WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011

Wielkość: px
Rozpocząć pokaz od strony:

Download "WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011"

Transkrypt

1 dr Przemysław Szczepaniak ZDANIA WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/ Udowodnij prawa rachunku zdań poznane na wykładzie. 2. Sprawdź, które z poniższych zdań są tautologiami: (a)p q r ( p (q r) r). (b)(p q) (r s) (p s q r). (c)(p q r) (p r) (q r). (d)(p q) (p q p). (e)(p q r s) (p r) (q s). (f)(p q) (p q) (q p). 3. Zaneguj zdania z przykładów(a),(b),(c) poprzedniego zadania. Korzystając z praw de Morgana, przekształć je do postaci, w której negacja występuje jedynie przed zmiennymi zdaniowymi. 4. Sprawdź metodą skróconą, które z poniższych zdań są tautologiami: (a)p (q p). (b)(p (q r)) ((p q) (p r)). (c)( p q) (( p q) p). (d)((p q) (q r)) (p r). 5. Oto fragment raportu policji, sporządzonego przez młodego aspiranta: Świadek nie był zastraszony lub też, jeśli Henry popełnił samobójstwo, to testament odnaleziono. Jeśli świadek był zastraszony, to Henry nie popełnił samobójstwa. Jeśli testament odnaleziono, to Henry popełnił samobójstwo. Jeśli Henry nie popełnił samobójstwa, to testament odnaleziono. Co komendant policji może wywnioskować z powyższego raportu, poza oczywistym faktem, że należy zwolnić aspiranta? Spróbuj odpowiedzieć na pytania: Czy świadek był zastraszony? Czy Henry popełnił samobójstwo? Czy testament odnaleziono?. 1 Uwaga.Ćwiczenianiesąoznaczone,przyzadaniachjestsymbol,przytrudniejszych zadaniachjestsymbol. 1

2 6. Sprawdź, czy poniższe rozumowania są poprawne: (a)jeżelijanożenisięzmarią,topiotrgoznienawidzi.jeżelipiotrożeni sięzmarią,tojangoznienawidzi.zatempiotrznienawidzijanalubjan znienawidzi Piotra. (b) Jeżeli występuje spięcie w przewodzie elektrycznym, to światło gaśnie. Światło nie gaśnie. Zatem nie występuje spięcie w przewodzie elektrycznym. (c) Jeśli jest zimno, to trzeba ubrać płaszcz. Jeśli pada deszcz, to trzeba wziąćparasol.więcjeślijestzimnoipadadeszcz,totrzebaubraćpłaszczi wziąć parasol. (d) Jeśli pacjent ma zapalenie oskrzeli, to zastosowanie antybiotyków przyniesie poprawę. Jeśli pacjent ma zapalenie płuc, to zastosowanie antybiotyków przyniesie poprawę. Pacjent ma zapalenie oskrzeli lub zapalenie płuc. Zatem zastosowanie antybiotyków przyniesie poprawę. 7. PodczaspewnejkampaniiwyborczejOlek,JózekiKazikwygłosilinastępujące oświadczenia: Olek: Józek zawsze kłamie, Józek: Kazik zawsze kłamie, Kazik: Olek zawsze kłamie. Pokaż, że co najmniej dwóch spośród nich nie miało racji. 8. KreskęSheferaokreślamynastępująco:p q=( p q).wyraźnegację, koniunkcję, alternatywę, implikację i równoważność za pomocą tego spójnika. ZBIORY 9. Udowodnij prawa rachunku zbiorów poznane na wykładzie. 10.Pokaż,żezbiórn-elementowyma2 n wszystkichpodzbiorów. 11.Pokaż,żedladowolnychzbiorówA,B,C,D: (a)a B B C A C, (b)a C B C A B C, (c)a B A C A B C, (d)a B C D A C B D, (e)a B C D A C B D. 12. Pokaż, że dla dowolnych zbiorów A, B poniższe warunki są równoważne: 1.A B, 2.A B=A, 3.A B=B. 2

