Wykład Temperatura termodynamiczna 6.4 Nierówno

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład Temperatura termodynamiczna 6.4 Nierówno"

Transkrypt

1 ykład emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu doskonałego 6.9 Energia dostępna i niedostępna 6.0 II zasada termodynamiki dla układu otwartego Reinhard Kulessa

2 Załóżmy, że mamy do dyspozycji dwie dwie odwracalne maszyny cieplne pracujące cyklicznie: A B A B A B ydajność cieplna η t cyklicznej maszyny cieplnej jest zdefiniowana następująco: Reinhard Kulessa

3 energia użyteczna uzyskana praca η t = energia włożona = zużyte ciepło. (6.) rozważanym przypadku będzie to: η (6.3) t = Cykle A i B mogą być skonstruowane różnie. Załóżmy, że wydajność cyklu A jest większa od wydajności cyklu B, oraz że A = B tedy A > B i A < B. Ponieważ obydwie maszyny są odwracalne, maszynę B można odwrócić i połączyć z maszyną A. Uzyskujemy wtedy sytuację jaka jest przedstawiona na następnym rysunku. Reinhard Kulessa 3

4 A B A + B = A - B A B B A idzimy, że otrzymalibyśmy cykl, w którym A - B = B A, jednak narusza sformułowanie Kelvina-Plancka II zasady termodynamiki. Czyli założenie, że η A > η B było niesłuszne. Reinhard Kulessa 4

5 Można więc stwierdzić, że: wszystkie odwracalne maszyny cieplne pracujące pomiędzy tymi samymi temperaturami, mają tą samą wydajność. η t = = = (6.4) Możemy również wyciągnąć wniosek, że / jest funkcją tych temperatur. Mielibyśmy więc zależność: Można pokazać, że, Gdzie F jest pewną nową funkcją. = f (, ) (6.5) F ( ) = (6.6) F ( ) Reinhard Kulessa 5

6 Zależność (6.6) może być spełniona przez wiele funkcji F. Kelvin zaproponował, aby przyjąć najprostszą postać tej funkcji, czyli = (6.7) i równocześnie uznać to równanie za definicję bezwzględnej temperatury termodynamicznej. ydajność odwracalnej maszyny cieplnej pracującej pomiędzy dwoma zbiornikami ciepła o temperaturach N niższej i wyższej, jest dana przez wyrażenie; η t = N (6.8) Reinhard Kulessa 6

7 Maszyna odwracalna Maszyna cykliczna 6.4 Nierówność Clausiusa Z d Z Z C d d Z Rozważmy urządzenie, które pobiera ilość ciepła d Z ze zbiornika o stałej temperaturze Z i transportuje to ciepło do odwracalnej maszyny Z produkującej pracę w ilości d Z. d C Ciepło odrzucone przez maszynę Z zasila cykliczną maszynę C produkującą pracę w ilości d C. Rozważając obydwie maszyny jako jeden system, całkowita praca wykonana jest równa: d =d Z + d C oparciu o wydajność odwracalnego silnika Z, możemy napisać: Reinhard Kulessa 7

8 czyli d' Z d' C = d' Z = d' ( Z Z ) = d' ( Z d' = d' ( + ) = ) d' Równanie to dla pełnego cyklu przyjmuje postać Reinhard Kulessa 8 Z (6.9) d ' d ' = Z. (6.0) Urządzenie pokazane na rysunku nie może wykonać pracy, gdyż proces jest sprzeczny ze sformułowaniem Kelvina - Plancka II zasady termodynamiki. Urządzenie to może pracować tylko z cyklicznym wkładem pracy i cyklicznym przekazywaniem ciepła do zbiornika.

