Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
|
|
- Sylwester Nowakowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym punktowi pęcherzyków w parę nasyconą suchą odbywa się w stałej temperaturze. Tak samo zachowują się inne jednoskładnikowe ciecze. Para mokra (nasycona mokra) zawiera dwie fazy: ciekłą i lotną. Fazą ciekłą jest woda o stanie punktu pęcherzyków. Fazą lotną jest para nasycona sucha. Stopień suchości pary mokrej (pary nasyconej mokrej) oblicza się ze wzoru m" m" x (1.1) m m' m" m ilość pary nasyconej suchej w parze mokrej, kg m ilość cieczy o stanie punktu pęcherzyków w parze mokrej, kg m ilość pary mokrej, kg Ciepło (entalpia) parowania dla procesu izobaryczno-izotermicznego 1
2 r i" i' Ts s s (1.2a) i entalpia właściwa pary nasyconej suchej, kj/kg i entalpia cieczy w punkcie pęcherzyków, kj/kg T s temperatura wrzenia (nasycenia), K s entropia właściwa pary nasyconej suchej, kj/(kg K) s entropia właściwa cieczy w punkcie pęcherzyków, kj/(kg K) Strumień ciepła oddawanego podczas skraplania strumienia m pary nasyconej mokrej o stopniu suchości x oblicza się ze wzoru Q mxr (1.2b) Przyjmuje się, że H 2 O ma energię wewnętrzną i entropię równą zero w stanie ciekłym dla parametrów punktu potrójnego: p tr = 611,2 Pa T tr = 273,16 K (0,01ºC) 1 kg pary mokrej składa się z 1- x kg cieczy w stanie punktu pęcherzyków oraz x kg pary nasyconej suchej. Stąd objętość właściwą, entalpię właściwą i entropię właściwą pary mokrej wyznacza się odpowiednio z zależności v x i x s x ( 1 x) v' xv" v' x( v" v' ) [m 3 /kg] (1.3) ( 1 x) i' xi" i' x( i" i' ) [J/kg] (1.4) ( 1 x) s' xs" s' x( s" s' ) [J/(kg K)] (1.5) Energia wewnętrzna właściwa pary (nasyconej) mokrej u x u x i pv [J/kg] (1.6) x x ( 1 x) u' xu" u' x( u" u' ) [J/kg] (1.7) Entalpia właściwa cieczy i c t [J/kg] (1.8) p Parametry stanu dla punktu pęcherzyków (oznaczone prim) i pary nasyconej suchej (oznaczone bis) można odczytać z tablic parowych. Tylko w wyjątkowych przypadkach możemy traktować parę wodną jako gaz doskonały lub półdoskonały. Najczęściej, aby uzyskać odpowiednią dokładność obliczeń, musimy traktować parę jako gaz rzeczywisty. 2
3 Parametry określające stan wody na linii granicznej x = 0 i x = 1 uszeregowane według ciśnienia Ciśnienie Temperatura Objętość właściwa Entalpia właściwa Ciepło Entropia właściwa p T cieczy v' pary v" cieczy i' pary i" parowania r cieczy s' pary s" MPa K m 3 /kg kj/kg kj/(kg K) 0, ,132 0, ,208 29, ,8 2484,5 0,1060 8,9756 0, ,134 0, ,982 54, ,0 2470,3 0,1956 8,8278 0, ,661 0, ,006 73, ,2 2459,8 0,2606 8,7236 0, ,248 0, , , ,2 2444,2 0,3543 8,5776 0, ,131 0, , , ,1 2432,7 0,4224 8,4747 0, ,05 0, , , ,2 2423,4 0,4762 8,3952 0, ,33 0, , , ,1 2415,6 0,5209 8,3305 0, ,68 0, , , ,7 2402,8 0,5926 8,2289 0, ,98 0, , , ,4 2392,6 0,6493 8,1505 0, ,60 0, , , ,9 2384,0 0,6963 8,0867 0, ,15 0, , , ,9 2372,9 0,7549 8,0089 0, ,24 0, , , ,6 2358,1 0,8321 7,9092 0, ,14 0, , , ,1 2346,1 0,8932 7,8321 0, ,27 0, , , ,3 2336,0 0,9441 7,7695 0, ,04 0, , , ,8 2319,2 1,0261 7,6711 0,05 354,5 0, , , ,0 2305,4 1,0912 7,5951 0,06 359,1 0, , , ,6 2293,7 1,1454 7,5332 0,07 363,11 0, , , ,2 2283,4 1,1921 7,4811 0,08 366,66 0, , , ,0 2274,3 1,2330 7,4360 0,09 369,86 0, , , ,1 2265,9 1,2696 7,3963 0,10 372,78 0, , , ,7 2258,2 1,3027 7,3608 0,11 375,47 0, , , ,0 2251,2 1,3330 7,3288 0,12 377,96 0, , , ,8 2244,4 1,3609 7,2996 0,13 380,28 0, , , ,4 2238,2 1,3868 7,2728 0,14 382,47 0, , , ,8 2232,4 1,4109 7,2480 0,15 384,52 0, , , ,9 2226,8 1,4336 7,2248 0,16 386,47 0, , , ,8 2221,4 1,4550 7,2032 0,18 390,08 0, , , ,1 2211,4 1,4944 7,1638 0,20 393,38 0, , ,7 2706,9 2202,2 1,5301 7,1286 0,22 396,42 0, , ,6 2711,3 2193,7 1,5628 7,0967 0,24 399,24 0, , ,6 2715,3 2185,7 1,5929 7,0676 0,26 401,88 0, , ,9 2719,0 2178,1 1,6209 7,0409 0,28 404,35 0, , ,4 2722,3 2170,9 1,6471 7,0161 0,30 406,69 0, , ,4 2725,5 2164,1 1,6717 6,9930 0,32 408,91 0, , ,9 2728,4 2157,5 1,6948 6,9714 0,34 411,01 0, , ,9 2731,2 2151,3 1,7168 6,9511 0,36 413,02 0, , ,5 2733,8 2145,3 1,7376 6,9320 0,38 414,94 0, , ,8 2736,2 2139,4 1,7575 6,9138 0,40 416,77 0, , ,7 2738,5 2133,8 1,7764 6,8966 0,45 421,07 0, , ,2 2743,8 2120,6 1,8204 6,8570 3
4 Woda zasilająca, z której wytwarzana jest para, doprowadzana jest do walczaka A 1. Ponieważ woda ta ma temperaturę niższą od temperatury nasycenia, a tym samym większą gęstość, gromadzi się ona przy dnie walczaka, skąd spływa pionową rurą do podgrzewacza wody A 2. Woda podgrzana w podgrzewaczu wody unosi się do góry i wpływa do walczaka przy zwierciadle cieczy. Woda o temperaturze nasycenia znajdująca się przy powierzchni cieczy paruje, a para nasycona rurociągiem C przepływa do przegrzewacza pary B, skąd para przegrzana transportowana jest do odbiornika. Podgrzewacz wody, walczak i przegrzewacz pary ogrzewane są spalinami powstającymi wskutek spalania paliwa w palenisku. 4
5 Parametry punktu krytycznego dla H 2 O: p K = 220,6 bar; T K = 647 K (373,8ºC) 5
6 W obszarze pary mokrej (tzn. od x = 0 do x = 1) izobary pokrywają się z odpowiednimi izotermami. Np. izobara 1,01325 bar pokrywa się z izotermą 100ºC. Wykresy p-v oraz T-s pary wodnej są wykorzystywane podczas różnorodnych analiz teoretycznych. 6
7 Wykres i-s pary wodnej ma największe znaczenie praktyczne. Wykorzystywany jest on do obliczeń inżynierskich. 2. PRZEMIANY CHARAKTERYSTYCZNE PAR 2.1. Przemiana izobaryczna p idem Przemiana izobaryczna występuje m.in. w: kotłach parowych, nagrzewnicach parowych i skraplaczach. Jednostkowa praca bezwzględna v2 1 2 p( v) dv pv2 v1 [J/kg] (2.1) v1 l Jednostkowa praca techniczna l 0 [J/kg] (2.2) t12 t12 Ponieważ l 0, na podstawie pierwszej zasady termodynamiki jednostkowe ciepło przemiany jest równe q1 2 i2 i1 [J/kg] (2.3) 7
8 Wartość entalpii właściwej i najczęściej odczytujemy z wykresu i-s lub z tablic parowych Przemiana izochoryczna v idem Ponieważ objętość czynnika się nie zmienia, jednostkowa praca bezwzględna jest równa 8
9 l 0 (2.4) 12 Jednostkową pracę techniczną można obliczyć ze wzoru p2 t1 2 v( p) dp vp1 p2 (2.5) p1 l Na podstawie pierwszej zasady termodynamiki, przy l 0, jednostkowe ciepło przemiany jest równe 12 q1 2 u2 u1 (2.6) gdzie energię wewnętrzną można wyznaczyć z równania u i pv (2.7) 2.3. Przemiana izotermiczna T idem Rys. Przemiana izotermiczna pary wodnej. Jednostkową pracę bezwzględną można obliczyć z równania I ZT. l q u (2.8) Podobnie jednostkową pracę techniczną l t q i (2.9) Dla stałej temperatury czynnika jednostkowe ciepło przemiany można obliczyć z zależności 9
10 q Ts (2.10) Adiaterma odwracalna - izentropa dq 0, q1 2 0, s1 s2 Ponieważ q 0, z równań pierwszej zasady termodynamiki dostajemy 12 l1 2 u1 2s u1 u2s (2.11) lt1 2 i1 2s i1 i2s (2.12) 2.5. Adiaterma nieodwracalna dq, q 0, s Przemiana adiatermiczna występuje m.in. w turbinach parowych. l i 1 2 i1 2 i1 i2 (2.13) Sprawność wewnętrzna maszyny przepływowej - rozprężanie - sprężanie l l i i i i (2.14) lt1 2s i1 i2s i i t12s 2s 1 i (2.15) li1 2 i2 i1 10
11 11 para wodna
K raków 26 ma rca 2011 r.
K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna
W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa
1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające
Porównanie metod określania własności termodynamicznych pary wodnej
LABORATORIUM TERMODYNAMIKI I TECHNIKI CIEPLNEJ Porównanie metod określania własności termodynamicznych pary wodnej prof. dr hab. inż. Krzysztof Urbaniec ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA,
4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.
Chłodnictwo i Kriogenika - Ćwiczenia Lista 7
Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA TECHNICZNA 2. Kod przedmiotu: Sd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia
Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA 2. Kod przedmiotu: Sdt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11
Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.
Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak
Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego.
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Adam Nowaczyk IM-M Semestr II Gdaosk 2011 Spis treści 1. Obiegi termodynamiczne... 2 1.1 Obieg termodynamiczny... 2 1.1.1 Obieg prawobieżny... 3
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Obiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: TERMODYNAMIKA 2. Kod przedmiotu: Sdt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
Zadania domowe z termodynamiki dla wszystkich kierunków A R C H I W A L N E. Zadania domowe z termodynamiki I dla wszystkich kierunków
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki dla wszystkich kierunków ROK AKADEMICKI 2017/2018 Zad. nr 10 za 3% [2018.01.26 13:30] Obieg
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego.
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Wojciech Głąb Techniki niskotemperaturowe Inżynieria Mechaniczno-Medyczna st. II sem. I Spis treści 1. Obieg termodynamiczny... 3 2. Obieg lewobieżny
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19
Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Badanie zależności temperatury wrzenia cieczy od ciśnienia
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badanie zależności temperatury wrzenia cieczy od ciśnienia - 1 - Wstęp teoretyczny Gaz rzeczywisty jest jedynym z trzech stanów skupienia
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Janusz Walczak, Termodynamika techniczna
Pr z e d m o wa Termodynamika jest nauką zajmującą się przemianami różnych postaci energii. W podręczniku, który przekazujemy Państwu, ograniczyliśmy się do opisu przemian energii zachodzących w różnych
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.
1 Część teoretyczna Powietrze wilgotne układ złożony z pary wodnej i powietrza suchego, czyli mieszaniny azotu, tlenu, wodoru i pozostałych gazów Z punktu widzenia różnego typu przemian skład powietrza
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
liczba Materiał realizowany na zajęciach: zajęć
Podręcznik (także w wersji elektronicznej!): Foltańska-Werszko Danuta Teoria systemów cieplnych: termodynamika-podstawy Plan ćwiczeń rachunkowych: Nr liczba Materiał realizowany na zajęciach: zajęć godz.
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077
. Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla
Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7
Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)
Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:
BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI
BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI 2.1. PODSTAWY TEORETYCZNE Sporządzenie bilansu energetycznego układu polega na określeniu ilości energii doprowadzonej, odprowadzonej oraz przyrostu energii
Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
PLAN WYNIKOWY MASZYNOZNAWSTWO OGÓLNE
LN WYNIKOWY MSZYNOZNWSTWO OGÓLNE KLS I technik mechanik o specjalizacji obsługa i naprawa pojazdów samochodowych. Ilość godzin 38 tygodni x 1 godzina = 38 godzin rogram ZS 17/2004/19 2115/MEN 1998.04.16
BADANIE CHŁODZIARKI SPRĘŻARKOWEJ
BADANIE CHŁODZIARKI SPRĘŻARKOWEJ Zenon Bonca, Waldemar Targański W rozdziale skrótowo omówiono teoretyczne podstawy działania parowego sprężarkowego urządzenia chłodniczego w zakresie niezbędnym do osiągnięcia
c = 1 - właściwa praca sprężania izoentropowego [kj/kg], 1 - właściwa praca rozprężania izoentropowego
13CHŁODNICTWO 13.1. PODSTAWY TEORETYCZNE 13.1.1. Teoretyczny obieg chłodniczy (obieg Carnota wstecz) Teoretyczny obieg chłodniczy, pokazany na rys.13.1, tworzy, ciąg przemian: dwóch izotermicznych 2-3
Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC.
Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC. Dariusz Mikielewicz, Jan Wajs, Michał Bajor Politechnika Gdańska Wydział Mechaniczny Polska
PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ
1 PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ Dane silnika: Perkins 1104C-44T Stopień sprężania : ε = 19,3 ε 19,3 Średnica cylindra : D = 105 mm D [m] 0,105 Skok tłoka
PARA WODNA. 8.'l. PODSTAWY TEORETYCZNE
PARA WODNA 8.'l. PODSTAWY TEORETYCZNE 8.1.1. Wiadomości ogólne W procesie tworzenia się pary występują przy tym samym ciśnieniu dwa charakterystyczne stany, tj. stan wrzenia i stan pary suchej nasyconej.
Kalkulator Audytora wersja 1.1
Kalkulator Audytora wersja 1.1 Program Kalkulator Audytora Energetycznego jest uniwersalnym narzędziem wspomagającym proces projektowania i analizy pracy wszelkich instalacji rurowych, w których występuje
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA
Anna Janik AGH Akademia Górniczo-Hutnicza Wydział Energetyki i Paliw BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA 1. WSTĘP W ostatnich latach obserwuje się wzrost zainteresowania tematem pomp ciepła.
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową
PL 217365 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217365 (13) B1 (21) Numer zgłoszenia: 395879 (51) Int.Cl. F01K 23/04 (2006.01) F01K 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA Aby parowanie cieczy zachodziło w stałej temperaturze należy dostarczyć jej określoną ilość ciepła w jednostce czasu. Wielkość równą
W9 26. Wykresy pary. Termodynamika techniczna. Wykres i s pary wodnej. Odczytywanie wykresu
W9 26 Wykresy pary Odczytywanie wykresu 1 i x=1 K x=0,4 x=0,6 x=0,8 x=0 x=0,2 s 2 [kj/kg] 3000 2500 2000 1500 1000 500 i i r 0 273,16 350 400 450 500 550 600 650 [K] 3 4 Wykres i s jest bardzo wygodny
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
TERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
TERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące)
Wymiana ciepła podczas wrzenia 1. Wstęp wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) współczynnik wnikania
ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Badanie zależności temperatury wrzenia wody od ciśnienia
Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
ZALEŻNOŚĆ CIŚNIENIA PARY NASYCONEJ WODY OD TEM- PERATURY. WYZNACZANIE MOLOWEGO CIEPŁA PARO- WANIA
ZALEŻNOŚĆ CIŚNIENIA PARY NASYCONEJ WODY OD TEM- PERATURY. WYZNACZANIE MOLOWEGO CIEPŁA PARO- WANIA I. Cel ćwiczenia: zbadanie zależności ciśnienia pary nasyconej wody od temperatury oraz wyznaczenie molowego
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia TE-9 BADANIE PARAMETRÓW KRZYWEJ NASYCENIA
Doświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: Przedmiot do realizacji treści kierunkowych podstawowych Rodzaj zajęć: wykład, ćwiczenia, laboratorium TERMODYNAMIKA TECHNICZNA
Obiegi rzeczywisty - wykres Bambacha
Przedmiot: Substancje kontrolowane Wykład 7a: Obiegi rzeczywisty - wykres Bambacha 29.04.2014 1 Obieg z regeneracją ciepła Rys.1. Schemat urządzenia jednostopniowego z regeneracją ciepła: 1- parowacz,
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Podstawowe definicje
Wprowadzenie do równowag fazowych (1) Podstawowe definicje 1) Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrębie fazy niektóre intensywne
Rys. 1. Obieg cieplny Diesla na wykresach T-s i p-v: Q 1 ciepło doprowadzone; Q 2 ciepło odprowadzone
1. Wykorzystanie spalinowych silników tłokowych W zależności od techniki zapłonu spalinowe silniki tłokowe dzieli się na silniki z zapłonem samoczynnym (z obiegiem Diesla, CI compression ignition) i silniki
Termodynamika ć wićzenia
Termodynamika ć wićzenia Wstęp teoretyćzny do ćwićzeń z przedmiotu Termodynamika oraz Teoria Maszyn Cieplnych SPIS TREŚCI Spis Treści 2 Literatura do kursu 3 Podręczniki 3 Zbiory zadań 3 1. Powietrze wilgotne
Obieg porównawczy siłowni parowych
11 II amomi 11.1. PODSTAWY TBOBETYCZNE 11.1.1. -Obieg porównawczy siłowni parowych Jbiegiem o najwyższej sprawności prsebiegająoym pomiędzy dwoma źródłami ciepła o stałej temperaturze jest obieg Oarnota.
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)
Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła
Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:
Techniki niskotemperaturowe w medycynie
INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon
KONCEPCJA WYKORZYSTANIA CIEPŁA ODPADOWEGO DO WYTWARZANIA CHŁODU NA JEDNOSTKACH PŁYWAJĄCYCH
KONCEPCJA WYKORZYSTANIA CIEPŁA ODPADOWEGO DO WYTWARZANIA CHŁODU NA JEDNOSTKACH PŁYWAJĄCYCH Artur BOGDANOWICZ, Tomasz KNIAZIEWICZ, Marcin ZACHAREWICZ Akademia Marynarki Wojennej Ul. Śmidowicza 69, 81-173