3 13. Pokaż, że A B jest najmniejszym w sensie inkluzji zbiorem zawierającym jednocześnie zbiory A i B. Sformułuj i udowodnij analogiczny fakt dla przekroju dwóch zbiorów. 14.Pokaż,żedladowolnychzbiorówA,B,C: (a)(a\b)\c=a\(b C), (b)a\(b\c)=(a\b) (A C). 15. Pokażnastępująceprawaróżnicysymetrycznej:A =A,A A=, A B=B A,A (B C)=(A B) C. 16.Rozwiążrównanie[0,1] X=[ 1, 1 2 ). 17. Czy iloczyn kartezjański jest operacją łączną? 18.Pokaż,żedladowolnychzbiorówA,B,C: (a)(a B) C=(A C) (B C), (b)(a B) C=(A C) (B C). 19.WyznaczzbioryP( ),P(P( )),P({1,2,3}). 20.Pokaż,żeA Bwtedyitylkowtedy,gdyP(A) P(B). 21.CzydladowolnychzbiorówA,B: (a)p(a) P(B)=P(A B), (b)p(a) P(B)=P(A B)? KWANTYFIKATORY 22. Udowodnij prawa rachunku kwantyfikatorów poznane na wykładzie. 23. Używając jedynie symboli kwantyfikatorów, nawiasów, spójników logicznychoraz=,,<,,+,,, N, Z, Rzapiszzdania: (a) istnieje nieparzysta liczba naturalna, (b) nie ma największej liczby naturalnej, (c) niektóre liczby naturalne są pierwsze, (d)każdaliczbanaturalnadajeprzydzieleniuprzez2resztę0lub1, (e) x jest najmniejszą liczbą naturalną, (f) wśród liczb naturalnych istnieje liczba najmniejsza, (g) suma kwadratów dwóch liczb rzeczywistych jest zawsze nieujemna, (h)równaniex 2 +x+4=0niemarozwiązańwzbiorzeliczbrzeczywistych, (i)równaniex 2 x 2=0madwarozwiązaniacałkowite, 3

4 (j)równanie2x+a=0marozwiązaniecałkowitedladowolnegoa Z, (k) dla dwóch(różnych) liczb rzeczywistych dodatnich ich średnia arytmetyczna jest mniejsza niż średnia geometryczna, (l) liczba z jest największym wspólnym dzielnikiem liczb x i y, (m) każde dwie liczby naturalne mają najmniejszą wspólną wielokrotność, (n) istnieje dokładnie jedna nieparzysta liczba naturalna. 24. Czy zdania z poprzedniego zadania są prawdziwe? Odpowiedź uzasadnij. 25. Zaprzecz zdaniom z zadania Przedstawgraficzniezbiór{(x,y) R 2 :ϕ(x,y)}jeśliϕ(x,y)toformuła x<y,x y,x y<1, x y 1, x+y <1,x y 1 x y=1. DZIAŁANIA UOGÓLNIONE 27.Znajdź n=1 A n oraz n=1 A n jeśli (a)a n ={x R:x n}, (b)a n ={x R: n<x 1 n }, (c)a n ={x R: 1 n x n}, (d)a n ={x R:1 1 n <x<3 1 n }, (e)a n ={x R:n<x n+1}, (f)a n ={x R:n 2 <x<n+10}, (g)a n ={x R:( 1) n <x<2+ ( 1)n n }. 28.Znajdź {A t :t R}oraz {A t :t R}jeśli (a)a t ={(x,y) R 2 :y=t x}, (b)a t ={(x,y) R 2 :x 2 +y 2 t 2 }. 29. Wyznacz sumę oraz przekrój pustej rodziny podzbiorów zbioru R. 30. Udowodnij następujące własności działań uogólnionych: (a)( t TA t ) c = t TA c t, (b)( t TA t ) c = t TA c t, (c) t T(A t B t )=( t TA t ) ( t TB t ), (d) t T(A t B t )=( t TA t ) ( t TB t ), (e) t T(A t B t ) ( t TA t ) ( t TB t ), (f) t T(A t B t ) ( t TA t ) ( t TB t ). W podpunktach(e) i(f) pokaż, że inkluzji nie można zastąpić równością. 4