9 Matematycznie oznacza to d ' 0 (6.) gdzie d jest wynikową pracą. Można również napisać, że d ' (6.) 0 a ostatnia nierówność jest nazywana nierównością Clausiusa. Do tej pory nie braliśmy pod uwagę faktu, że silnik C może być odwracalny. Załóżmy, że tak jest, oraz, że d ' < 0 Jeżeli C jest silnikiem odwracalnym, to otrzymujemy, Reinhard Kulessa 9

10 d' > 0 Jest to niemożliwe, gdyż stworzylibyśmy perpetuum mobile II rodzaju. ynika stąd, że dla procesów odwracalnych w równaniu (6.) musi obowiązywać równość, czyli d' ( ) odwr = 0 (6.3) 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii równaniu (6.3) wyrażenie pod całką musi być różniczką zupełną pewnej funkcji stanu. Możemy więc napisać d ' ds = ( ) (6.4) odwr Reinhard Kulessa 0

11 Funkcję S w ostatnim równaniu nazywamy entropią. Równanie to przedstawia makroskopową definicję entropii. Entropia jest zdefiniowana tylko dla procesów odwracalnych, a zmianę wartości entropii można policzyć z zależności; d' (6.5) S = S S = ( ) odwr Rozważmy dwa dowolne punkty stanu naszego układu. Proces Nieodwracalny Cykl=N+O Proces Odwracalny Zgodnie z równaniem (6.) d' d' < 0 Reinhard Kulessa d' = N + Użyliśmy znaku nierówności, gdyż cały cykl jest nieodwracalny. O

12 Reinhard Kulessa iedząc, że ' S S d O = Możemy poprzednie równanie napisać jako; > < + ' lub 0 ' d S S S S d N N ogólnym przypadku możemy napisać; ' d S S (6.6) Znak nierówności jest ważny dla procesów nieodwracalnych, a znak równości dla odwracalnych

13 Dla procesu adiabatycznego d = 0, czyli S S 0. Jeżeli będzie to proces adiabatyczny odwracalny, zmiana entropii będzie równa zero. Proces ten nazywamy procesem izentropowym. Można powiedzieć, że żaden proces rzeczywisty nie jest odwracalny. Gdy proces jest nieodwracalny i adiabatyczny, entropia musi wzrastać. Dla układu izolowanego, 0. (6.7) S izol oparciu o równanie (6.4) możemy znaleźć, że dla odwracalnego procesu izotermicznego odwr izoterm = S (6.8) układzie współrzędnych i S możemy przedstawić adiabatyczny proces odwracalny i nieodwracalny.. Reinhard Kulessa 3

14 Pr. odwracalny adiab. Pr. nieodwr. adiab. Im większy jest wzrost entropii, tym bardziej proces jest nieodwracalny. Powodem mniejszej lub większej nieodwracalności procesów są wszelkiego rodzaju tarcia, tak samo jak mieszanie warzechą w zupie. S S nieodwr.- adiab. 6.6 Entropia dla czystej substancji Pokazaliśmy, że entropia jest własnością układu termodynamicznego i to własnością ekstensywną. Jest taką samą własnością jak energia całkowita, wewnętrzna i entalpia. Można ją liczyć z entropii właściwej. Reinhard Kulessa 4

15 S = m s (6.9) Dla czystych substancji entropia może być stablicowana tak jak entalpia, objętość właściwa, czy inna własność termodynamiczna. Podaje się dwojakiego rodzaju wykresy, zależność temperatury od entropii, czy zależność entalpii od entropii. a ostatnia zależność nazywa się wykresem Moliera. 6.7 Entropia dla gazu doskonałego Opierając się na już wyprowadzonych zależnościach, du dh = = c c V p d d Oraz faktu, że dla procesu odwracalnego d =ds i przyjmując, że gaz idealny jest cieczą ściśliwą możemy napisać: Reinhard Kulessa 5

16 czyli d ' = du + p dv = ds du p ds = + dv. Korzystając z równania gazu doskonałego, mamy p R = v czyli d ds cv + dv R v =. Dla c V = const otrzymujemy na zmianę entropii pomiędzy dwoma stanami gazu idealnego wyrażenie s V + ln s = c ln R (6.0) v Reinhard Kulessa 6 v

