Nierówność Clausiusa; pierwszy krok do entropii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nierówność Clausiusa; pierwszy krok do entropii"

Transkrypt

1 Wykła 3 Nierówność Clausiusa; pierwszy krok o entropii Nierówność Clausiusa jako test zoności obieu z II zasaą termoynamiki Entropia; efinicja Entropia w przemianie nieowracalnej; po raz pierwszy Entropia w procesie rozpręŝania swoboneo i owracalneo rozpręŝania izotermiczneo azu oskonałeo Entropia w ujęciu statystycznym Zmiany entropii azu oskonałeo poczas owolnej przemiany w ukłazie zamkniętym Zmiany entropii azu półoskonałeo poczas owolnej przemiany w ukłazie zamkniętym Zmiany entropii la cieczy i ciała stałeo Czy entropia moŝe maleć?

2 Nierówność Clausiusa; pierwszy krok o entropii okaŝemy, Ŝe la wszystkich obieów zamkniętych obowiązuje następująca nierówność/równość, nazywana nierównością Clausiusa: KaŜy obie owracalny moŝna zastąpić pewną liczbą obieów Carnota Rozpatrzymy zatem wszystkie owracalne obiei Carnota; prawo- i lewobieŝne (silniki cieplne i chłoziarki) plus wszystkie obiei nieowracalne Owracalny silnik cieplny z I zasay: W a więc z II zasay: W η

3 3 Obliczymy la owracalneo silnika cieplneo: objętość właściwa v, m 3 /k ciśnienie, ka 3 4 izotermy aiabaty zie skorzystaliśmy z: > Dla wszystkich owracalnych silników cieplnych: la a la wszystkich. Mamy zatem: Obie Carnota, az oskonały

4 Dla silnika nieowracalneo pracująceo pomięzy i pobierająceo : W ' < W (wielkości primowane otyczą silnika nieowracalneo) W a poniewaŝ: la obieu owracalneo i nieowracalneo musi zachozić: ' < a zatem: ' > osumowując, la silnika nieowracalneo: ' ' ; > < Jenak la ustalonych, i, y rośnie nieowracalność, czyli W' i ' mamy: ; ' < 4

5 ak więc, la wszystkich silników nieowracalnych: ; < a la wszystkich silników owracalnych i nieowracalnych: ; 5

6 6 W Owracalna chłoziarka z I zasay: W + a więc > (la, ) z II zasay: Dla wszystkich owracalnych chłoziarek (obieów lewobieŝnych):

7 Dla chłoziarki nieowracalnej pracującej pomięzy i pobierającej : W ' > W a poniewaŝ: W la obieu owracalneo i nieowracalneo musi zachozić: ' > co oznacza, Ŝe: ' > ak więc la chłoziarki nieowracalnej: ' + < ; ' + < Jenak, la ustalonych, i, y nieowracalność maleje, W' W i ' i: ; < + < ' 7

8 Dla ustalonych, i, y nieowracalność rośnie, W' i ' i: < ; ' + < < ; Dla wszystkich chłoziarek nieowracalnych: < a la wszystkich chłoziarek owracalnych i nieowracalnych: ; Dla wszystkich moŝliwych obieów zachozi przy czym równość zachozi la obieów owracalnych. Uowoniliśmy nierówność Clausiusa 8

9 Nierówność Clausiusa jako test zoności obieu z II zasaą termoynamiki rzykła Lokalizacja x Ma URBINA ciepło KOCIOŁ SKRALACZ OMA 3 praca ciepło oniewaŝ transfer ciepła jest izotermiczny: h m h 3 ( ) 3( 4) h 4 h m +.89 m kj/k<

10 Entropia; efinicja Definicja entropii jest oparta na II zasazie termoynamiki, tzn. nierówności Clausiusa: Dla obieu owracalneo nierówność Clausiusa staje się równością: rocesy: a są owracalne c b, a a + c a + b a, b, c... b, c b Oejmując stronami: a c b c

11 Wniosek: nie zaleŝy o wyboru roi pomięzy stanami i. ZaleŜy jenak o stanów i, zatem musi być róŝnicą wóch liczb określonych la stanów i (i innych) zatem musi być funkcją stanu. Definicja entropii Mamy więc: S S lub: owr S owr po warunkiem, Ŝe proces prowazący o stanu o jest owracalny. Funkcję stanu S nazywamy entropią. Dowolna funkcja stanu moŝe być takŝe parametrem termoynamicznym ukłau (jeśli taki bęzie nasz wybór). Entropia moŝe być zatem parametrem ukłau, który wraz z innym parametrem (np.,, v, x, u, h) określa stan ukłau. Entropia ukłau o któreo ostarczamy ciepło, rośnie, a entropia ukłau, który oaje ciepło, maleje.

12 Entropia w przemianie nieowracalnej, po raz pierwszy (bęzie więcej) Dla przemiany nieowracalnej pomięzy stanami i : ( S S) nieowr jakaś owr zatem Ŝeby wyliczyć zmianę entropii la przemiany nieowracalnej w ukłazie zamkniętym, zastępujemy przemianę nieowracalną przemianą owracalną pomięzy tymi samymi stanami i i wyliczamy całkę: Jeśli owracalna przemiana jest izotermiczna: owr S S S S śr S S Jeśli zmiana temperatury jest nieuŝa i nie umiemy wyliczyć całki, moŝna skorzystać z przybliŝenia:

13 Entropia w procesie rozpręŝania swoboneo próŝnia Swobone rozpręŝanie jest przemianą nieowracalną; az nie zromazi się samorzutnie w lewym zbiorniku stan Choć stan początkowy,, oraz końcowy,, są stanami równowai, stany pośrenie nie są stanami równowai. Nie jest moŝliwe owrócenie przemiany. Entropia wyznacza kierunek przemiany nieowracalnej. W przemianie nieowracalnej entropia ukłau zamknięteo zawsze rośnie. stan Dla azu oskonałeo:,, / Równość temperatur potwierzona w oświaczenia Joule a - homsona By wyliczyć entropię la rozpręŝania swoboneo wykorzystamy fakt, Ŝe stan i moą być stanami owracalnej przemiany izotermicznej. 3

14 i owracalneo rozpręŝania izotermiczneo azu oskonałeo zmienne obciąŝenie S S S Z I zasay la przemiany izotermicznej: U W W 3 K reulowany rzejnik S nr nr ln nr Nk ln zie R to uniwersalna stała azowa [kj/kmol K]. Dla : S S S nr ln Nk ln okaŝemy, Ŝe taki sam wynik ostaniemy la statystycznej interpretacji entropii. 4

15 Entropia w ujęciu statystycznym mikrostan konfiuracji (4,) mikrostan konfiuracji (3,3) Statystyczne poejście o problemu rozkłau liczby cząsteczek azu w wóch połówkach izolowaneo zbiornika pozwala na inne poejście o problemu zmiany entropii w procesie rozpręŝania swoboneo. oniewaŝ cząsteczki są ientyczne, obie połówki zbiornika są jenakowe, prawopoobieństwo znalezienia owolnej cząsteczki w kaŝej z nich jest takie samo. Konfiuracja wielokrotność obliczenie W prawopoobieństwo ozn. n n I 6 6!/(6!.!),56 II 5 6 6!/(5!.!),938 III 4 5 6!/(4!.!),34 I 3 3 6!/(3!. 3!), Łączna liczba mikrostanów 64, wszystkie mikrostany są tak samo prawopoobne. Liczba mikrostanów opowiaających anej konfiuracji to W wielokrotność tej konfiuracji W. n! n! N! 5

16 Liczba mikrostanów W % rocent cząsteczek azu w lewej połówce Symboliczny wykres liczby mikrostanów w zaleŝności o procentowej zawartości cząsteczek w lewej połowie zbiornika w przypaku barzo uŝej liczby cząsteczek w zbiorniku. Niemal wszystkie mikrostany opowiaają w przybliŝeniu równemu rozkłaowi liczby cząsteczek azu pomięzy woma połówkami zbiornika. Wzór Boltzmanna na entropię Sk ln W Entropia aneo stanu to k ln z liczby mikrostanów (wielokrotności) konfiuracji opowiaającej anemu stanowi. Stan termoynamiczny o uŝej liczbie równowaŝnych mikrostanów bęzie stanem o wysokiej entropii Samorzutne procesy w ukłazie prowaza zawsze o wzrostu jeo entropii Wzór Stirlina: ln N! ( ) N N ln N 6

17 rzykła mikrostan konfiuracji (4,) mikrostan konfiuracji (3,3) Wyobraźmy sobie, Ŝe w zbiorniku znajuje się nierozróŝnialnych cząsteczek. Ile mikrostanów opowiaa konfiuracji n 5 i n 5? A ile konfiuracji n i n? Zinterpretuj uzyskane wyniki w oniesieniu o prawopoobieństwa wystąpienia obywu konfiuracji. W ( 5,5) N! n!n!! 5! 5! N! n!n!!! 9, ( 3,4 ) 9,33, 57 (,) W 57! 9,33 ( 5,5), 9 (,) 9 7

18 rzykła okazaliśmy wcześniej, Ŝe kiey n moli azu oskonałeo zwiększa wukrotnie swoją objętość na roze rozpręŝania swoboneo, to wzrost entropii o stanu początkoweo o stanu końcoweo jest równy: S S nr ln Korzystając ze statystycznej interpretacji entropii otrzymamy ten sam wynik: N! S k ln W k ln N!! N! S k ln W k ln N! N Stosując wzór Stirlina otrzymujemy: Nk ln ( ) ( )! S S k k N ln N N kn ln N ln ( ln N! k ln( N )!) N N ln N N k ln Nk ln nr ln 8

19 Zmiany entropii azu oskonałeo poczas owolnej przemiany w ukłazie zamkniętym Wybieramy stan początkowy ( i ) i ( i ). rzyjmujemy i i nie precyzujemy roi czyli przemiana jest owolna (ale quasistatyczna czyli owracalna). Z pierwszej zasay termoynamiki: U -W; U+ W. praca w ukłazie zamkniętym Dla azu oskonałeo: U nc ; W nr, co aje: nc + nr, a po pozieleniu przez otrzymujemy: S nc + nr. o scałkowaniu o stanu początkoweo o stanu końcoweo mamy: S S nc nr nc ln + + nr ln. S S S nc ln + nr ln niezaleŝnie o przemiany azu oskonałeo prowazącej z o. 9

20 Zmiany entropii azu półoskonałeo poczas owolnej przemiany w ukłazie zamkniętym RóŜnica pojawi się przy całkowaniu wyraŝenia: S nc + C ( ) ( ) C S S n + nr n + nr ln nr. Gyby C nie zaleŝało o moŝna byłoby je wynieść prze całkę i otrzymalibyśmy wyraŝenie na zmianę entropię la azu oskonałeo. Dla azu półoskonałeo naleŝy obliczyć całkę: C C Jenak najczęściej oblicza się (i tablicuje): co sueruje zamianę C na C i takŝe, jak zobaczymy, na. Zamiana C na C : S nc + nr n ( C R) + nr co po rozpisaniu aje: S nc nr

21 By uprościć rui wyraz (zastąpić przez ) wykorzystujemy równanie stanu azu oskonałeo (i półoskonałeo):. nr o zróŝniczkowaniu: + nr i po pozieleniu prawej strony przez nr i lewej przez otrzymamy: + co po postawieniu o: S nc nr aje: S nc nr zie parametry stanu to i. o scałkowaniu o stanu początkoweo o stanu końcoweo otrzymamy: S ( ) S( ) n nr n + n nr ln C C C n ( ) s s nr ln zie całka: s C jest stablicowaną funkcją jenej zmiennej (zobacz la powietrza abelę A.7, SBvW, la ciśnienia, Ma). Dla inneo ciśnienia RZEBA uwzlęnić poprawkę.

22 Zmiany entropii la cieczy i ciała stałeo RozwaŜamy infinitezymalną zmianę stanu substancji nieściśliwej w trakcie przemiany owracalnej. Z I zasay termoynamiki: q u+ v u yŝ zmiany objętości właściwej la cieczy i ciała stałeo są nieuŝe. q to ciepło ostarczone w trakcie przemiany owracalnej (na k substancji): qc zie C to ciepło właściwe anej substancji: a więc: s u C C C q Z II zasay termoynamiki la przemiany owracalnej: s, Jeśli ciepło właściwe nie zaleŝy o temperatury: Jeśli zaleŝy, to: ( ) C s s s s C. C ln

23 Czy entropia moŝe maleć? (moŝe, ale nie w ukłazie izolowanym) okazaliśmy, Ŝe la izotermiczneo owracalneo rozpręŝania azu oskonałeo entropia rośnie: S Nk ln >. yŝ > i > Oznacza to jenak, Ŝe la przemiany owrotnej, czyli izotermiczneo owracalneo spręŝania, entropia bęzie maleć (wynika to z nierówności/równości Clausiusa la obieu zamknięteo, ale i wprost z rachunku la takiej przemiany; przecieŝ ukła oaje ciepło): S Nk ln <. Entropia zawsze rośnie la przemiany nieowracalnej w ukłazie izolowanym. utaj ukła nie jest izolowany (jest wymiana ciepła ze zbiornikiem ciepła) i przemiana jest owracalna. 3

24 Jeśli potraktujemy az i zbiornik ciepła jako wie części większeo ukłau izolowaneo, to entropia całeo ukłau bęzie równa zeru la owracalneo rozpręŝania izotermiczneo: az S S S zb az + zb az zb yŝ az >, az zb i temperatury az i zb róŝnią się infinitezymalnie, az zb Dla owracalneo spręŝania izotermiczneo, z tych samych powoów: S S az + S zb Entropia ukłau izolowaneo niy nie maleje az az + zb zb Entropia ukłau izolowaneo nie zmienia się w przemianie owracalnej. Gy zachozi przemiana nieowracalna, w ukłazie enerowana jest oatkowa entropia. Zatem zmiana entropii ukłau izolowaneo w wyniku zachozącej w nim przemiany nieowracalnej nie bilansuje się o zera, lecz bęzie oatnia (entropia ukłau izolowaneo rośnie w wyniku przemiany nieowracalnej). Entropia jest miarą nieowracalności procesów zachozących w ukłazie 4

25 Drua zasaa termoynamiki S Entropia w ukłazie izolowanym niy nie maleje Jest to jeszcze jeno sformułowanie II zasay termoynamiki Sformułowanie Kelvina lancka Sformułowanie Clausiusa Nierówność Clausiusa 5

26 Sprawzian Woa jest orzewana za pomocą kuchenki. Uszereuj o największej o najmniejszej zmiany entropii woy w następujących przeziałach temperatury: a) o C o 3 C, b) o 3 C o 35 C i c) o 8 C o 85 C. a, Sprawzian ciśnienie, b, objętość Gaz oskonały w stanie początkowym ma temperaturę. W stanach końcowych a i b, które az moŝe osiąnąć w wyniku przemian zaznaczonych na wykresie, jeo temperatura jest większa niŝ w stanie początkowym. Czy zmiana entropii w przemianie prowazącej ze stanu o stanu a jest większa, taka sama, czy mniejsza niŝ w przemianie prowazącej o stanu b? 6

Termodynamika Techniczna dla MWT, Rozdział 13. AJ Wojtowicz IF UMK Nierówność Clausiusa jako test zgodności obiegu z II zasadą termodynamiki

Termodynamika Techniczna dla MWT, Rozdział 13. AJ Wojtowicz IF UMK Nierówność Clausiusa jako test zgodności obiegu z II zasadą termodynamiki ermoynamika echniczna la MW, Rozział 3. AJ Wojtowicz IF UMK Rozział 3. Entropia.. Nierówność Clausiusa; pierwszy krok o entropii... Nierówność Clausiusa jako test zoności obieu z II zasaą termoynamiki..

Bardziej szczegółowo

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota Wykła Silnik Carnota z azem oskonałym Sprawność silnika Carnota z azem oskonałym Współczynnik wyajności chłoziarki i pompy cieplnej Carnota z azem oskonałym RównowaŜność skali temperatury termoynamicznej

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, Rozdział 12. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, Rozdział 12. AJ Wojtowicz IF UMK ermoynamika echniczna la MW, Rozział. AJ Wojtowicz IF UMK Rozział. Siik Carnota z azem oskonałym.. Sprawność siika Carnota z azem oskonałym.. Współczynnik wyajności chłoziarki i pompy ciepej Carnota z

Bardziej szczegółowo

Wykład 10 I zasada termodynamiki; perpetuum mobile I rodzaju Układy i procesy zgodne z I zasadą ale niezachodzące ( praca z ciepła i ciepło z zimna )

Wykład 10 I zasada termodynamiki; perpetuum mobile I rodzaju Układy i procesy zgodne z I zasadą ale niezachodzące ( praca z ciepła i ciepło z zimna ) ykła 10 I zasaa termoynamiki; perpetuum mobile I rozaju Ukłay i procesy zone z I zasaą ale niezachozące ( praca z ciepła i ciepło z zimna ) Silniki cieplne, chłoziarki i pompy cieplne II zasaa termoynamiki

Bardziej szczegółowo

Wykład 11 Procesy odwracalne i nieodwracalne Przyczyny nieodwracalności procesów; tarcie, rozpręŝanie swobodne, transfer ciepła przy skończonej

Wykład 11 Procesy odwracalne i nieodwracalne Przyczyny nieodwracalności procesów; tarcie, rozpręŝanie swobodne, transfer ciepła przy skończonej ykła Procesy owracalne i nieowracalne Przyczyny nieowracalności procesów; tarcie, rozpręŝanie swobone, transer ciepła przy skończonej róŝnicy temperatur, mieszanie wóch róŝnych substancji Nieowracalność

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, Rozdział 10. AJ Wojtowicz IF UMK Układy i procesy zgodne z I zasadą termodynamiki ale niezachodzące

Termodynamika Techniczna dla MWT, Rozdział 10. AJ Wojtowicz IF UMK Układy i procesy zgodne z I zasadą termodynamiki ale niezachodzące Rozział 10 1. II zasaa termoynamiki 1.1. I zasaa termoynamiki; perpetuum mobile I rozaju 1.2. Ukłay i procesy zone z I zasaą termoynamiki ale niezachozące 1.3. Silniki cieplne, chłoziarki i pompy cieplne

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie pompy ciepła - 1 -

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie pompy ciepła - 1 - Katera Silników Spalinowych i Pojazów ATH ZAKŁAD TERMODYNAMIKI Baanie pompy - - Wstęp teoretyczny Pompa jest urzązeniem eneretycznym, które realizuje przepływ w kierunku wzrostu temperatury. Pobiera ciepło

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK Wykład 7. Entalpia układu termodynamicznego.. Entalpia; odwracalne izobaryczne rozpręŝanie gazu.2. Entalpia; adiabatyczne dławienie gazu dla przepływu ustalonego.3. Entalpia; nieodwracalne napełnianie

Bardziej szczegółowo

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077 . Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

Ciepła tworzenia i spalania (3)

Ciepła tworzenia i spalania (3) Ciepła tworzenia i spalania (3) Standardowa entalpia tworzenia jest standardową entalpią związku 0 0 H = H Dla pierwiastków: Dla związków: H H 98 tw,98 0 tw, = C p ( ) d 98 0 0 tw, = Htw,98 + C p ( ) 98

Bardziej szczegółowo

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian).

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian). Nowe zadania z termodynamiki. 06.0.00. Zadanie. 0/8, moli gazu azotu (traktować jako gaz doskonały), znajdującego się początkowo (stan ) w warunkach T =00K, =0 a, przechodzi następującą serię przemian

Bardziej szczegółowo

Substancja, masa, energia

Substancja, masa, energia Sbst energ 0ZT Sbstancja, masa, energia Miarą ilości sbstancji jest liczba atomów i cząsteczek, z których skłaa się sbstancja. W procesie fizycznym ilość sbstancji jest niezależna o jej energii. Masa sbstancji

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Absolutna skala temperatur.

Absolutna skala temperatur. Wykład z fizyki, Piotr Posmykiewicz 88 Absolutna skala temperatur. W wykładzie XII skala temperatur dla gazu doskonałego została zdefiniowana za pomocą własności gazów posiadających małą gęstość. PoniewaŜ

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK Wykład 4. Gazy.. Gaz doskonały, półdoskonały i rzeczywisty.. Równanie stanu gazu doskonałego; uniwersalna stała gazowa.3. RównowaŜne sformułowania równania stanu gazu doskonałego; stała gazowa.4. Odstępstwa

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Barbara Siemek Zakład Fizyki, Uniwersytet Rolniczy im.h.kołłątaja w Krakowie ĆWICZENIE 14 WYZNACZANIE CIEPŁA TOPNIENIA LODU. Kraków, 2016 r.

Barbara Siemek Zakład Fizyki, Uniwersytet Rolniczy im.h.kołłątaja w Krakowie ĆWICZENIE 14 WYZNACZANIE CIEPŁA TOPNIENIA LODU. Kraków, 2016 r. Barbara Siemek Zakła Fizyki, Uniwersytet Rolniczy im.h.kołłątaja w Krakowie ĆWICZENIE 14 WYZNACZANIE CIEPŁA TOPNIENIA LODU Kraków, 016 r. Do użytku wewnętrznego SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA... 1. UKŁADY

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Obiegi termodynamiczne

Obiegi termodynamiczne Obiegi termo / Obiegi termoynamiczne. nformacje ogólne Obiegiem termoynamicznym nazyamy zespół kolejnych przemian termoynamicznych, yających się kłazie zamkniętym lb zespole maszyn (trbiny, sprężarki,

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

BARBARA SIEMEK. ZAKŁAD FIZYKI, UNIWERSYTET ROLNICZY im.h.kołłątaja W KRAKOWIE. Ćwiczenie 15

BARBARA SIEMEK. ZAKŁAD FIZYKI, UNIWERSYTET ROLNICZY im.h.kołłątaja W KRAKOWIE. Ćwiczenie 15 BARBARA SIEMEK ZAKŁAD FIZYKI, UNIWERSYE ROLNICZY im.h.kołłąaja W KRAKOWIE Do użytu wewnętrznego Ćwiczenie 5 WYZNACZANIE ZMIANY ENROPII UKŁADU W PROCESIE OPNIENIA LODU Kraów, 06r. SPIS REŚCI I. CZĘŚĆ EOREYCZNA....

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM I. Cel ćwiczenia: pomiar współczynnika przewoności cieplnej aluminium. II. Przyrząy: III. Literatura: zestaw oświaczalny złożony z izolowanego aluminiowego

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

PODSTAWY TERMODYNAMIKI

PODSTAWY TERMODYNAMIKI ODAWY ERMODYNAMIKI ( punkty (OŚ_3--7 Zad.. W zbiorniku zamkniętym tłokiem znajduje się moli metanu, który można z powodzeniem potraktować jako az doskonały. emperatura początkowa metanu wynosi 5 C a ciśnienie

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, Rozdział 11. AJ Wojtowicz IF UMK Powiązanie termodynamicznej skali temperatury ze skalą Celsjusza

Termodynamika Techniczna dla MWT, Rozdział 11. AJ Wojtowicz IF UMK Powiązanie termodynamicznej skali temperatury ze skalą Celsjusza ermodynamika echniczna dla MW, Rozdział. AJ Wojtowicz IF UMK Rozdział. Procesy odwracalne i nieodwracalne.. Nieodwracalność procesów termodynamicznych... arcie... RozpręŜanie swobodne... ranser ciepła

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.

Bardziej szczegółowo

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Badanie zależności temperatury wrzenia wody od ciśnienia

Badanie zależności temperatury wrzenia wody od ciśnienia Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Zasady Termodynamiki

Zasady Termodynamiki Zasady Termodynamiki I-sza zasada termodynamiki: - bilans energii w procesie przejścia układu ze stanu A do stanu B - identyfikacja kanałów przekazu B A W oparciu o I-szą zasadę wiemy, Ŝe Przekaz moŝe

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

P o l i t e c h n i k a Ś l ą s k a W y d z i a ł C h e m i c z n y Katedra Chemii, Technologii Nieorganicznej i Paliw

P o l i t e c h n i k a Ś l ą s k a W y d z i a ł C h e m i c z n y Katedra Chemii, Technologii Nieorganicznej i Paliw P o l i t e c h n i k a Ś l ą s k a W y z i a ł C h e m i c z n y Katera Chemii, Technoloii Nieoranicznej i Paliw A N A L I Z A P R Z E M Y S Ł O W A Instrukcje o ćwiczeń A N A L I Z A S I T O W A Oznaczanie

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

Pierwsza i druga zasada termodynamiki.

Pierwsza i druga zasada termodynamiki. Pierwsza i druga zasada termodynamiki. Jaki jest sens fizyczny tego równania? E= W Zmiana energii ciała równa jest pracy wykonanej nad tym ciałem przez siły zewnętrzne lub przez to ciało. Kiedy praca jest

Bardziej szczegółowo

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który : WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

KRYTYCZNA LICZBA REYNOLDSA

KRYTYCZNA LICZBA REYNOLDSA LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 4 KRYTYCZNA LICZBA REYNOLDSA 1. Cel ćwiczenia Celem ćwiczenia jest jakościowa obserwacja zjawisk zachozących przy przechozeniu przepływu laminarneo w turbulentny

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

lim = lim lim Pochodne i róŝniczki funkcji jednej zmiennej.

lim = lim lim Pochodne i róŝniczki funkcji jednej zmiennej. Niniejsze opracowanie ma na celu przybliŝyć matematykę (analizę matematyczną) i stworzyć z niej narzędzie do rozwiązywania zagadnień z fizyki. Definicje typowo matematyczne będą stosowane tylko wtedy gdy

Bardziej szczegółowo