(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25."

Transkrypt

1 Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi 20%, a stopa deprecjacji kapitału δ = 5%. Posługując się modelem Solowa oraz zakładając dla uproszczenia, że zarówno A i N są stałe w czasie i są równe 1: (a) Oblicz zasób kapitału oraz poziom produkcji w stanie ustalonym. (b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. (c) Oblicz stopę wzrostu zasobu kapitału dla początkowych zasobów kapitału z podpunktu (b). (d) Posługując się poznaną już techniką dekompozycji wzrostu, oblicz stopę wzrostu produkcji dla początkowych zasobów kapitału z podpunktu (b). Zadanie 2 Funkcja produkcji ma postać Y = AK α N 1 α. Posługując się modelem Solowa: (a) Zapisz funkcję produkcji w postaci intensywnej (na zatrudnionego). (b) Wyprowadź wzór na zasób kapitału na zatrudnionego k w stanie ustalonym. (c) Za pomocą równania akumulacji kapitału wyraź zasób kapitału na zatrudnionego w następnym okresie k jako funkcję bieżącego zasobu kapitału na zatrudnionego k. (d) Zilustruj powyższą zależność na wykresie. Znajdź graficznie stan ustalony. (e) Zakładając, że k 0 < k, zilustruj na wykresie z poprzedniego podpunktu proces dochodzenia do stanu ustalonego. Na nowym wykresie narysuj zmiany zasobu kapitału na zatrudnionego w czasie. Zadanie 3 Przyjmijmy, że w pewnej gospodarce funkcja produkcji na zatrudnionego ma ogólną postać y = f(k) i spełnia warunki stawiane neoklasycznym funkcjom produkcji. Stopa oszczędzania w tej gospodarce wynosi s, stopa deprecjacji δ, zaś zasób siły roboczej N jest stały. (a) Przedstaw na wykresie w przestrzeni (k, y) funkcję produkcji, funkcję oszczędności i funkcję deprecjacji kapitału. (b) Zaznacz na wykresie poziom kapitału w stanie ustalonym k. (c) Załóżmy, że początkowy poziom kapitału na zatrudnionego w tej gospodarce był niższy niż k. Zaznacz k 0 na wykresie i pokaż, ile będzie wówczas wynosić wielkość produkcji na zatrudnionego y, wielkość konsumpcji na zatrudnionego c i wielkość inwestycji na zatrudnionego i. (d) Jak będzie zmieniał się kapitał i produkcja na zatrudnionego w czasie? Wyjaśnij i narysuj odpowiednie wykresy zmiennych N, K, k, Y i y w czasie. Zadanie 4 Funkcja produkcji spełnia warunki neoklasycznej funkcji produkcji i można ją zapisać w postaci intensywnej jako y = f(k). Posługując się modelem Solowa: (a) Wyprowadź wyrażenie na tempo przyrostu kapitału na zatrudnionego k/k jako funkcję bieżącego zasobu kapitału na zatrudnionego k. Zilustruj tę zależność na nowym wykresie. Znajdź graficznie stan ustalony. 1

2 (b) W jaki sposób wzrost stopy oszczędności s wpłynie na zasób kapitału na zatrudnionego w stanie ustalonym oraz na tempo przyrostu kapitału jeżeli k 0 < k? (c) Czy wyższa stopa oszczędności może być stałym źródłem długookresowego wzrostu? (d) W jaki sposób wzrost stopy deprecjacji δ wpłynie na zasób kapitału na zatrudnionego w stanie ustalonym oraz na tempo przyrostu kapitału jeżeli k 0 < k? Zadanie 5 Funkcja produkcji ma postać Y = AK 1/2 N 1/2. Początkowy zasób kapitału K wynosi 3200, zatrudnienie N = 200, a produktywność A = 2. Zarówno zatrudnienie, jak i produktywność są stałe w czasie. Stopa oszczędności s wynosi 40%, a stopa deprecjacji δ = 10%. (a) Oblicz tempo przyrostu kapitału na zatrudnionego k, k/k, oraz produkcji na zatrudnionego y, y/y. (b) Oblicz zasób kapitału na zatrudnionego w stanie ustalonym k, a także produkcji i konsumpcji na zatrudnionego w stanie ustalonym, y i c. (c) Oblicz poziom kapitału, produkcji i konsumpcji na zatrudnionego w stanie ustalonym, jeżeli stopa oszczędności wzrośnie do 50%. (d) Powtórz obliczenia z (d) dla stopy oszczędności równej 60%. (e) W jaki sposób kapitał, produkcja oraz konsumpcja na zatrudnionego zależą od stopy oszczędności? Zadanie 6 Funkcja produkcji spełnia warunki neoklasycznej funkcji produkcji i można ją zapisać w postaci intensywnej jako y = f(k). Posługując się modelem Solowa: (a) Narysuj schematycznie wykres konsumpcji na zatrudnionego w stanie ustalonym c jako funkcji s. Wskazówka: Pomyśl, co się dzieje w modelu, gdy s = 0 lub s = 1. (b) Definiując konsumpcję na zatrudnionego jako różnicę pomiędzy produkcją na zatrudnionego a inwestycjami na zatrudnionego, zapisz warunek maksymalizacji konsumpcji na zatrudnionego w stanie ustalonym. (c) Wyznacz poziom kapitału na zatrudnionego w stanie ustalonym maksymalizujący konsumpcję na zatrudnionego w stanie ustalonym przy założeniu funkcji produkcji Cobba-Douglasa. (d) Porównaj powyższe wyrażenie ze wzorem na kapitał na zatrudnionego w stanie ustalonym dla funkcji produkcji Cobba-Douglasa. Jaka wartość stopy oszczędności maksymalizuje konsumpcję na zatrudnionego w stanie ustalonym? (e) W pewnym kraju stopa oszczędności była wyższa, niż wynika to ze złotej reguły. Jeżeli doszłoby do spadku stopy oszczędności, to jak zmienił by się poziom konsumpcji na zatrudnionego obecnie żyjących pokoleń? A jak zmieniłaby się konsumpcja na zatrudnionego przyszłych pokoleń? (f) Stan, w którym stopa oszczędności przewyższa stopę oszczędności złotej reguły nazywamy stanem dynamicznej nieefektywności. Przypomnij sobie definicję efektywności w sensie Pareto i powiąż ją z dyskusją w poprzednim podpunkcie. 2

3 Zadanie 7 W pewnej gospodarce funkcja produkcji ma postać Y = AK α N 1 α. Produktywność A jest stała w czasie. (a) Wyprowadź ceny czynników produkcji (płace i koszt wynajęcia kapitału), zakładając, że są one równe swoim produktom krańcowym. (b) Zapisz ceny czynników produkcji jako funkcje kapitału na zatrudnionego k, a następnie zilustruj te zależności na wykresach. (c) Co się będzie działo z płacami, a co z kosztem wynajęcia kapitału, podczas gdy gospodarka będzie dążyła do stanu ustalonego? (d) Co się stanie z cenami czynników produkcji, jeżeli do kraju jednorazowo napłyną pracownicy z zagranicy? Które grupy społeczne skorzystają na tej imigracji, a które stracą? (e) Czy powyższa zmiana wpływa na ceny czynników produkcji w stanie ustalonym? Zadanie 8 W pewnej firmie jest zatrudnionych 50 pracowników. Firma dysponuje także 60 maszynami wykorzystywanymi w procesie produkcyjnym. (a) Zakładając, że zasób kapitału w firmie jest równy liczbie posiadanych przez nią maszyn, oblicz poziom kapitału na zatrudnionego w tej firmie. (b) Jeżeli firma zakupi 17 nowych maszyn, to ile wyniesie poziom kapitału na zatrudnionego po tej zmianie? (c) Oprócz zwiększenia parku maszynowego, firma zatrudniła także 5 dodatkowych pracowników. Ile wyniesie poziom kapitału na zatrudnionego po tej zmianie? (d) Jeżeli firma planuje zwiększyć zatrudnienie o 5%, to o ile więcej maszyn musi posiadać, aby utrzymać niezmieniony poziom kapitału na zatrudnionego? Zadanie 9 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/3 N 2/3, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Liczba zatrudnionych zmienia się wraz z tempem przyrostu naturalnego n, tzn. N = (1 + n)n. Stopa oszczędności s wynosi 18%, stopa deprecjacji kapitału δ = 3%, a tempo przyrostu naturalnego n = 1%. Poziom produktywności A jest stały w czasie i wynosi 2. (a) Korzystając z warunku akumulacji kapitału K, wyprowadź warunek na akumulację kapitału na zatrudnionego k. (b) Oblicz poziom kapitału na zatrudnionego w stanie ustalonym. (c) Oblicz poziom kapitału na zatrudnionego w stanie ustalonym, jeżeli n wzrośnie do 6%. (d) Przedstaw graficznie efekt wzrostu tempa przyrostu naturalnego na kapitał na zatrudnionego w stanie ustalonym. (e) Jeżeli gospodarka znajduje się w stanie ustalonym, to w jakim tempie zmienia się całkowity zasób kapitału K, a w jakim produkcja Y? 3

4 Zadanie 10 Funkcja produkcji spełnia warunki neoklasycznej funkcji produkcji. Gospodarka znajduje się w stanie ustalonym. Naszkicuj zmiany w czasie zmiennych: kapitału i produkcji na zatrudnionego k i y, zasobu siły roboczej N, kapitału K oraz produkcji Y, gdy: (a) Zasób siły roboczej w analizowanej gospodarce zmniejszy się skokowo z N 0 do N 1, (N 0 > N 1 ). (b) Tempo wzrostu siły roboczej wzrośnie z n 0 do n 1 (n 0 < n 1 ). (c) Zajdą obie te zmiany jednocześnie. Zadanie 11 Załóżmy, że w pewnym kraju stopa oszczędności s = 0, 24, stopa deprecjacji kapitału δ = 0, 04, tempo przyrostu naturalnego n = 0, 02, a funkcja produkcji dana jest wzorem Y = K 2/3 (AN) 1/3, gdzie K oznacza zasób kapitału, N zasób siły roboczej, zaś A poziom technologii. Korzystając z modelu Solowa oblicz: (a) Stopę wzrostu produktu na zatrudnionego, jeżeli K = 48000, A = 15, N = 50. (b) Stopę wzrostu produktu na zatrudnionego po jednorazowym imporcie nowych technologii, które doprowadziły do wzrostu wartości parametru A do 320/9. (c) Narysuj wykresy zmiennych N, K, k, Y i y w czasie, zakładając, że początkowo gospodarka znajdowała się w stanie ustalonym, a następnie nastąpił jednorazowy wzrost poziomu technologii. Zadanie 12 Dana jest funkcja produkcji Y = 1 3 Kα (AN) 1 α, gdzie A oznacza postęp technologiczny zwiększający produktywność pracy, a α = 1/3. Dane są: stopa oszczędności s = 0, 3, tempo przyrostu naturalnego n = 0, 05, stopa deprecjacji kapitału δ = 0, 065. Tempo postępu technologicznego g = A/A wynosi 0,01. Korzystając z modelu Solowa: (a) Zapisz funkcję produkcji w postaci intensywnej na jednostkę efektywnej pracy AN. (b) Zapisz równanie opisujące akumulację kapitału na jednostkę pracy efektywnej. (c) Oblicz poziom kapitału na jednostkę efektywnej pracy w stanie ustalonym. (d) Oblicz poziom produkcji na zatrudnionego w stanie ustalonym, przyjmując, że poziom zaawansowania technologicznego A = 30. (e) Przedstaw warunek maksymalizacji konsumpcji na jednostkę efektywnej pracy w stanie ustalonym i oblicz poziom stopy oszczędności zgodny ze złotą regułą dla omawianej funkcji produkcji. (f) Naszkicuj zmiany w czasie logarytmu konsumpcji na zatrudnionego po wzroście stopy oszczędności do s = 0, 32. Zadanie 13 Funkcja produkcji w pewnej gospodarce spełnia założenia neoklasycznej funkcji produkcji i jest dana przez Y = F (K, AN), gdzie K kapitał, A poziom technologii, N praca. Tempo postępu technicznego wynosi g, tj. A/A = g, a przyrost naturalny wynosi n. Korzystając z modelu wzrostu Solowa, porównaj skutki wzrostu tempa postępu technologicznego g: (a) Narysuj wykresy zmiennych A i N w czasie. (b) Narysuj wykresy zmiennych na jednostkę efektywną pracy: ˆk, ŷ oraz ĉ w czasie. 4

5 (c) Narysuj wykresy zmiennych na zatrudnionego: k, y oraz c w czasie. (d) Wobec powyższych rozważań przedyskutuj, czy szybszy postęp technologiczny jest korzystny. Zadanie 14 Funkcję produkcji w pewnej gospodarce można opisać wzorem Y = K 1/3 (AN) 2/3. Tempo wzrostu technologicznego i populacji są stałe i wynoszą odpowiednio g = 2% i n = 2%. W ostatnim okresie zaobserwowano następujące tempo wzrostu kapitału K/K = 5%. Czy ta gospodarka osiągnęła swój stan ustalony? Zadanie 15 Funkcję produkcji w pewnej gospodarce można opisać wzorem Y = 2 K 1/3 (AN) 2/3. Wiadomo, że stopa oszczędności s = 30%, deprecjacja δ = 0, 1, tempo przyrostu ludności n = 0, 03, a tempo wzrostu technologicznego g = 0, 02. Według ostatnich obserwacji, stosunek kapitału do produkcji K/Y = 5. Czy ta gospodarka osiągnęła swój stan ustalony? Zadanie 16 W pewnej gospodarce tempo przyrostu ludności n = 0, 05, a tempo wzrostu technologicznego g = 0, 03. W jakim tempie rośnie konsumpcja na zatrudnionego, jeżeli gospodarka znajduje się w stanie ustalonym? 5

Zbiór zadań Makroekonomia II ćwiczenia

Zbiór zadań Makroekonomia II ćwiczenia Zbiór zadań Makroekonomia II ćwiczenia ZESTAW 5 MODEL SOLOWA Zadanie 5.1 Dla podanych funkcji produkcji sprawdź, czy spełniają one warunki stawiane neoklasycznym funkcjom produkcji. Jeśli tak, zapisz je

Bardziej szczegółowo

Zbio r zadan Makroekonomia II c wiczenia 2016/2017

Zbio r zadan Makroekonomia II c wiczenia 2016/2017 Zbio r zadan Makroekonomia II c wiczenia 2016/2017 ZESTAW 1 FUNKCJA PRODUKCJI Zadanie 1.1 Przyjmuje się, że funkcja produkcji musi charakteryzować się stałymi przychodami skali oraz dodatnią i malejącą

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 10. Złota reguła. Model Solowa - wersja pełna. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 10. Złota reguła. Model Solowa - wersja pełna. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 10. Złota reguła. Model Solowa - wersja pełna dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Złota reguła problem maksymalizacji konsumpcji per capita. Model

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 9. Złota reguła. Model Solowa - wersja pełna. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 9. Złota reguła. Model Solowa - wersja pełna. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 9. Złota reguła. Model Solowa - wersja pełna dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Złota reguła problem maksymalizacji konsumpcji per capita. Model

Bardziej szczegółowo

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Czas trwania kolokwium wynosi 45 minut. Należy rozwiązać dwa z trzech zamieszczonych poniżej zadań. Za każde zadanie można uzyskać maksymalnie

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 9. Dlaczego jedne kraje są bogate, a inne biedne? Model Solowa, wersja prosta. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 9. Dlaczego jedne kraje są bogate, a inne biedne? Model Solowa, wersja prosta. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 9. Dlaczego jedne kraje są bogate, a inne biedne? Model Solowa, wersja prosta Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Funkcja produkcji - własności. Model Solowa

Bardziej szczegółowo

Plan wykładu. Dlaczego wzrost gospodarczy? Model wzrostu Harroda-Domara.

Plan wykładu. Dlaczego wzrost gospodarczy? Model wzrostu Harroda-Domara. Plan wykładu Dlaczego wzrost gospodarczy? Model wzrostu Harroda-Domara. Model wzrostu Solowa. Krytyka podejścia klasycznego wstęp do endogenicznych podstaw wzrostu gospodarczego. Potrzeba analizy wzrostu

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Model klasyczny. popyt na czynnik. ilość czynnika

Model klasyczny. popyt na czynnik. ilość czynnika Model klasyczny W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y C + I + G + NX W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki produkcji (K i

Bardziej szczegółowo

MAKROEKONOMIA II K A T A R Z Y N A Ś L E D Z I E WS K A

MAKROEKONOMIA II K A T A R Z Y N A Ś L E D Z I E WS K A MAKROEKONOMIA II K A T A R Z Y N A Ś L E D Z I E WS K A WYKŁAD X WZROST GOSPODARCZY Malthusiański model wzrostu gospodarczego Wprowadzenie Stan ustalony Efekt wzrostu produktywności Kontrola wzrostu urodzeń

Bardziej szczegółowo

Zestaw 3 Optymalizacja międzyokresowa

Zestaw 3 Optymalizacja międzyokresowa Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym

Bardziej szczegółowo

Zbiór zadań. Makroekonomia II ćwiczenia KONSUMPCJA

Zbiór zadań. Makroekonomia II ćwiczenia KONSUMPCJA Zbiór zadań. Makroekonomia II ćwiczenia KONSUMPCJA Zadanie 1. Konsument żyje przez 4 okresy. W pierwszym i drugim okresie jego dochód jest równy 100; w trzecim rośnie do 300, a w czwartym spada do zera.

Bardziej szczegółowo

Model klasyczny. dr Bartek Rokicki. Ćwiczenia z Makroekonomii II. W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX

Model klasyczny. dr Bartek Rokicki. Ćwiczenia z Makroekonomii II. W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX Model klasyczny W modelu Keynesa wielkość produkcji określała suma wydatków, np.: Y = C + I + G + NX W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki produkcji (K

Bardziej szczegółowo

Podstawowe fakty. Model Solowa przypomnienie

Podstawowe fakty. Model Solowa przypomnienie Podstawowe fakty. Model Solowa przypomnienie Zaawansowana Makroekonomia Dr hab. Joanna Siwińska-Gorzelak Długi i krótki okres w makroekonomii Źródłem większości grafik jest Acemoglu; Introduction do Modern

Bardziej szczegółowo

Wzrost gospodarczy definicje

Wzrost gospodarczy definicje Wzrost gospodarczy Wzrost gospodarczy definicje Przez wzrost gospodarczy rozumiemy proces powiększania podstawowych wielkości makroekonomicznych w gospodarce, a w szczególności proces powiększania produkcji

Bardziej szczegółowo

Makroekonomia rynku pracy Zadania przykładowe

Makroekonomia rynku pracy Zadania przykładowe Makroekonomia rynku pracy Zadania przykładowe dr Leszek Wincenciak Zadanie 1 Przyjmijmy, że funkcja użyteczności dla pewnego konsumenta dana jest w postaci: U(C, L) =α ln C +(1 α)lnl, gdziec oznacza wielkość

Bardziej szczegółowo

Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem

Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem Joanna Siwińska-Gorzelak Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem Zanim przystąpicie Państwo do rozwiązywania zadań, powtórzcie sobie proszę wyprowadzenie

Bardziej szczegółowo

Makroekonomia I. Jan Baran

Makroekonomia I. Jan Baran Makroekonomia I Jan Baran Model klasyczny a keynesowski W prostym modelu klasycznym zakładamy, że produkt zależy jedynie od nakładów czynników produkcji i funkcji produkcji. Nie wpływają na niego wprowadzone

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Międzyokresowy handel i konsumpcja Międzyokresowy handel występuje gdy zasoby mogą być transferowane w czasie, czyli gdy

Bardziej szczegółowo

Jerzy Osiatyński Kalecki a złota reguła akumulacji kapitału

Jerzy Osiatyński Kalecki a złota reguła akumulacji kapitału Jerzy Osiatyński Kalecki a złota reguła akumulacji kapitału Konferencja Polskiego Towarzystwa Ekonomicznego i Le Monde diplomatique: Idee na kryzys: Michał Kalecki Warszawa, 2 grudnia 2014 r. ZRA: ujęcie

Bardziej szczegółowo

TEST. [2] Funkcja długookresowego kosztu przeciętnego przedsiębiorstwa

TEST. [2] Funkcja długookresowego kosztu przeciętnego przedsiębiorstwa Przykładowe zadania na kolokwium: TEST [1] Zmniejszenie przeciętnych kosztów stałych zostanie spowodowane przez: a. wzrost wielkości produkcji, b. spadek wielkości produkcji, c. wzrost kosztów zmiennych,

Bardziej szczegółowo

pieniężnej. Jak wpłynie to na: krzywą LM... krajową stopę procentową... kurs walutowy... realny kurs walutowy ( przyjmij e ) ... K eksport netto...

pieniężnej. Jak wpłynie to na: krzywą LM... krajową stopę procentową... kurs walutowy... realny kurs walutowy ( przyjmij e ) ... K eksport netto... ZADANIA, TY I 1. Rozważmy model gospodarki otwartej (IS-LM i B), z płynnym kursem walutowym, gdy (nachylenie LM > nachylenie B). aństwo decyduje się na prowadzenie ekspansywnej polityki krzywą LM krajową

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 11. Poza modelem Solowa. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 11. Poza modelem Solowa. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 11. Poza modelem Solowa dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Rozszerzenia NEOKLASYCZNEGO modelu Solowa (oparte na neoklasycznej funkcji produkcji)

Bardziej szczegółowo

Zbio r zadan Makroekonomia II c wiczenia 2018/2019

Zbio r zadan Makroekonomia II c wiczenia 2018/2019 Zbio r zadan Makroekonomia II c wiczenia 2018/2019 Zestaw 1 Model AS-AD Zadanie 1.1 (a) Krzywa AD jest graficzną prezentacją popytu zagregowanego, czyli zależności między poziomem cen a PKB (liczonym od

Bardziej szczegółowo

Zadania ćw.6 (Krzyż Keynesowski) 20 marca Zadanie 1. Wyznacz funkcję oszczędności, jeśli funkcja konsumpcji opisana jest wzorem:

Zadania ćw.6 (Krzyż Keynesowski) 20 marca Zadanie 1. Wyznacz funkcję oszczędności, jeśli funkcja konsumpcji opisana jest wzorem: Zadanie 1. Wyznacz funkcję oszczędności, jeśli funkcja konsumpcji opisana jest wzorem: a) C=120 + 0,8Y b) C=0,95Y + 10 c) C=4/5Y Zadanie 2. Dla jakiej wielkości dochodu (Y) nie będą występować żadne oszczędności

Bardziej szczegółowo

Zbio r zadan Makroekonomia II c wiczenia 2018/2019

Zbio r zadan Makroekonomia II c wiczenia 2018/2019 Zbio r zadan Makroekonomia II c wiczenia 2018/2019 Zestaw 1 Model AS-AD Zadanie 1.1 (a) Krzywa AD jest graficzną prezentacją popytu zagregowanego, czyli zależności między poziomem cen a PKB (liczonym od

Bardziej szczegółowo

M. Bielecki, M. Brzozowski, A. Cieślik, J. Mackiewicz-Łyziak, D. Mycielska

M. Bielecki, M. Brzozowski, A. Cieślik, J. Mackiewicz-Łyziak, D. Mycielska ZESTAW 3 KONSUMPCJA Zadanie 3.1 Rozważmy konsumenta, który ma przed sobą perspektywę oczekiwanej długości dalszego życia T lat oraz planuje pracować jeszcze R lat. Zgromadził już aktywa o wartości rynkowej

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia Podstawowe założenia modelu są dokładnie takie same jak w modelu klasycznym gospodarki

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia Podstawowe założenia modelu są dokładnie takie same jak w modelu klasycznym gospodarki

Bardziej szczegółowo

Wykład 3: Wzrost gospodarczy I

Wykład 3: Wzrost gospodarczy I : Wzrost gospodarczy I Makroekonomia II Zima 2017/2018 - SGH Jacek Suda Wpływ tych rozważań na dobrobyt ludzi jest po prostu porażajacy. Kiedy raz zaczniemy myśleć o tych sprawach, trudno jest myśleć o

Bardziej szczegółowo

Makroekonomia BLOK II. Determinanty dochodu narodowego

Makroekonomia BLOK II. Determinanty dochodu narodowego Makroekonomia BLOK II Determinanty dochodu narodowego Wzrost gospodarczy i jego determinanty Wzrost gosp. powiększanie rozmiarów produkcji (dóbr i usług) w skali całej gosp. D D1 - D W = D = D * 100% Wzrost

Bardziej szczegółowo

ZESTAW 7 MODEL DAD-DAS (DYNAMICZNY)

ZESTAW 7 MODEL DAD-DAS (DYNAMICZNY) ZESTAW 7 MODEL DAD-DAS (DYNAMICZNY) Zadanie 7.1 Funkcja produkcji w pewnej gospodarce może być przybliżona wzorem =. (a) Zakładając, że nominalne płace dla pracowników są dane z góry i wynoszą, oblicz

Bardziej szczegółowo

Determinanty dochodu narodowego. Analiza krótkookresowa

Determinanty dochodu narodowego. Analiza krótkookresowa Determinanty dochodu narodowego Analiza krótkookresowa Produkcja potencjalna i faktyczna Produkcja potencjalna to produkcja, która może być wytworzona w gospodarce przy racjonalnym wykorzystaniu wszystkich

Bardziej szczegółowo

Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem

Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem Joanna Siwińska-Gorzelak Makroekonomia zaawansowana. Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem Zanim przystąpicie Państwo do rozwiązywania zadań, powtórzcie sobie proszę wyprowadzenie

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i eorii Handlu Zagranicznego Wydział auk konomicznych UW odstawowe założenia modelu Dwa sektory gospodarki - (handlowy oraz (niehandlowy sektorze dóbr handlowych Doskonała konkurencja

Bardziej szczegółowo

Makroekonomia zaawansowana; grudzień Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem

Makroekonomia zaawansowana; grudzień Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem Joanna Siwińska-Gorzelak Makroekonomia zaawansowana; grudzień 2018 Zbiór zadań wraz z odpowiedziami przygotowanie przed egzaminem We wszystkich zadaniach zakładamy, że gospodarstwa domowe są opisane dokładnie

Bardziej szczegółowo

Maksymalizacja zysku

Maksymalizacja zysku Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek

Bardziej szczegółowo

Polityka fiskalna i pieniężna

Polityka fiskalna i pieniężna Ćwiczenia z akroekonomii II Polityka fiskalna i pieniężna Deficyt budżetowy i cykle koniunkturalne na wstępie zaznaczyliśmy, że wielkość deficytu powinna zależeć od tego w jakiej fazie cyklu koniunkturalnego

Bardziej szczegółowo

Podana tabela przedstawia składniki PKB pewnej gospodarki w danym roku, wyrażone w cenach bieżących (z tego samego roku).

Podana tabela przedstawia składniki PKB pewnej gospodarki w danym roku, wyrażone w cenach bieżących (z tego samego roku). Zadanie 1 Podana tabela przedstawia składniki PKB pewnej gospodarki w danym roku, wyrażone w cenach bieżących (z tego samego roku). Składniki PKB Wielkość (mld) Wydatki konsumpcyjne (C ) 300 Inwestycje

Bardziej szczegółowo

Jeśli ceny dostosowują się z dłuższym opóźnieniem wtedy polityka FED jest wskazana (to zależy jeszcze jak długie jest to opóźnienie)

Jeśli ceny dostosowują się z dłuższym opóźnieniem wtedy polityka FED jest wskazana (to zależy jeszcze jak długie jest to opóźnienie) 1. Gospodarka USA znajduje się wciąż poza równowagą (produkcja jest poniżej produkcji przy pełnym zatrudnieniu). By temu przeciwdziałać, na pierwszym w tym roku (2014) posiedzeniu FOMC (Federal Open Market

Bardziej szczegółowo

MODEL AS-AD. Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie.

MODEL AS-AD. Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie. MODEL AS-AD Dotąd zakładaliśmy (w modelu IS-LM oraz w krzyżu keynesowskim), że ceny w gospodarce są stałe. Model AS-AD uchyla to założenie. KRZYWA AD Krzywą AD wyprowadza się z modelu IS-LM Każdy punkt

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria produkcji

Zadania z ekonomii matematycznej Teoria produkcji Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A

Bardziej szczegółowo

Makroekonomia 1 dla MSEMen. Gabriela Grotkowska

Makroekonomia 1 dla MSEMen. Gabriela Grotkowska Makroekonomia dla MSEMen Gabriela Grotkowska Plan wykładu 5 Model Keynesa: wprowadzenie i założenia Wydatki zagregowane i równowaga w modelu Mnożnik i jego interpretacja Warunek równowagi graficznie i

Bardziej szczegółowo

Makroekonomia. Jan Baran

Makroekonomia. Jan Baran Makroekonomia Jan Baran Model Keynesowski a klasyczny Model Keynesowski Sztywność cen i płac analiza krótkookresowa Możliwe niepełne wykorzystanie czynników produkcji (dopuszcza istnienie bezrobocia) Produkt

Bardziej szczegółowo

Inwestycje (I) Konsumpcja (C)

Inwestycje (I) Konsumpcja (C) Determinanty dochodu narodowego Zadanie 1 Wypełnij podaną tabelę, wiedząc, że wydatki konsumpcyjne stanowią 80% dochody narodowego, inwestycje są wielkością autonomiczną i wynoszą 1.000. Produkcja i dochód

Bardziej szczegółowo

Analiza cykli koniunkturalnych model ASAD

Analiza cykli koniunkturalnych model ASAD Analiza cykli koniunkturalnych model AS odstawowe założenia modelu: ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) punktem odniesienia analizy jest obserwacja poziomu

Bardziej szczegółowo

Zestaw 2 Model klasyczny w gospodarce otwartej

Zestaw 2 Model klasyczny w gospodarce otwartej Zestaw 2 Model klasyczny w gospodarce otwartej Jeżeli do modelu klasycznego poznanego w ramach makro 2 wprowadzimy założenie o możliwości wymiany międzynarodowej, to sumę wydatków w gospodarce danego kraju

Bardziej szczegółowo

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II)

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) dr inż. Ryszard Rębowski 1 FUNKCJA KOSZTU Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) 1 Funkcja kosztu Z podstaw mikroekonomii

Bardziej szczegółowo

Ćwiczenia 5, Makroekonomia II, Rozwiązania

Ćwiczenia 5, Makroekonomia II, Rozwiązania Ćwiczenia 5, Makroekonomia II, Rozwiązania Zadanie 1 Załóżmy, że w gospodarce ilość pieniądza rośnie w tempie 5% rocznie, a realne PKB powiększa się w tempie 2,5% rocznie. Ile wyniesie stopa inflacji w

Bardziej szczegółowo

Wzrost gospodarczy definicje

Wzrost gospodarczy definicje Wzrost gospodarczy Wzrost gospodarczy definicje Przez wzrost gospodarczy rozumiemy proces powiększania podstawowych wielkości makroekonomicznych w gospodarce, a w szczególności proces powiększania produkcji

Bardziej szczegółowo

Model Davida Ricardo

Model Davida Ricardo Model Davida Ricardo mgr eszek incenciak 15 lutego 2005 r. 1 Założenia modelu Analiza w modelu Ricardo opiera się na następujących założeniach: istnieje doskonała konkurencja na rynku dóbr i rynku pracy;

Bardziej szczegółowo

ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO

ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO Samer Masri ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO Najbardziej rewolucyjnym aspektem ogólnej teorii Keynesa 1 było jego jasne i niedwuznaczne przesłanie, że w odniesieniu do

Bardziej szczegółowo

przetwórczym (prod. na Lata roboczogodzinę) RFN Włochy Wielka Wielka RFN Włochy Brytania

przetwórczym (prod. na Lata roboczogodzinę) RFN Włochy Wielka Wielka RFN Włochy Brytania Wzrost gospodarczy i determinanty dochodu narodowego Zadanie 1 Które z poniższych sytuacji są symptomami trwałego wzrostu gospodarczego? a) Spadek bezrobocia, b) Wzrost wykorzystania majątku produkcyjnego,

Bardziej szczegółowo

WŁASNOŚCI FUNKCJI. Poziom podstawowy

WŁASNOŚCI FUNKCJI. Poziom podstawowy WŁASNOŚCI FUNKCJI Poziom podstawowy Zadanie ( pkt) Które z przyporządkowań jest funkcją? a) Każdej liczbie rzeczywistej przyporządkowana jest jej odwrotność b) Każdemu uczniowi klasy pierwszej przyporządkowane

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Ponieważ maksymalizacja funkcji produkcji była na mikroekonomii, skupmy się na wynikach i wnioskach.

Ponieważ maksymalizacja funkcji produkcji była na mikroekonomii, skupmy się na wynikach i wnioskach. Model klasyczny czyli co dzieje się z gospodarką w długim okresie 1. Od czego zależy produkcja i ile ona wynosi? Umiemy już policzyć, ile wynosi PKB. Ale skąd się to PKB bierze? Produkcja (Y, PKB itp.)

Bardziej szczegółowo

EGZAMIN Z MAKROEKONOMII I Wersja przykładowa

EGZAMIN Z MAKROEKONOMII I Wersja przykładowa EGZAMIN Z MAKROEKONOMII I Wersja przykładowa... Imię i nazwisko, nr albumu INSTRUKCJA 1. Najpierw przeczytaj zasady i objaśnienia. 2. Potem podpisz wszystkie kartki (tam, gdzie jest miejsce na Twoje imię

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 14. Inwestycje. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 14. Inwestycje. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 14. Inwestycje dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Inwestycje a oczekiwania. Neoklasyczna teoria inwestycji i co z niej wynika Teoria q Tobina

Bardziej szczegółowo

Zbiór zadań Makroekonomia II ćwiczenia 2018/2019

Zbiór zadań Makroekonomia II ćwiczenia 2018/2019 Zbiór zadań Makroekonomia II ćwiczenia 2018/2019 ZESTAW 2 MODEL DAD-DAS (DYNAMICZNY) Zadanie 2.1 Krzywa Phillipsa dana jest równaniem gdzie. W okresie t 1 stopa bezrobocia była równa naturalnej, a inflacja

Bardziej szczegółowo

Podstawowe fakty. Model Solowa szybkie przypomnienie

Podstawowe fakty. Model Solowa szybkie przypomnienie Dr hab. Joanna Siwińska-Gorzelak Podstawowe fakty. Model Solowa szybkie przypomnienie Zaawansowana Makroekonomia Te slajdy powstały w oparciu o książkę Acemoglu: Introduction do Modern Economic Growth

Bardziej szczegółowo

Makroekonomia I ćwiczenia 2 Rynek pracy

Makroekonomia I ćwiczenia 2 Rynek pracy Makroekonomia I ćwiczenia 2 Rynek pracy Tomasz Gajderowicz Agenda Rynek pracy Zadania Dane dot. rynku pracy Przepływy siły roboczej Zróżnicowanie stopy bezrobocia co to jest bezrobocie? Rynek pracy rodzaj

Bardziej szczegółowo

Makroekonomia 1 - ćwiczenia

Makroekonomia 1 - ćwiczenia Makroekonomia 1 - ćwiczenia mgr Małgorzata Kłobuszewska Zajęcia 6 Model klasyczny Plan Założenia modelu: Produkcja skąd się bierze? Gospodarka zamknięta Gospodarka otwarta Stopa procentowa w gospodarce

Bardziej szczegółowo

Makroekonomia I ćwiczenia 2 Rynek pracy

Makroekonomia I ćwiczenia 2 Rynek pracy Makroekonomia I ćwiczenia 2 Rynek pracy Tomasz Gajderowicz Agenda Rynek pracy Zadania Dane dot. rynku pracy Przepływy siły roboczej Rynek pracy rodzaj rynku, na którym z jednej strony znajdują się poszukujący

Bardziej szczegółowo

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej)

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej) Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (dla przypadku gospodarki zamkniętej) Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego PKB jako miara dobrobytu Produkcja w gospodarce

Bardziej szczegółowo

Poza modelem Solowa (jeszcze coś jest) Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak

Poza modelem Solowa (jeszcze coś jest) Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak Poza modelem Solowa (jeszcze coś jest) Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak Dzisiaj omawiamy.. Dwa odmienne teoretyczne podejścia (w ramach teorii wzrostu) Rozszerzenia NEOKLASYCZNEGO modelu

Bardziej szczegółowo

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (zamkniętej)

Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (zamkniętej) Makroekonomia 1 Wykład 5: Model klasyczny gospodarki (zamkniętej) Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego Produkcja w gospodarce Mierzyć już umiemy, teraz: wyjaśniamy!!

Bardziej szczegółowo

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS

Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego NATURALNA STOPA BEZROBOCIA Naturalna stopa bezrobocia Ponieważ

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA

MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA MAKROEKONOMIA II KATARZYNA ŚLEDZIEWSKA WYKŁAD XII WZROST GOSPODARCZY cd. Chiny i ich wzrost gospodarczy Podstawy endogenicznej teorii wzrostu Konsekwencje wzrostu endogenicznego Dwusektorowy model endogeniczny

Bardziej szczegółowo

Makroekonomia. Jan Baran

Makroekonomia. Jan Baran Makroekonomia Jan Baran Model Keynesowski a klasyczny Model Keynesowski Sztywność cen i płac analiza krótkookresowa Możliwe niepełne wykorzystanie czynników produkcji (dopuszcza istnienie bezrobocia) Produkt

Bardziej szczegółowo

Makroekonomia I ćwiczenia 2. Tomasz Gajderowicz

Makroekonomia I ćwiczenia 2. Tomasz Gajderowicz Makroekonomia I ćwiczenia 2 Tomasz Gajderowicz Agenda Rynek pracy Zadania Dane dot. rynku pracy Przepływy siły roboczej Rynek pracy rodzaj rynku, na którym z jednej strony znajdują się poszukujący pracy

Bardziej szczegółowo

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW arytet siły nabywczej () arytet siły nabywczej jest wyprowadzany w oparciu o prawo jednej ceny. rawo jednej ceny zakładając,

Bardziej szczegółowo

Wzrost i rozwój gospodarczy. Edyta Ropuszyńska-Surma

Wzrost i rozwój gospodarczy. Edyta Ropuszyńska-Surma Wzrost i rozwój gospodarczy Edyta Ropuszyńska-Surma Zagadnienia Wzrost gospodarczy i stopa wzrostu gospodarczego. Teorie wzrostu gospodarczego. Granice wzrostu. Modele wzrostu. Wzrost gospodarczy i polityka

Bardziej szczegółowo

Lista 7 i 8 Zysk księgowy i alternatywny Koszty alternatywne Koszty i utargi krańcowe Koszty produkcji w krótkim i długim okresie czasu

Lista 7 i 8 Zysk księgowy i alternatywny Koszty alternatywne Koszty i utargi krańcowe Koszty produkcji w krótkim i długim okresie czasu Zadanie 1. Pan Smith prowadzi prywatny biznes. W ubiegłym roku jego utarg wyniósł 55000, a koszty bezpośrednie 27000. Kapitał finansowy włożony w działalność zakładu wynosił przez cały rok 25000. Stopa

Bardziej szczegółowo

ZADANIA DO ĆWICZEŃ. 1.4 Gospodarka wytwarza trzy produkty A, B, C. W roku 1980 i 1990 zarejestrowano następujące ilości produkcji i ceny:

ZADANIA DO ĆWICZEŃ. 1.4 Gospodarka wytwarza trzy produkty A, B, C. W roku 1980 i 1990 zarejestrowano następujące ilości produkcji i ceny: ZADANIA DO ĆWICZEŃ Y produkt krajowy brutto, C konsumpcja, I inwestycje, Y d dochody osobiste do dyspozycji, G wydatki rządowe na zakup towarów i usług, T podatki, Tr płatności transferowe, S oszczędności,

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady.

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady. Przedmiot: EKONOMIA MATEMATYCZNA Katedra: Ekonomii Opracowanie: dr hab. Jerzy Telep Temat: Matematyczna teoria produkcji Zagadnienia: Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie,

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 11. Poza modelem Solowa. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 11. Poza modelem Solowa. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 11. Poza modelem Solowa dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Rozszerzenia NEOKLASYCZNEGO modelu Solowa (oparte na neoklasycznej funkcji produkcji)

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 11 Równowaga zewnętrzna i wewnętrzna w gospodarce otwartej Diagram Swana

Makroekonomia Gospodarki Otwartej Wykład 11 Równowaga zewnętrzna i wewnętrzna w gospodarce otwartej Diagram Swana Makroekonomia Gospodarki Otwartej Wykład 11 Równowaga zewnętrzna i wewnętrzna w gospodarce otwartej Diagram Swana Leszek Wincenciak Wydział Nauk Ekonomicznych UW 2/26 Plan wykładu: Prosty model keynesowski

Bardziej szczegółowo

Makroekonomia I ćwiczenia 2. Tomasz Gajderowicz

Makroekonomia I ćwiczenia 2. Tomasz Gajderowicz Makroekonomia I ćwiczenia 2 Tomasz Gajderowicz Agenda Rynek pracy Zadania Dane dot. rynku pracy Przepływy siły roboczej Rynek pracy rodzaj rynku, na którym z jednej strony znajdują się poszukujący pracy

Bardziej szczegółowo

Nazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt)

Nazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt) Nazwisko i Imię... Numer albumu... A 1. Utrata wartości dobra kapitałowego w ciągu roku będąca rezultatem wykorzystania tego dobra w procesie produkcji nazywana jest: (2 pkt) ujemnym przepływem pieniężnym

Bardziej szczegółowo

Wstęp: scenariusz. Przedsiębiorstwa na rynkach konkurencyjnych. W tym rozdziale szukaj odpowiedzi na pytania:

Wstęp: scenariusz. Przedsiębiorstwa na rynkach konkurencyjnych. W tym rozdziale szukaj odpowiedzi na pytania: 14 rzedsiębiorstwa na rynkach konkurencyjnych R I N C I L E S O F MICROECONOMICS F O U R T H E D I T I O N N. G R E G O R Y M A N K I W oweroint Slides by Ron Cronovich 2007 Thomson South-Western, all

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Teoria produkcji i wyboru producenta Lista 8

Teoria produkcji i wyboru producenta Lista 8 Definicje Teoria produkcji i wyboru producenta Lista 8 krótki i długi okres stałe i zmienne czynniki produkcyjne produkt krzywa produktu całkowitego produkt krańcowy prawo malejącego produktu krańcowego

Bardziej szczegółowo

Stanisław Cichocki Natalia Neherbecka

Stanisław Cichocki Natalia Neherbecka Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

dr Bartłomiej Rokicki Chair of Macroeconomics and International Trade Theory Faculty of Economic Sciences, University of Warsaw

dr Bartłomiej Rokicki Chair of Macroeconomics and International Trade Theory Faculty of Economic Sciences, University of Warsaw Chair of Macroeconomics and International Trade Theory Faculty of Economic Sciences, University of Warsaw Kryzysy walutowe Modele pierwszej generacji teorii kryzysów walutowych Model Krugmana wersja analityczna

Bardziej szczegółowo

Wskazówki rozwiązania zadań#

Wskazówki rozwiązania zadań# Terminy i skróty pochodzące z języka angielskiego: P - price - cena Q - quantity - ilość S - sales - sprzedaż VC - variable cost - koszt zmienny FC - fixed cost - koszt stały EBIT - Earnings before Intrest

Bardziej szczegółowo

Wykład 4: Wzrost gospodarczy II

Wykład 4: Wzrost gospodarczy II Wykład 4: Wzrost gospodarczy II Makroekonomia II Zima 2017/2018 - SGH Jacek Suda Stylizowane fakty Kaldora Stylizowane fakty Kaldora Fakt 1: Produkcja per capita i kapitałochłonośc (kapitał per capita)

Bardziej szczegółowo

TEST. [4] Grzyby w lesie to przykład: a. dobra prywatnego, b. wspólnych zasobów, c. monopolu naturalnego, d. dobra publicznego.

TEST. [4] Grzyby w lesie to przykład: a. dobra prywatnego, b. wspólnych zasobów, c. monopolu naturalnego, d. dobra publicznego. Przykładowe zadania na kolokwium: TEST [1] Zmniejszenie przeciętnych kosztów stałych zostanie spowodowane przez: a. wzrost wielkości produkcji, b. spadek wielkości produkcji, c. wzrost kosztów zmiennych,

Bardziej szczegółowo

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa 2b. Inflacja Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2b. Inflacja Matematyka finansowa 1 / 22 1 Motywacje i

Bardziej szczegółowo

Wykład III Przewaga komparatywna

Wykład III Przewaga komparatywna Wykład III Przewaga komparatywna W prezentacji zostały wykorzystane slajdy pomocnicze do książki: Microeconomics, R.S.Pindyck D.L.Rubinfeld. Możliwości produkcyjne - Dwa dobra, które Robinson może produkować:

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo

EKONOMIA wykład 4 TEORIA POSTĘPOWANIA PRODUCENTA

EKONOMIA wykład 4 TEORIA POSTĘPOWANIA PRODUCENTA EKONOMIA wykład 4 TEORIA POSTĘPOWANIA PRODUCENTA Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania PLAN WYKŁADU 1. Krótkookresowa teoria produkcji

Bardziej szczegółowo

Wstęp. Funkcja produkcji i dekompozycja wzrostu

Wstęp. Funkcja produkcji i dekompozycja wzrostu Makroekonomia II Wstęp. Funkcja produkcji i dekompozycja wzrostu Makroekonomia II Joanna Siwińska-Gorzelak Plan wykładu Wstęp zasady zaliczenia, itp. Krótki i długi okres - powtórzenie Wzrost gospodarczy

Bardziej szczegółowo

Makroekonomia zaawansowana konwersatorium Ekonomia międzynarodowa: pytania przykładowe

Makroekonomia zaawansowana konwersatorium Ekonomia międzynarodowa: pytania przykładowe Makroekonomia zaawansowana konwersatorium Ekonomia międzynarodowa: pytania przykładowe dr Leszek Wincenciak Pytanie 1 Omów główne różnice między neoklasyczną i nową teorią handlu. Jakie według nowej teorii

Bardziej szczegółowo

Mikroekonomia B.4. Mikołaj Czajkowski

Mikroekonomia B.4. Mikołaj Czajkowski Mikroekonomia B.4 Mikołaj Czajkowski Minimalizacja kosztów Minimalizacja kosztów (przy zadanej wielkości produkcji) Pozwala wyprowadzić funkcję TC i rozwiązać problem maksymalizacji zysków wykorzystując

Bardziej szczegółowo