2015/2016

MIKROEKONOMIA. mgr Maciej Szczepankiewicz. Katedra Nauk Ekonomicznych. semestr zimowy 2015/2016 MIKROEKONOMIA semestr zimowy 2015/2016 mgr Maciej Szczepankiewicz Katedra Nauk Ekonomicznych Kontakt E: maciej@szczepankiewicz.net Dyżury: Wtorek 12-13.30 nieparzyste 10.15-11.45 parzyste Środa 13.15-14.45

Bardziej szczegółowo

C~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych

C~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych ZADANIA EGZAMIN EKONOMIA MATEMATYCZNA TEORIA POPYTU a. Podaj iloczyn kartezjański zbiorów X={,3,4}, Y={,} b. Narysuj iloczyn kartezjański zbiorów X=[,], Y=[,3]. Dane są punkty A(3,4) i B(,). Oblicz odległość

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Model klasyczny. dr Bartek Rokicki. Ćwiczenia z Makroekonomii II. W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX

Model klasyczny. dr Bartek Rokicki. Ćwiczenia z Makroekonomii II. W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX Model klasyczny W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki produkcji (K

Bardziej szczegółowo

Podstawowe pojęcia: koszt, przychód, zysk Koszt alternatywny a koszt księgowy Koszt krańcowy, utarg krańcowy optymalna wielkość produkcji

Podstawowe pojęcia: koszt, przychód, zysk Koszt alternatywny a koszt księgowy Koszt krańcowy, utarg krańcowy optymalna wielkość produkcji Podstawowe pojęcia: koszt, przychód, zysk Koszt alternatywny a koszt księgowy Koszt krańcowy, utarg krańcowy optymalna wielkość produkcji dr inż. Anna Kowalska-Pyzalska email: anna.kowalska@pwr.wroc.pl

Bardziej szczegółowo

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ Popyt, podaż i wszystko co z Nimi związane Mgr Michał Ferdzyn SWSPiZ POPYT to zależność pomiędzy ilością dobra, którą chcą i mogą kupić konsumenci, a ceną tego dobra. Popyt jest przedstawiany za pomocą

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 6 (Materiały)

Badania Operacyjne Ćwiczenia nr 6 (Materiały) Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty

Bardziej szczegółowo

Makroekonomia 1. Modele graficzne

Makroekonomia 1. Modele graficzne Makroekonomia 1 Modele graficzne Obieg okrężny $ Gospodarstwa domowe $ $ $ $ $ Rynek zasobów $ Rynek finansowy $ $ Rząd $ $ $ $ $ $ $ Rynek dóbr i usług $ Firmy $ Model AD - AS Popyt zagregowany (AD) Popyt

Bardziej szczegółowo

Pieniądz, inflacja oraz mierzenie inflacji.

Pieniądz, inflacja oraz mierzenie inflacji. Pieniądz, inflacja oraz mierzenie inflacji. Pieniądz to towar powszechnie akceptowany, za pomocą którego dokonujemy płatności za dostarczone dobra lub wywiązujemy się ze zobowiązań; Funkcje pieniądza :

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Mikroekonomia -Ćwiczenia Ćwiczenia 3: Popyt

Mikroekonomia -Ćwiczenia Ćwiczenia 3: Popyt Mikroekonomia -Ćwiczenia Ćwiczenia 3: Popyt Podstawowe pojęcia: rynek, popyt, krzywa popytu, prawo popytu, efekt snobizmu, efekt Veblena, cena maksymalna i minimalna, zmiana popytu, dobro Griffena, dobra

Bardziej szczegółowo

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym. Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW arytet siły nabywczej () arytet siły nabywczej jest wyprowadzany w oparciu o prawo jednej ceny. rawo jednej ceny zakładając,

Bardziej szczegółowo

Zadanie 1 Kosztem alternatywnym zbudowania geotermicznej elektrociepłowni jest:

Zadanie 1 Kosztem alternatywnym zbudowania geotermicznej elektrociepłowni jest: Zadanie 1 Kosztem alternatywnym zbudowania geotermicznej elektrociepłowni jest: a. suma wydatków, jakie należałoby ponieść za korzystanie z innych źródeł energii, b. koszt budowy elektrociepłowni pomniejszony

Bardziej szczegółowo

Monopol. Założenia. Skąd biorą się monopole? Jedna firma

Monopol. Założenia. Skąd biorą się monopole? Jedna firma Założenia Jedna firma Monopol Siłą rzeczy musi ona sama ustalić cenę Cena rynkowa zależy od ilości sprzedawanej przez firmę Produkt nie posiada substytuty Dużo kupujących (krzywa popytu opadająca) Istnieją

Bardziej szczegółowo

Makroekonomia I Ćwiczenia

Makroekonomia I Ćwiczenia Makroekonomia I Ćwiczenia Ćwiczenia 2 Model AS-AD [AD-AS] Karol Strzeliński Model AS-AD Dotychczasowe rozważania dotyczące wyznaczania produktu dotyczyły krótkiego okresu, ponieważ zakładaliśmy, że ceny

Bardziej szczegółowo

Wykład III Przewaga komparatywna

Wykład III Przewaga komparatywna Wykład III Przewaga komparatywna W prezentacji zostały wykorzystane slajdy pomocnicze do książki: Microeconomics, R.S.Pindyck D.L.Rubinfeld. Możliwości produkcyjne - Dwa dobra, które Robinson może produkować:

Bardziej szczegółowo

Plan wykładu TEORIE EKONOMII KLASYCZNEJ 2011-10-14. Klasyczne i współczesne teorie handlu międzynarodowego

Plan wykładu TEORIE EKONOMII KLASYCZNEJ 2011-10-14. Klasyczne i współczesne teorie handlu międzynarodowego Klasyczne i współczesne teorie handlu międzynarodowego MSG wykład II Podyplomowe Studia Handlu Zagranicznego Plan wykładu Teoria przewagi absolutnej Teoria przewagi komparatywnej Teoria Heckschera-Ohlina

Bardziej szczegółowo

Przedsiębiorstwo na rynku konkurencyjnym

Przedsiębiorstwo na rynku konkurencyjnym Przedsiębiorstwo na rynku konkurencyjnym Jedną z podstawowych jednostek występujących w gospodarce jest przedsiębiorstwo, często nazywane firmą. Przedsiębiorstwo to zarówno wielka fabryka cegieł, mały

Bardziej szczegółowo

Wstęp: scenariusz. Przedsiębiorstwa na rynkach konkurencyjnych. W tym rozdziale szukaj odpowiedzi na pytania:

Wstęp: scenariusz. Przedsiębiorstwa na rynkach konkurencyjnych. W tym rozdziale szukaj odpowiedzi na pytania: 14 rzedsiębiorstwa na rynkach konkurencyjnych R I N C I L E S O F MICROECONOMICS F O U R T H E D I T I O N N. G R E G O R Y M A N K I W oweroint Slides by Ron Cronovich 2007 Thomson South-Western, all

Bardziej szczegółowo

EKONOMIA TOM 1 WYD.2. Autor: PAUL A. SAMUELSON, WILLIAM D. NORDHAUS

EKONOMIA TOM 1 WYD.2. Autor: PAUL A. SAMUELSON, WILLIAM D. NORDHAUS EKONOMIA TOM 1 WYD.2 Autor: PAUL A. SAMUELSON, WILLIAM D. NORDHAUS Przedmowa CZĘŚĆ I. PODSTAWOWE POJĘCIA Rozdział 1. Podstawy ekonomii 1.1. Wprowadzenie Niedobór i efektywność: bliźniacze tematy ekonomii

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

Wykład 5 Kurs walutowy parytet stóp procentowych

Wykład 5 Kurs walutowy parytet stóp procentowych Wykład 5 Kurs walutowy parytet stóp procentowych dr Leszek Wincenciak WNUW 2/30 Plan wykładu: Kurs walutowy i stopy procentowe Kursy walutowe i dochody z aktywów Rynek pieniężny i rynek walutowy fektywność

Bardziej szczegółowo