17 Równanie to można również napisać inaczej w oparciu o zależności d ' = dh vdp = ds d dp, ds = c p R p jako s p ln s = c ln R (6.) p p Zarówno w równaniu (6.0) i (6.) zmiana entropii jest liczona między dwoma stanami układu termodynamicznego (p,v, ) i (p,v, ). Ponieważ entropia jest funkcja stanu, jej zmiana nie powinna zależeć od procesu. Reinhard Kulessa 7

18 6.8 Cykl Carnota Stwierdziliśmy do tej pory, że wydajności wszystkich cyklów odwracalnych pracujących pomiędzy tymi samymi temperaturami są takie same i dane równaniem (6.8). Przykładem takiego cyklu jest cykl Carnota. p A =const B D N =const N C N N V S S Reinhard Kulessa 8

19 . Odwracalna przemiana izotermiczna z pobraniem ciepła. Odwracalna przemiana adiabatyczna z pracą wykonana przez układ 3. Odwracalna przemiana izotermiczna z oddaniem ciepła 4. Odwracalna przemiana adiabatyczna z praca wykonana na układzie oparciu o diagram -S znajdujemy, = S N = Praca uzyskana jest równa: netto = N =( N S Reinhard Kulessa 9 N ) S Na diagramie -S praca wykonana jest równa powierzchni prostokąta.

20 Zgodnie z podaną we wzorze (6.4) definicją wydajności maszyny cieplnej, otrzymujemy na wydajność cyklu Carnota wartość η t netto N = = ( ) S S = N (6.) Możemy podać ogólne stwierdzenie, że dla każdego cyklu Odwracalnego wypadkowa praca jest równa powierzchni zakreślonej na diagramie -S. 6.9 Energia dostępna i niedostępna Otrzymaliśmy wyrażenie na wydajność cyklicznej maszyny cieplnej operującej w oparciu o dwa zbiorniki ciepła o różnych temperaturach. ydajność ta zależy od najniższej dostępnej temperatury 0, która normalnie jest średnią temperaturą atmosferyczną. Reinhard Kulessa 0

21 Praca jaką możemy uzyskać pobierając ciepło d ze zbiornika o temperaturze jest równa: 0 d ' = ( ) d ' (6.3) Energią dostępną dla danego ukłądu nazywamy część ciepła dodaną do układu, która może zostać zamieniona w pracę przez szereg odwracalnych maszyn pracujących pomiędzy temperaturą układu a 0. max 0 = ( ) d' (6.4) Energia niedostępna jest równa różnicy pomiędzy całkowitym ciepłem dodanym a uzyskaną pracą. Dla przejścia ze stanu do zakładając, że ciepło jest oddane w procesie odwracalnej maszyny, zachodzi; Reinhard Kulessa

22 max max 0 = ( ) d' odwr = = 0 ( S S ) 0 ds Praca niedostępna wynosi więc: nied = ( S ) (6.5) 0 S 6.0 II zasada termodynamiki dla układu otwartego Omawialiśmy I zasadę termodynamiki dla układów otwartych, oraz poznaliśmy metody obliczania bilansów energii i ciepła. Zajmijmy się analizą układu otwartego zawartego w pewnej objętości kontrolnej z punktu widzenia II zasady termodynamiki. Reinhard Kulessa

23 d' dt σ Objętość kontrolna d' dt zewn wlot-input wylot-exit m i e i h i s i m e e e h e s e Ponieważ entropia jest funkcją stanu może być transportowana tak jak entalpia czy energia wewnętrzna.ciepło i praca są dodawane do granicy objętości kontrolnej. Reinhard Kulessa 3

24 Entropia może wnikać do objętości kontrolnej przez transport masy lub ciepła. Entropia wpływająca z transferem ciepła może przenikać do objętości kontrolnej w różnych miejscach o różnej temperaturze i możemy ją zapisać jako: ds dt = pow i d ' dt i (6.6) i odpowiada temperaturze powierzchni dla ciepła i. Równocześnie wzrost entropii może następować na wskutek pewnych procesów nieodwracalnych. Może istnieć wiele strumieni wpływających i wypływających do objętości kontrolnej. Dla krótkiego przedziału czasu produkcja entropii będzie wynosiła; ds dt wytw = out mese in misi pow i d' dt i + ds dt σ (6.7) Reinhard Kulessa 4

25 Zgodnie z II zasadą termodynamiki ds. 0 dt Pamiętamy że znak = odnosi się dla procesów odwracalnych, a znak > dla procesów nieodwracalnych. Dla stałego strumienia masy i stacjonarnego stanu naszego układu zachodzi ds, wtedy = 0 oraz m i = m e dt out mese σ in misi σ i wytw d' dt (6.8) Dla procesu adiabatycznego i stałego strumienia masy s s (6.9) e i. Reinhard Kulessa 5

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika:

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Zamiana ciepła na pracę przez cyklicznie działającą maszynę cieplną jest możliwa tylko przy wykorzystaniu dwóch zbiorników ciepła o różnych

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny cieplne i II zasada termodynamiki Maszyny cieplne, chłodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamiczna definicja II zasada termodynamiki i entropia Cykle termodynamiczne.

Bardziej szczegółowo

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Energetyka odnawialna i nieodnawialna

Energetyka odnawialna i nieodnawialna Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077 . Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Aerodynamika I Podstawy nielepkich przepływów ściśliwych

Aerodynamika I Podstawy nielepkich przepływów ściśliwych Aerodynamika I Podstawy nielepkich przepływów ściśliwych żródło:wikipedia.org Podstawy dynamiki gazów Gaz idealny Zbiór chaotycznie poruszających się cząsteczek w którym cząsteczki oddziałują na siebie

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI

BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI 2.1. PODSTAWY TEORETYCZNE Sporządzenie bilansu energetycznego układu polega na określeniu ilości energii doprowadzonej, odprowadzonej oraz przyrostu energii

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną: Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Druga zasada termodynamiki. Rys Przemiana zamknięta, czyli obieg

Druga zasada termodynamiki. Rys Przemiana zamknięta, czyli obieg 1/7 6. DRUGA ZASADA TERMODYNAMIKI 6.1. Obiegi Częstokroć mamy do czynienia z przemianami podczas których układ po wyjściu ze stanu początkowego i po przejściu szeregu zmian powraca do stanu pierwotnego.

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:

Bardziej szczegółowo

Druga zasada termodynamiki.

Druga zasada termodynamiki. Wykład z fizyki, Piotr Posmykiewicz 79 W Y K Ł A D XIV Druga zasada termodynamiki. Często naszym zadaniem jest zastosowanie zasady zachowania energii. Jednak, zgodnie z pierwszą zasadą termodynamiki, energia

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

BADANIA SPRĘŻARKI TŁOKOWEJ

BADANIA SPRĘŻARKI TŁOKOWEJ Opracował: dr inż. Zdzisław Nagórski Materiały pomocnicze do ćwiczenia laboratoryjnego pt.: A. Wiadomości podstawowe i uzupełniające: BADANIA SPRĘŻARKI TŁOKOWEJ Proces sprężania - w zastosowaniach technicznych

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

ZADANIA Z FIZYKI - TERMODYNAMIKA

ZADANIA Z FIZYKI - TERMODYNAMIKA ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

3 Potencjały termodynamiczne i transformacja Legendre a

3 Potencjały termodynamiczne i transformacja Legendre a 3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Rodzaje pracy mechanicznej

Rodzaje pracy mechanicznej Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Termodynamika. Krzysztof Golec Biernat. (26 października 2017) Wersja robocza nie do dystrybucji. Rzeszów/Kraków

Termodynamika. Krzysztof Golec Biernat. (26 października 2017) Wersja robocza nie do dystrybucji. Rzeszów/Kraków Termodynamika Krzysztof Golec Biernat (26 października 2017) Wersja robocza nie do dystrybucji Rzeszów/Kraków 2016 17 Spis treści 1 Pojęcia podstawowe 5 1.1 Przedmiot zainteresowania termodynamiki...........

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Zasady Termodynamiki

Zasady Termodynamiki Zasady Termodynamiki I-sza zasada termodynamiki: - bilans energii w procesie przejścia układu ze stanu A do stanu B - identyfikacja kanałów przekazu B A W oparciu o I-szą zasadę wiemy, Ŝe Przekaz moŝe

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Temperatura. Zerowa zasada termodynamiki

Temperatura. Zerowa zasada termodynamiki Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

Zasady termodynamiki fenomenologicznej

Zasady termodynamiki fenomenologicznej 1 Zasady termodynamiki fenomenologicznej Wprawdzie wykład ten jest zatytułowany ermodynamika z elementami fizyki statystycznej ale notatki te koncentrują się głównie na wyłożeniu podstaw fizyki statystycznej.

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ

Bardziej szczegółowo

Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE

Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE 1. Wykłady i ćwiczenia poprowadzi prof. dr hab. inż. Leszek Malinowski; pok. 420; Zespół Maszyn

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA TECHNICZNA 2. Kod przedmiotu: Sd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK Wykład 7. Entalpia układu termodynamicznego.. Entalpia; odwracalne izobaryczne rozpręŝanie gazu.2. Entalpia; adiabatyczne dławienie gazu dla przepływu ustalonego.3. Entalpia; nieodwracalne napełnianie

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak

Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Termodynamika. Krzysztof Golec Biernat. (7 maja 2017) Wersja robocza nie do dystrybucji. Rzeszów/Kraków

Termodynamika. Krzysztof Golec Biernat. (7 maja 2017) Wersja robocza nie do dystrybucji. Rzeszów/Kraków Termodynamika Krzysztof Golec Biernat (7 maja 2017) Wersja robocza nie do dystrybucji Rzeszów/Kraków 2016 17 Spis treści 1 Pojęcia podstawowe 5 1.1 Przedmiot zainteresowania termodynamiki........... 5

Bardziej szczegółowo

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota Wykła Silnik Carnota z azem oskonałym Sprawność silnika Carnota z azem oskonałym Współczynnik wyajności chłoziarki i pompy cieplnej Carnota z azem oskonałym RównowaŜność skali temperatury termoynamicznej

Bardziej szczegółowo

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14 WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE /4 RÓWNANIE EULERA W Wykładzie nr 4 wyprowadziliśmy ogólne r-nie ruchu płynu i pokazaliśmy jego szczególny (de facto najprostszy) wariant zwany Równaniem

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE

Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE 1. Wykłady i ćwiczenia poprowadzi prof. dr hab. inż. Leszek Malinowski; pok. 420; Zespół Maszyn Cieplnych,

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła.

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła. M. Chorowski, Podstawy Kriogeniki, wykład 0 7. Chłodziarki z regeneracyjnymi wymiennikami ciepła. W chłodziarkach z regeneracyjnymi wymiennikami ciepła wstępne obniżenie temperatury gazu zachodzi w regeneratorze,

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów. PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał.

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał. Temat : Pierwsza zasada termodynamiki. Wyobraźmy sobie następującą sytuację : Jest zima. Temperatura poniżej zera. W wyniku długotrwałego wystawiania dłoni na działanie lodowatego powietrza, odczuwamy,

Bardziej szczegółowo

Spis tres ci 1. Wiadomos ci wste pne

Spis tres ci 1. Wiadomos ci wste pne Spis treści Przedmowa do wydania I... 9 Przedmowa do wydania II... 10 Wykaz ważniejszych oznaczeń... 11 1. Wiadomości wstępne... 15 1.1. Fenomenologiczny opis materii... 15 1.2. Wielkości ekstensywne (WE)...

Bardziej szczegółowo

ELEMENTY TERMODYNAMIKI

ELEMENTY TERMODYNAMIKI ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie

Bardziej szczegółowo