5 RELACJE 31. Zbadaj, czy poniższe relacje są zwrotne, przeciwzwrotne, symetryczne, słabo antysymetryczne, antysymetryczne, przechodnie, spójne: (a)xry xjesttejsamejpłcicoy, (b)xry xjestbratemy, (c)xry x<y,na R, (d)xry x y,na R, (e)xry x y,na N, (f)xry x y,na Z, (g)xry x y,nap(ω), (h)xry x y=,nap(ω), (i)xry 2 x+y,na N, (j)xry x < y,na R, (k)xry x+y 2,na R. 32.CzykażdąrelacjęRnaXmożnarozszerzyćdorelacji(a)zwrotnejna X,(b) przeciwzwrotnej na X,(c) symetrycznej na X,(d) słabo antysymetrycznejnax,(e)antysymetrycznejnax,(f)przechodniejnax,(g) spójnej na X? 33. Podaj przykład relacji która (a) jest zwrotna, symetryczna i nie jest przechodnia, (b) jest zwrotna, słabo antysymetryczna i nie jest przechodnia, (c) jest symetryczna, przechodnia i nie jest zwrotna, (d) jest słabo antysymetryczna, przechodnia i nie jest zwrotna. 34. Ilenazbiorzen-elementowymjestrelacji(a)zwrotnych,(b)symetrycznych,(c) zwrotnych i symetrycznych,(d) antysymetrycznych,(e) słabo antysymetrycznych? FUNKCJE 35.Niechf: N 2 Nbędziefunkcjąokreślonąwzoremf(n,k)=nk. (a) Czy f jest różnowartościowa? (b)czyfjest na? (c)znajdźf[{2,4} {1,2,3,4,5,6,7,8,9,10}]. (d)znajdźf[{2} {2 n :n N}]. (e)znajdźf 1 [{4,5}]. 5

6 36.Niechf: R 2 R 2 będziefunkcjąowzorzef(x,y)=(x+y,x y). (a) Czy f jest różnowartościowa? (b)czyfjest na? (c)znajdźf[r {0}]. (d)znajdźf 1 [{(1,1)}]. (e)znajdźf[l]orazf 1 [L],gdzieLjestprostąorównaniuy=x Niechf(x)= x+1,g(x)=3x 6,h(x)= x 2.Napiszwzoryzłożeń (a)h g f,(b)f g h,(c)g f f f,(d)h g f g g,(e)f g f h h. 38.Niechf:X YorazA,A 1,A 2 XiB,B 1,B 2 Y.Pokaż,że (a)f[a 1 A 2 ]=f[a 1 ] f[a 2 ], (b)f[a 1 A 2 ] f[a 1 ] f[a 2 ], (c)f[a 1 \A 2 ] f[a 1 ]\f[a 2 ], (d)f 1 [B 1 B 2 ]=f 1 [B 1 ] f 1 [B 2 ], (e)f 1 [B 1 B 2 ]=f 1 [B 1 ] f 1 [B 2 ], (f)f 1 [B 1 \B 2 ]=f 1 [B 1 ]\f 1 [B 2 ], (g) A f 1 [f[a]], (h) B f[f 1 [B]]. 39. Znajdź przykłady pokazujące, że zawierania w podpunktach poprzedniego zadania nie można zastąpić równością. 40. Pokaż,żejeślif:X Y,g:Y Zsąfunkcjamitakimi,żeg f jest różnowartościowa, a f jest na, to g jest funkcją różnowartościową. Czy założenie, że f jest na jest istotne? 41. Pokaż,żefjestfunkcjąróżnowartościowąwtedyitylkowtedy,gdy f[a B]=f[A] f[b]dladowolnychzbiorówaib. RÓWNOWAŻNOŚCI 42. Pokaż, że jest relacją równoważności na zbiorze Z, jeśli (a)n k 3 n+2k, (b)n k 5 n 2 k Pokaż, że jest relacją równoważności na X oraz wyznacz przestrzeń ilorazowąx/,jeśli (a)(n,k) (n,k ) max{n,k}=max{n,k },X={0,1,2,3,4} 2, (b)x y ( α>0)(α x=y),x= R, (c)u v ( α 0)(α u=v),x= R 2. 6

7 44. Ile jest relacji równoważności na zbiorze{1, 2, 3}? 45. Podaj przykład relacji równoważności na N, która ma jedną 1-elementową, dwie 2009-elementowe i dwie nieskończone klasy abstrakcji. PORZĄDKI 46. Podaj za pomocą diagramów Hassego przykłady częściowych porządków wktórych (a) są dwa 3-elementowe łańcuchy i jeden 3-elementowy antyłańcuch, (b) jest element najmniejszy, są dokładnie dwa elementy maksymalne oraz 4-elementowy łańcuch i 3-elementowy antyłańcuch, (c) jest nieskończony łańcuch i nieskończony antyłańcuch, (d) jest dokładnie jeden element minimalny i nie ma elementu najmniejszego. 47.Wskażwporządku(P(N)\{ }, )elementywyróżnione. 48.Pokaż,że(N\{0}, ),(N\{0,1}, )sączęściowymiporządkami.znajdź w każdym z nich elementy wyróżnione, o ile takie elementy istnieją. 49. Pokaż, że jeśli w częściowym porządku istnieje element największy, to jest on jedynym elementem największym. Pokaż, że element największy jest jednocześnie maksymalny. 50. Pokaż, że jeśli X jest zbiorem skończonym, to w częściowym porządku (X, ) istnieje co najmniej jeden element maksymalny. 51. Pokaż, że jeśli X jest zbiorem skończonym i w częściowym porządku (X, ) istnieje dokładnie jeden element maksymalny, to jest on elementem największym. Czy założenie skończoności zbioru X jest istotne? 52. Pokaż,żejeśliRiSsąrelacjamiczęściowoporządkującymi,toR S też jest relacją częściowo porządkującą. Czy wtedy R S też jest relacją częściowo porządkującą? 53.Pokaż,żejeśli liniowoporządkujeskończonyzbiórx,to dobrze porządkuje X. Podaj przykład pokazujący, że założenie skończoności zbioru X jest istotne. 7

8 TEORIA MOCY 54.Pokaż,wskazującodpowiedniąbijekcję,że(a)(0,1) (1,4),(b)(0, ) R,(c)( 1,1) R,(d) Z N,(e) [0, ) (0, ). 55. Pokaż,że (a)a B C D,jeśliA C,B D,A B= ic D=, (b)a B C D,jeśliA CiB D, (c)p(a) P(B),jeśliA B, (d)p(a) {0,1} A. 56. Jakiej mocy jest zbiór punktów płaszczyzny o obu współrzędnych wymiernych? 57. Pokaż, że R\ Q jest zbiorem nieprzeliczalnym. 58. Pokaż,że R\Q =c. 59. Pokaż, że dowolna rodzina parami rozłącznych niezdegenerowanych(tzn. niepustych i niejednoelementowych) przedziałów na prostej jest przeliczalna. 60. Czy zbiór, którego każdy właściwy podzbiór jest przeliczalny, sam jest przeliczalny? 61.CzyistniejezbiórXtaki,że P(X) =ℵ 0? 62. Czyrozważanawdowodziefaktu(0,1) (0,1) (0,1)funkcjajestna zbiór(0, 1)? 63. Pokaż, że (a) {X N: X <ℵ 0 } =ℵ 0, (b) {X Z: X N <ℵ 0 } =c, (c) {X R: X <ℵ 0 } =c. 64. Pokaż,że(a)ℵ ℵ 0 0 = c,(b) c ℵ 0 = c,(c) c+c=c,(d)ℵ 0 +c=c,(e) ℵ 0 c=c,(f) c c > c. 65. Jakajestmoczbioruwszystkichciągówliczbrzeczywistychzbieżnychdo zera? A moc zbioru wszystkich ciągów liczb całkowitych zbieżnych do zera? 8

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funktory logiczne

1 Rachunek zdań, podstawowe funktory logiczne 1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funk tory logiczne

1 Rachunek zdań, podstawowe funk tory logiczne 1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Wstęp do matematyki listy zadań

Wstęp do matematyki listy zadań Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

Elementy rachunku zdań i algebry zbiorów

Elementy rachunku zdań i algebry zbiorów Rozdział 1. Elementy rachunku zdań i algebry zbiorów 1.1. Zdania Przez α, β będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Logika, teoria zbiorów i wartość bezwzględna

Logika, teoria zbiorów i wartość bezwzględna Logika, teoria zbiorów i wartość bezwzględna Zadanie 1 Które z podanych wyrażeń są zdaniami logicznymi? a) Na Księżycu żyją istoty rozumne. b) Janek idzie do szkoły. c)wroku2000wpolscebędzie 50mln.mieszkańców.

Bardziej szczegółowo

Lista zadań - Relacje

Lista zadań - Relacje MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,

Bardziej szczegółowo

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą.

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. ELiTM 0 Indukcja Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. Zasada indukcji Jeżeli (1) istnieje n 0 N takie że T (n 0 ) jest prawdziwe; (2) z faktu, że T (n) jest

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

Teoria miary. Matematyka, rok II. Wykład 1

Teoria miary. Matematyka, rok II. Wykład 1 Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Wstęp do Logiki i Struktur Formalnych Lista zadań

Wstęp do Logiki i Struktur Formalnych Lista zadań Wstęp do Logiki i Struktur Formalnych Lista zadań Jacek Cichoń Politechnika Wrocławska, WPPT Wrocław 2018 G1: Rachunek Zdań Które z następujących zdania są tautologiami: 1. (p (q r)) ((p q) (p r) 2. ((p

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Lista 0 - Okolice rachunku zdań

Lista 0 - Okolice rachunku zdań Lista 0 - Okolice rachunku zdań 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400. Niech p oznacza

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przez p, q będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną 0, gdy jest fałszywe. Oznaczmy wartość

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27 Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,

Bardziej szczegółowo

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y) Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu

Bardziej szczegółowo

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

1 Funktory i kwantyfikatory

1 Funktory i kwantyfikatory Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt,

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Lista 1 - Rachunek zdań i reguły wnioskowania

Lista 1 - Rachunek zdań i reguły wnioskowania Lista 1 - Rachunek zdań i reguły wnioskowania 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400.

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

Lista 1 - Rachunek zdań i reguły wnioskowania

Lista 1 - Rachunek zdań i reguły wnioskowania Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. 1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,

Bardziej szczegółowo

Strona główna. Strona tytułowa. Spis treści. Strona 1 z 403. Powrót. Full Screen. Zamknij. Koniec

Strona główna. Strona tytułowa. Spis treści. Strona 1 z 403. Powrót. Full Screen. Zamknij. Koniec Strona z 403 Przedmowa Do wydania pierwszego Podręcznik przeznaczony jest dla studentów pierwszego roku studiów w Szkole Głównej Handlowej. Składa się dziesięciu rozdziałów zawierających teorię (definicje,

Bardziej szczegółowo

Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Relacje i relacje równoważności Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Zbiór i iloczyn kartezjański Pojęcie zbioru Zbiór jest

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Relacje. Relacje / strona 1 z 18

Relacje. Relacje / strona 1 z 18 Relacje Relacje / strona 1 z 18 Relacje (para uporządkowana, iloczyn kartezjański) Definicja R.1. Parą uporządkowaną (x,y) nazywamy zbiór {{x},{x,y}}. Uwaga: (Ala, Ola) (Ola, Ala) Definicja R.2. (n-tka

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo