1. Teoria mnogości, zbiory i operacje na zbiorach, relacje i odwzorowania, moc zbiorów.

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Teoria mnogości, zbiory i operacje na zbiorach, relacje i odwzorowania, moc zbiorów."

Transkrypt

1 1. Teoria mnogości, zbiory i operacje na zbiorach, relacje i odwzorowania, moc zbiorów. Teoria mnogości inaczej nazywana teorią zbiorów jest to teoria matematyczna badająca własności zbiorów (mnogość dawna nazwa zbioru). Teoria mnogości powstała w drugiej połowie XIX wieku, głównie dzięki pracom Georga Cantora; na początku XX wieku została przedstawiona w postaci aksjomatycznej (E. Zermelo, A. Fraenkel, W. Sierpiński i in.). Na gruncie teorii mnogości można zdefiniować wszystkie podstawowe pojęcia matematyczne, jak liczby (całkowite, wymierne, rzeczywiste) wraz z działaniami arytmetycznymi i naturalnym uporządkowaniem, relacje, funkcje itp.; dzięki temu każda teoria matematyczna może być potraktowana jako fragment teorii mnogości.

2 Terminy pierwotne teorii mnogości Zbiór (mnogość) pojęcie pierwotne, jest jednoznacznie określany przez swoje elementy (indywidua). Stwierdzenie - należy do oznaczane jest symbolem Î ; wyrażenie x jest elementem zbioru A zapisujemy w skrócie xîa. Oznaczenia A, B, C, - zbiory; a, b, c, x, y, z, - elementy zbioru; Stałe logiczne : - spójniki ~ Ø nieprawda, że (negacja) Þ Ù Ú Û º jeśli to (implikacja) oraz (koniunkcja) lub (alternatywa) wtedy i tylko wtedy; - kwantyfikatory ogólny: " dla dowolnego egzystencjalny: $ istnieje takie, że - identyczność = jest identyczne ( jest równe ) Wyrażenie, że ~ (xîa) nieprawda, że x należy do A, zapisujemy xïa, symbol Ï oznacza nie należy. Wyrażenie, że ~ (x=y) nieprawda, że x jest równe y zapisujemy x¹y, symbol ¹ oznacza jest różne.

3 Dwa sposoby określania zbioru 1. Przez wyliczenie wszystkich elementów zbioru, elementy te zapisujemy w nawiasie klamrowym: A={x,y, z} A={1,2,,10} zbiory skończone lub A={1,3,5, } zbiór nieskończony. 2. Przez podanie własności jaką posiadają wyłącznie elementy zbioru, inaczej przez wyróżnienie: A={x x jest liczbą nieparzystą}. Zbiory liczbowe N={0,1,2, } zbiór liczb naturalnych; N + ={1,2,3, } zbiór liczb naturalnych dodatnich; Z={0,1,-1,2,-2, } zbiór liczb całkowitych; Q={ q p p,qîz Ù q¹0} zbiór liczb wymiernych; R zbiór liczb rzeczywistych; C zbiór liczb zespolonych.

4 Zasada ekstensjonalności Dwa zbiory A i B są równe (uważamy je za identyczne) wtedy i tylko wtedy, gdy zawierają te same elementy, tzn. A=B Û "x (xîa Û xîb). Zasada dystrybutywności Żaden zbiór nie jest identyczny z żadnym ze swych elementów, tzn. ~ ( $A $x (xîa Ù x=a) ), oznacza to, że {a}¹a. Zbiór pusty Celowe i użyteczne jest wprowadzenie pojęcia zbioru pustego, który oznaczamy przez symbol Zbiór pusty jest to zbiór, który nie posiada żadnego elementu. Symbolicznie: Æ. $A "x (xïa). Z zasady ekstensjonalności wynika, że istnieje tylko jeden taki zbiór. Z zasady dystrybutywności wynika, że {Æ} Æ, czyli zbiór {Æ} nie jest zbiorem pustym.

5 Podzbiór Jeśli A i B są zbiorami oraz każdy element zbioru A jest też elementem zbioru B to zbiór A nazywamy podzbiorem zbioru B i oznaczamy AÌB. Mówimy wtedy, że A zawiera się w B. Symbolicznie: AÌB Û "x (xîa Þ xîb). Zawieranie się zbiorów nazywane jest również inkluzją. Własności inkluzji: 1. "A AÌA (każdy zbiór jest swoim podzbiorem), 2. "A ÆÌA (zbiór pusty jest podzbiorem dowolnego zbioru), 3. AÌB Ù BÌC Þ AÌC (przechodniość), 4. AÌB Ù BÌA Û A=B. Jeżeli AÌB Ù A¹B Ù A¹Æ, to A nazywamy podzbiorem właściwym zbioru B. Zbiór pusty Æ i zbiór A są podzbiorami niewłaściwymi zbioru A.

6 Zbiór potęgowy Zbiór wszystkich podzbiorów zbioru A nazywamy zbiorem potęgowym zbioru A i oznaczamy przez P(A), tzn. Elementarne wnioski: P(A)={M MÌA}. 1. Dla każdego zbioru A zachodzi ÆÎP(A), tzn. zbiór pusty jest elementem każdego zbioru potęgowego. 2. Jeżeli zbiór A ma n elementów, to zbiór P(A) ma 2 n elementów. Dopełnienie zbioru Rozpatrując podzbiory wyłącznie ustalonego zbioru U (zwanego uniwersum), np. podzbiór AÌU, możemy określić dopełnienie zbioru A oznaczane przez A jako zbiór tych elementów zbioru U, które nie należą do A. A = {x xîu Ù xïa}. Diagramy Venna Do zobrazowania zbiorów i operacji na nich wykorzystuje się diagramy Venna. Zbiory w tym ujęciu reprezentowane są przez figury płaskie. Dla zbiorów A i B są to najczęściej koła, natomiast uniwersum U rysowane jest jako prostokąt, obejmujący koła przedstawiające zbiory A oraz B. U A B

7 Operacje (działania) na zbiorach Za pomocą operacji teoriomnogościowych z danych zbiorów można utworzyć na wiele różnych sposobów nowe zbiory. Niech A i B będą zbiorami, określmy działania na tych zbiorach: 1. Suma zbiorów A i B (symbolicznie A B) określana jest następująco: A B={x xîa Ú xîb}. 2. Część wspólna (iloczyn, przekrój, przecięcie) zbiorów A i B (symbolicznie A B) określana jest następująco: A B={x xîa Ù xîb}. Działania te można uogólnić na rodzinę zbiorów D, czyli zbiór którego elementami są zbiory: 3. Suma rodziny zbiorów D (symbolicznie D) określana jest następująco: D={x $AÎD x ÎA}. 4. Część wspólna (iloczyn, przekrój, przecięcie) rodziny zbiorów D (symbolicznie D) określana jest następująco: D={x "AÎD x ÎA}.

8 Zbiory rozłączne Dwa dowolne zbiory A i B nie mające ani jednego elementu wspólnego nazywamy rozłącznymi. Oznacza to, że zbiory A i B są rozłączne gdy zachodzi równość: A B=Æ. 5. Różnica zbiorów A i B (symbolicznie A\B) określana jest następująco: A\B={x xîa Ù xïb}. Dopełnienie zbioru Dopełnienie zbioru A można zapisać również w postaci: A =U\A. 6. Różnica symetryczna zbiorów A i B (symbolicznie A B lub A B lub A B) określana jest następująco: A B={x (xîa Ù xïb) Ú (xîb Ù xïa)}.

9 Podstawowe prawa rachunku zbiorów Prawa łączności (A B) C = A (B C) (A B) C = A (B C) Prawa przemienności A B = B A A B = B A Prawa rozdzielności (A B) C = (A C) (B C) (A B) C = (A C) (B C) Prawa de Morgana (A B) = A B (A B) = A B Prawa absorpcji A (A B) = A A (A B) = A Prawa idempotentności A A = A A A = A Inne własności A A = U A A = Æ A U = U A U = A A Æ = A A Æ = Æ U = Æ Æ = U A B = (A B)\(A B) A\B = A\(A B) A (B\C) = (A B)\C (A B)\C = B (A\C) {A}=A {A}=A P(A)=A P(A)=Æ

10 Iloczyn (produkt) kartezjański Iloczynem (produktem) kartezjańskim zbiorów A 1, A 2,, A n nazywamy zbiór oznaczany A 1 A 2 A n postaci: A 1 A 2 A n ={(a 1, a 2,, a n ) a 1 Î A 1 Ù a 2 Î A 2 Ù Ù a n Î A n }. Mówimy także, że iloczyn kartezjański n zbiorów jest zbiorem wszystkich n-tek uporządkowanych, czyli ciągów (a 1, a 2,, a n ), gdzie a i ÎA i dla i=1,2, n. Przykład Jeżeli A 1 = {1,2,3}, A 2 = {2,4}, A 3 = {x,y}, to A 1 A 2 A 3 ={(1,2,x),(1,2,y),(1,4,x),(1,4,y),(2,2,x),(2,2,y),(2,4,x),(2,4,y), (3,2,x),(3,2,y),(3,4,x),(3,4,y)}. Jeżeli A 1 =A 2 = =A n =A, to A 1 A 2 A n nazywamy n-tą potęgą kartezjańską zbioru A i oznaczamy A n. Przykładem takiego zbioru jest R R R=R 3 ={(x 1,x 2,x 3 ) x 1 ÎRÙx 2 ÎRÙx 3 ÎR}, zbiór wszystkich punktów w przestrzeni trójwymiarowej. Szczególnym przypadkiem iloczynu kartezjańskiego jest iloczyn kartezjański dwóch zbiorów A B = {(a,b) aîa Ù bîb}. Elementy (a,b) zbioru A B nazywamy parami uporządkowanymi. Charakteryzują się one następującą równoważnością: (a,b) = (c,d) Û a=c Ù b=d.

11 Własności iloczynu kartezjańskiego Jeżeli A¹B¹C, to: 1. A B¹B A 2. A (B C)=(A B) C Jeżeli A¹ÆÙB¹ÆÙC¹ÆÙD¹Æ, to: 3. (AÌBÙCÌD) Û (A C)Ì(B D) 4. (A=BÙC=D)Û (A C)Ì(B D) Dla dowolnych A, B, C, D i U zachodzi: 5. (A B) (C D)=(A C) (B D) 6. (A B) (C D)Ì(A C) (B D) 7. (A B) C=(A C) (B C) 8. A (B C)=(A B) (A C) 9. (A B) C=(A C) (B C) 10.A (B C)=(A B) (A C) 11.(A\B) C=(A C)\(B C) 12.A (B\C)=(A B)\(A C) 13.(A B) (C D)=(A C) (B C) (A D) (B D) 14.A B=(A D) (C B), gdzie AÌCÙBÌD 15.U 2 \(A B)=[(U\A) U] [U (U\B)]

12 Aksjomaty teorii mnogości Pojęcia pierwotne zbiór, element zbioru. Aksjomaty Zermelo Frenkla (ZF): I. Aksjomat ekstensjonalności Dwa zbiory są równe, gdy mają te same elementy. II. Aksjomat zbioru pustego III. Aksjomat sumy Istnieje zbiór, który nie zawiera żadnego elementu. Dla dowolnej rodziny zbiorów istnieje zbiór składający się ze wszystkich tych elementów, które są elementami przynajmniej jednego ze zbiorów tej rodziny. IV. Aksjomat zbioru potęgowego Dla każdego zbioru istnieje zbiór składający się ze wszystkich podzbiorów danego zbioru. V. Aksjomat nieskończoności VI. Aksjomat zastępowania Istnieje zbiór nieskończony. Jeżeli każdy element zbioru zastąpimy dowolnym obiektem, to otrzymamy znów pewien zbiór.

13 Relacje Relacją n-argumentową na zbiorach A 1, A 2,, A n nazywamy podzbiór iloczynu kartezjańskiego tych zbiorów, tzn. ÌA 1 A 2 A n. Jeżeli ÌA n to relację nazywamy n-argumentową relacją w zbiorze A. Relacje opisują zależności między elementami jednego lub wielu różnych zbiorów. Przykład Niech A 1 ={1,2,3,4}, A 2 ={2,4,6,8}, A 3 ={2,3,4} ={(a 1, a 2, a 3 ) a 1 ÎA 1 Ùa 2 ÎA 2 Ùa 3 ÎA 3 Ùa 1 =a 2 =a 3 }, czyli ={(2,2,2), (4,4,4)}. i-tą dziedziną relacji ÌA 1 A 2 A n nazywamy zbiór postaci: D i ( )={xîa i $a 1,, $a i-1, $a i+1,, $a n (a 1,,a i-1,x,a i+1,,a n )Î }. Zamiast pisać (a 1, a 2,, a n )Î piszemy także (a 1, a 2,,a n ). Ponieważ relacje są szczególnego rodzaju zbiorami określa się dla nich wszystkie operacje teoriomnogościowe.

14 Relacje binarne (dwuargumentowe) Relacją binarną (dwuargumentową) między elementami zbiorów A i B nazywamy dowolny podzbiór zbioru A B. Jeżeli A=B to relację ÌA 2 nazywamy relacją binarną określoną na A. Zamiast pisać, że (a,b)î stosujemy zapis (a,b) lub częściej a b. Dziedziną relacji binarnej nazywamy zbiór postaci: D( )={aîa $bîb a b }, natomiast przeciwdziedziną relacji binarnej nazywamy zbiór postaci: D -1 ( )={bîb $aîa a b }. Zbiór D( ) D -1 ( ) nazywamy polem relacji. Dopełnieniem relacji binarnej pomiędzy elementami zbiorów A B nazywamy zbiór postaci: =(A B)\. Relacją odwrotną oznaczaną -1 do relacji binarnej nazywamy zbiór: -1 ={(a,b) b a}. Niech 1 ÌA B oraz 2 ÌB C będą relacjami binarnymi. Złożeniem (superpozycją, iloczynem) 1 2 relacji 1 i 2 nazywamy zbiór określony następująco: 1 2 ={(a,c) $b (bîb Ù a 1 b Ù b 2 c}. Przez I A oznaczamy następującą relację binarną: I A ={(a,b)îa 2 a=b}={(a,a) aîa}.

15 Dla relacji binarnych 1, 2, 3 określonych na zbiorze A zachodzi: 1. ( 1 2 ) = ( 1 2 ) = ( 1 2 ) 3 =( 1 3 ) ( 2 3 ) 4. ( 1 2 ) 3 Ì( 1 3 ) ( 2 3 ) 5. ( 1 2 ) = 2 1 Relację binarną ÌA 2 można przedstawić za pomocą: 1. Diagramu strzałkowego Elementy zbioru A oznaczamy na płaszczyźnie punktami a,b, i następnie przeprowadzamy od a do b linie zakończoną strzałką wtedy i tylko wtedy gdy a b. 2. Macierzy relacji M Elementy zbioru A wpisujemy do pierwszego wiersza i pierwszej kolumny macierzy. Na przecięciu wiersza wyznaczonego przez aîa i kolumny bîa w przypadku gdy a b wpisujemy 1, w przeciwnym wypadku wpisujemy 0.

16 Przykład Niech A={1,2,3,4} relację określmy jako zbiór: ={(a,b) aîa Ù bîa Ù a dzieli b}, wtedy ={(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)}, a na diagramie strzałkowym przedstawiamy to następująco: Natomiast macierz M relacji przedstawia się następująco: M Określmy teraz dziedzinę, przeciwdziedzinę, pole, dopełnienie, relację odwrotną dla danej relacji. Dziedzina: D( )={1,2,3,4}=A, Przeciwdziedzina D -1 ( )={1,2,3,4}=A, Pole relacji D( ) D -1 ( )={1,2,3,4}=A, Dopełnienie ={(2,1),(2,3),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}, Relacja odwrotna -1 ={(1,1),(2,1),(3,1),(4,1),(2,2),(4,2),(3,3),(4,4)}.

17 Niech ÌA 2 wtedy relacja jest 1. zwrotna (refleksywna) w A, jeżeli "aîa zachodzi a a 2. przeciwzwrotna (irrefleksywną) w A, jeżeli "aîa zachodzi Ø(a a) 3. symetryczna w A, jeżeli "(aîaùbîa) zachodzi a b Þ b a 4. przeciwsymetryczna (asymetryczna) w A, jeżeli "(aîaùbîa) zachodzi a b Þ Ø(b a) 5. słabo antysymetryczna (wpół antysymetryczna, na wpół przeciwsymetryczna w A, jeżeli "(aîaùbîa) zachodzi a bùb aþa=b 6. przechodnia (tranzytywna) w A, jeżeli "(aîaùbîaùcîa) zachodzi a bùb cþa c 7. liniowa w A, jeżeli "(aîaùbîa) zachodzi a búb a 8. spójna w A,, jeżeli "(aîaùbîa) zachodzi a búb aúa=b Jeżeli ÌA 2 i A 1 ÌA, to relację A 1 2 nazywamy obcięciem relacji do A 1 i oznaczamy przez A 1. Relacja ÌA 2 jest zwrotna (przeciwzwrotna, symetryczna i itp.) jeżeli relacja A 1 jest zwrotna (przeciwzwrotna, symetryczna i itp.) na A 1 będącym polem.

18 Relacje równoważności i klasy abstrakcji Relację binarną na zbiorze A ( ÌA 2 ) nazywamy relacją równoważności, jeżeli jest zwrotna symetryczna i przechodnia. Z każdą relacją równoważności w zbiorze A związany jest rozkład tego zbioru na niepuste parami rozłączne podzbiory, tzw. klasy równoważności. Zbiór postaci: [a] := {b bîa Ù a b} Nazywamy klasą równoważności elementu a względem relacji. Własności klas abstrakcji: 1. [a] ¹Æ 2. a b Û [a] = [b] 3. Ø(a b) Û [a] [b] =Æ Wszystkie klasy abstrakcji są elementami pewnego nowego zbioru nazywanego zbiorem ilorazowym, który jest oznaczany przez A/ i ma postać: A/ ={[a] aîa}. Podzbiór ZÌP(A) zbioru potęgowego P(A) nazywamy rozkładem zbioru A, jeżeli ÆÏZ Ù (X,YÎZ Ù X¹Y Þ X Y=Æ) Ù X =A. XÎZ

19 Twierdzenie o rozkładzie (faktoryzacji) Każda relacja równoważności w zbiorze A indukuje pewien rozkład Z zbioru A, mianowicie Z=A/ i na odwrót, każdemu rozkładowi Z zbioru A odpowiada pewna relacja równoważności w A, co symbolicznie można zapisać: a b Û $XÎZ (aîx Ù bîx). Relację równoważności w zbiorze A można rozpatrywać jako uogólnienie relacji identyczności (równości) w tym zbiorze. Abstrahujemy wtedy od nieistotnych własności elementów zbioru A, jednocześnie elementy nie różniące się pod względem pewniej cechy przypisujemy do jednej i tej samej klasy abstrakcji. Przykład Niech dana będzie relacja ÌN + 2 taka, że "(aîn + ÙbÎN + ) a b Û (2 dzieli a+b). Sprawdzić czy jest to relacja równoważności i jeżeli jest to określić klasy abstrakcji oraz rozkład zbioru N +.

20 Relacje porządkujące Relację binarną w zbiorze A, która jest zwrotna, słabo antysymetryczna i przechodnia nazywamy relacją porządkującą (porządkiem, porządkiem częściowym, półporządkiem). Jeżeli ponadto jest liniowa to jest całkowitym porządkiem (liniowym porządkiem) lub łańcuchem. Zbiór A określany jest wówczas jako uporządkowany przez relację lub liniowo uporządkowany przez. W zbiorze liniowo uporządkowanym każde dwa elementy są porównywalne. Jeżeli a b i jest relacją porządkującą to stosujemy zapis a b lub a b. Zbiory N, Z, Q, R są liniowo uporządkowane przez standardową relację jest mniejsze lub równe co zapisujemy. Zbiór potęgowy P(A) z relacją zawierania Ì jest zbiorem częściowo uporządkowanym.

21 Niech dany będzie zbiór A uporządkowany przez relację, wyróżniamy następujące elementy: element aîa nazywamy maksymalnym w A jeśli "xîa (a xþx=a), element aîa nazywamy minimalnym w A jeśli "xîa (x aþx=a), element aîa nazywamy największym w A jeśli "xîa (x a), element aîa nazywamy najmniejszym w A jeśli "xîa (a x). Ponadto jeżeli XÌA, to ograniczeniem górnym zbioru X nazywamy każdy taki element aîa, że "xîx (x a), natomiast ograniczeniem dolnym nazywamy każdy taki element aîa, że "xîx (a x). Lemat Kuratowskiego Zorna: Jeżeli zbiór A jest uporządkowany przez relację oraz dla każdego łańcucha istnieje w A górne ograniczenie, wtedy w A istnieje co najmniej jeden element maksymalny, co więcej dla każdego xîa istnieje element maksymalny a taki, że x a.

22 Przykład 2 Niech dana będzie relacja ÌN + taka, że "(aîn + ÙbÎN + ) a b Û (a dzieli b). Sprawdzić czy jest to relacja porządkująca.

23 Funkcje i odwzorowania Relację ÌX Y nazywamy funkcją, jeżeli "xîx "yîy "zîy ( x yùx z Þ y=z ). Elementy zbioru X nazywamy argumentami funkcji, natomiast elementy zbioru Y wartościami funkcji. Dla oznaczenia funkcji używamy liter f, g, h i zamiast (x,y)îf zapisujemy f (x)=y. Dziedziną (zbiorem argumentów) funkcji nazywamy zbiór D f ={xîx $yîy (f(x)=y)}, przeciwdziedziną (zbiorem wartości funkcji) nazywamy zbiór W f ={yîy $xîx (f(x)=y)}. Odwzorowaniem (przekształceniem) zbioru X w zbiór Y nazywamy taką funkcję f, że D f =X i W f ÌY i oznaczamy przez f: X Y. Zbiór wszystkich odwzorowań z X w Y oznaczamy Y X. Odwzorowanie f nazywamy z X na Y (surjekcją, epimorfizmem) jeżeli i oznaczamy f : X na Y. "yîy $xîx (f(x)=y) inaczej gdy W f =Y Odwzorowanie f nazywamy różnowartościowym (injekcją, monomorfizmem) jeżeli "x 1 ÎX "x 2 ÎX "yîy ( (x 1,y)Îf Ù(x 2,y)Îf Þ x 1 =x 2 ) i oznaczamy f : X 1 1 Y.

24 Odwzorowanie f nazywamy wzajemnie jednoznacznym (bijekcją) jeżeli jest różnowartościowe i na (surjekcją i injekcją). Dla odwzorowania wzajemnie jednoznacznego f : X Y określa się odwzorowanie odwrotne f -1 : Y X, takie, że "xîx "yîy (f(x)=y Þ f -1 (y)=x). Dla danych odwzorowań f : X Y g : Y Z definiuje się przekształcenie g f : X Z zwane złożeniem (superpozycją) według wzoru: (x,z)î g f Û $yîy (f(x)=yùg(y)=z). Złożenie odwzorowań nie jest przemienne g f ¹ f g natomiast jest łączne h (f g)= (h f) g.

25 Moc zbiorów Liczbę elementów zbioru skończonego A nazywamy mocą zbioru lub liczbą kardynalną zbioru A i oznaczamy przez card A lub przez A. Również każdemu zbiorowi nieskończonemu przypisuje się jego liczbę kardynalną. Dwa zbiory A i B nazywamy równolicznymi jeżeli istnieje jakakolwiek bijekcja między tymi zbiorami, co oznaczamy przez A~B. Każdemu zbiorowi A przyporządkowuje się jego liczbę kardynalną card A lub A, w taki sposób, że zbiory równoliczne mają tę samą liczbę kardynalną. Ponieważ żaden zbiór nie jest równoliczny ze swoim zbiorem potęgowym, więc nie istnieje największa liczba kardynalna. Najmniejszą nieskończoną liczbą kardynalną jest liczba kardynalna zbioru liczb naturalnych N, oznaczana przez symbol 0 (alef 0). Zbiór nieskończony nazywamy przeliczalnym jeżeli jest równoliczny ze zbiorem liczb naturalnych, oznacza to, że jego elementy można ustawić w ciąg a 1, a 2, ponumerowany kolejnymi liczbami naturalnymi. Zbiór nieskończony nazywamy nieprzeliczalnym jeżeli nie jest równoliczny ze zbiorem liczb naturalnych. Wynika z tego, że każdy zbiór nieskończony nie będący zbiorem przeliczalnym jest nieprzeliczalny. Zbiory Z, Q są przeliczalne, natomiast zbiory R i C są nieprzeliczalne. Zbiory R i C są równoliczne i mają tę samą moc, ich liczbę kardynalną oznacza się przez c (continuum).

26 Działania na liczbach kardynalnych Sumą liczb kardynalnych n 1 i n 2 nazywamy liczbę m=n 1 +n 2, jeżeli każdy zbiór mocy m jest równoliczny z sumą zbiorów o mocy n 1 i n 2. Iloczynem liczb kardynalnych n 1 i n 2 nazywamy liczbę m=n 1 n 2, jeżeli każdy zbiór mocy m jest równoliczny z iloczynem kartezjańskim zbiorów o mocy n 1 i n 2. Potęgą liczby kardynalnej n 2 liczby kardynalnej n 1 nazywamy liczbę n kardynalną m= n 2 1, jeżeli każdy zbiór mocy m jest równoliczny A B, gdzie A i B mają moce odpowiednio n 1 i n 2. Własności liczb kardynalnych: 1. n+ 0 = = 0 0 = c= 0 c=c 4. c+c=c c=c =c

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np.

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Zbiór zadań ze wstępu do matematyki

Zbiór zadań ze wstępu do matematyki Zbiór zadań ze wstępu do matematyki Jan Kraszewski Wrocław 2009 1 Spis treści 2 Przedmowa W zbiorach zadań ze wstępu do matematyki zadania zazwyczaj są tak pogrupowane, by dotyczyły pojęć z poszczególnych

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Materiały do wykładu dla I roku informatyki P. Urzyczyn urzy@mimuw.edu.pl 28 września 2015, godzina 12: 05 1 Język logiki matematycznej Zadaniem matematyki jest badanie

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska Wykłady ze Wstępu do Matematyki Jacek Cichoń WPPT, Politechnika Wrocławska MAJ 2012 Spis treści 1 Rachunek Zdań 7 1.1 Zdania i Waluacje............................ 7 1.2 Przegląd Najważniejszych Tautologii..................

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013 Eliza Wajch Wykłady i ćwiczenia z geometrii analitycznej z elementami topologii w UPH w Siedlcach w semestrze zimowym roku akad. 2012/2013. Literatura podstawowa: 1. K. Kuratowski, A. Mostowski: Teoria

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu. 61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,

Bardziej szczegółowo

MATEMATYKA dla studentów kierunku Zarządzanie i Marketing ZBIGNIEW BARTOSIEWICZ DOROTA MOZYRSKA EWA PAWŁUSZEWICZ

MATEMATYKA dla studentów kierunku Zarządzanie i Marketing ZBIGNIEW BARTOSIEWICZ DOROTA MOZYRSKA EWA PAWŁUSZEWICZ MATEMATYKA dla studentów kierunku Zarządzanie i Marketing ZBIGNIEW BARTOSIEWICZ DOROTA MOZYRSKA EWA PAWŁUSZEWICZ Wrzesień 1998 2 Spis treści Wstęp 7 1 Podstawy 9 1.1 Elementy logiki............................

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 UŁAMKI ZWYKŁE I DZIESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe Rozszerza ułamek zwykły Skraca ułamek zwykły Zapisuje ułamek

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

O relacjach i algorytmach. Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl

O relacjach i algorytmach. Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl O relacjach i algorytmach Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl < 266 > Informatyka + Wszechnica Popołudniowa > O relacjach i algorytmach < 267 > Streszczenie

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Janusz J. Szuster. Zadania z logiki i teorii mnogości

Podstawy matematyki dla informatyków. Janusz J. Szuster. Zadania z logiki i teorii mnogości Podstawy matematyki dla informatyków Janusz J. Szuster Zadania z logiki i teorii mnogości Lublin 2006 1. WSTĘP 2 1. Wstęp W literaturze przedmiotu Logika i teoria mnogości istnieje kilka zbiorów zadań

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Repetytorium z matematyki dla studentów pierwszego roku

Repetytorium z matematyki dla studentów pierwszego roku 1 Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Janina Płaskonka Karol Selwat Repetytorium z matematyki dla studentów pierwszego roku Legnica 2010 2 Recenzent: prof. zw. dr hab. Tadeusz Galanc

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń:

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń: Matematyka Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej cechy

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Wymagania z matematyki, poziom podstawowy. nowa podstawa programowa

Wymagania z matematyki, poziom podstawowy. nowa podstawa programowa z matematyki, poziom podstawowy nowa podstawa programowa Nauczyciel matematyki: mgr Joanna Nowaczyk Zbiór liczb rzeczywistych i jego podzbiory ponad potrafi odróżnić zdanie logiczne od innej wypowiedzi;

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo