LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ."

Transkrypt

1 LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy czasowo częstotliwościowej sygnałów. Jest ona przekształceniem liniowym, w którym dwuwymiarowa reprezentacja sygnału za pomocą odpowiednich funkcji elementarnych pozwala na rekonstrukcję sygnału w postaci kombinacji liniowej tych funkcji. Analiza falkowa umożliwia analizę dźwięku ze zmienną rozdzielczością (MRA - ang. multiresolution analysis [3]). Dla dowolnej funkcji f ( t) L ( R), analiza MRA oparta jest na rozkładzie przestrzeni V L j ( R) na sumę podprzestrzeni: J 1 VJ = WJ 1 VJ 1 = WJ 1 WJ VJ =... = j = 0 W j V0 gdzie: j - poziom rozdzielczości, V j V j+1 - przestrzenie aproksymacji (ogółów), W j Wk, j k - przestrzenie szczegółów. Funkcja f ( t) L rozkładana jest za pomocą funkcji ϕ V i ψ W. Dla analizy oktawowej, tj. przy połowieniu pasma częstotliwości, ϕ i ψ muszą spełniać następujące założenia: ϕ ( t) = h ϕ(t k), k k j / j { ϕ ( t) = ϕ( t k)} jest bazą ortonormalną dla V j, jk ψ ( t) = g ϕ(t k), k k j / j { ψ jk ( t) = ψ( t k)} jest bazą ortonormalną dla W j, g, h współczynniki odpowiadające filtrom górno- i dolnoprzepustowemu, g k =(-1) k h 1- k. Funkcja ϕ nazywana jest funkcją skalującą, zaś ψ - falką macierzystą. Funkcje ϕ i ψ można definiować na różne sposoby w zależności od zastosowanych filtrów, co zilustrowano na rys. 1 na przykładzie filtru Daubechies oraz jego odmiany, filtru Coifmana. ϕ rzad ψ rzad a) ϕ rzad ψ rzad b)

2 Rys. 1. Funkcje skalujące ϕ i falki macierzyste ψ dla filtru Coifmana (a) i Daubechies (b) rzędu [3]. W innym podejściu do analizy falkowej [1], kopie falki macierzystej ψ (t) są przesuwane i skalowane według wzoru: 1 t τ ψ τ, a ( t) = ψ, a > 0 a a gdzie τ jest parametrem przesunięcia w czasie, zaś a jest parametrem przeskalowania. W powyższym wzorze funkcja skalująca ϕ (t) została zastąpiona przez parametry τ i a, przy czym a = j odpowiada analizie oktawowej. Lokalizacja częstotliwości tak zdefiniowanych funkcji elementarnych określona jest za pomocą transformaty Fouriera ψ funkcji ψ τ, a ( t) : ωτ ψ i τ, a ( ω) = a ψ( aω) e. Lokalizacją czasową oraz częstotliwościową wybranych falek przedstawiono na rys. i 3. Rys.. Przykładowe falki analizujące [1]. Rys. 3. Lokalizacja częstotliwościowa falek [1] Kopie falki macierzystej ulegają jedynie przeskalowaniu, zaś w dziedzinie widma stosunek Q = ω/ ω nie zmienia się, niezależnie od wartości współczynnika skalującego a. Tak więc falki analizujące są filtrami o stałej dobroci. Stosowane są również inne funkcje macierzyste, np. Morleta (wymnożenie sinusoidy zespolonej przez funkcję Gaussa), kapelusz meksykański (druga pochodna funkcji Gaussa), Haara, Daubechies, Meyera, Shannona, etc. [3]. Analiza czasowo-częstotliwościowa dokonywana jest poprzez rozkład sygnału na funkcje elementarne. Dla danej funkcji macierzystej ψ transformacja falkowa S( τ, a) sygnału s dana jest wzorem [1] 1 t τ S( τ, a) =< s, ψτ, a >= ψτ, a ( t) s( t) dt = ψ s( t) dt a a

3 gdzie ψ oznacza sprzężenie zespolone, zaś < > - iloczyn skalarny. Przykładowy wykres analizy falkowej przedstawiono na rys. 4. a) 050 Hz 1105 Hz Hz Hz Hz b) 0.1 s Rys. 4. Analiza dźwięku a (880 Hz) altówki: a) postać czasowa dźwięku, b) analiza falkowa z filtrem Daubechies rzędu, okno 819 próbek. URUCHOMIENIE APLIKACJI NEKLADIM W ćwiczeniu wykorzystywana jest część funkcji realizowanych w aplikacji NEuronowy KLAsyfikator Dźwięków Instrumentów Muzycznych (NEKLADIM) zaimplementowanej w środowisku Matlab. Po uruchomieniu aplikacji Matlab (skrót powinien znajdować się na pulpicie) w Command window przechodzimy do katalogu c:/nekladim, >> cd c:\nekladim uruchamiając następnie program NEKLADIM >> nekladim Poprzez kliknięcie na okienku otwartego programu przechodzimy do właściwego edytora (rys.5)

4 1 3 4 Rys.5 Wygląd okienka edytora Nekladim Należy: (1) Otworzyć plik do analizy () Pobrać ramkę 048 próbek (z transjentu dźwięku) (3) Wpisać nazwę wykorzystywanego filtru analizy (4) Dokonać analizy przejście do okienka z rysunku Rys.6 Wygląd okienka edytora Nekladim

5 Oznaczenia do rysunku 6: (1) Wykresy przedstawiają 10 uzyskanych pasm falkowych (z opisem odpowiednich pasm częstotliwości) () Wykres przestawia wszystkie współczynniki falkowe widmo falkowe - oś X jest osią próbek (czasu) - oś Y jest osią częstotliwości (3) Kliknięcie na przycisk (3) umożliwia znormalizowanie współczynników w pasmach (w celu zaobserwowania współczynników gdy energia danego pasma jest mała) 3. ZADANIA Dokonać analizy falkowej transjentów dźwięków wskazanych przez prowadzącego dla następujących filtrów: db (Daubeshies -go rzędu) ; coif (Coifmann -gi rząd); sym (Symlet -gi rząd) i tych samych filtrów, ale piątego rzędu (db5, coif5 lub sym5) 3.. Dla 3 dźwięków trąbki, puzonu, waltorni i skrzypiec (dla wszystkich instrumentów dźwięki o tych samych wysokościach) w tabelce spisać maksymalne bezwzględne wartości współczynników falkowych dla górnych pasm (6,7,8,9,10), a następnie nanieść je wybranymi trzema parami na wykres XY (Gdyby nie działał zoom przy wykresach należy w Command Window Matlaba wpisać >> zoom on ) 4. OPRACOWANIE Skomentować widma falkowe otrzymane w punkcie Porównać zależność wyniku analizy falkowej od rzędu filtru Opisać zależność wyniku analizy falkowej od typu filtru (przy zachowaniu takiej samej długości) 4.4. Sporządzić odpowiednie wykresy otrzymane dla danych z punktu 3.. Skomentować otrzymane wykresy pod kontem możliwości automatycznego rozpoznawania dźwięków instrumentów muzycznych 5. BIBLIOGRAFIA. [1] Kronland-Martinet R., Grossmann A., Application of Time-Frequency and Time-Scale Methods (Wavelet Transforms) to the Analysis, Synthesis, and Transformation of Natural Sounds, in: De Poli G., Piccialli A., Roads C. (ed.), Representations of Musical Signals, MIT Press, Cambridge 1991, pp [] MathWorks Wavelet Toolbox Help (plik pdf w podkatalogu katalogu główneg Matlaba)

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Zastosowanie analizy falkowej do wykrywania uszkodzeń łożysk tocznych

Zastosowanie analizy falkowej do wykrywania uszkodzeń łożysk tocznych Paweł EWERT 1, Anna DOROSŁAWSKA 2 Politechnika Wrocławska, Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych (1), Politechnika Wrocławska (2) doi:10.15199/48.2017.01.72 Zastosowanie

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa

Bardziej szczegółowo

TRANSFORMATA FALKOWA. Joanna Świebocka-Więk

TRANSFORMATA FALKOWA. Joanna Świebocka-Więk TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Zastosowanie falek w przetwarzaniu obrazów

Zastosowanie falek w przetwarzaniu obrazów Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Falki, transformacje falkowe i ich wykorzystanie

Falki, transformacje falkowe i ich wykorzystanie Falki, transformacje falkowe i ich wykorzystanie Wstęp Praca próbuje opisać czym jest falka oraz podać zastosowania falek w praktyce. Na wstępie w Postaci matematycznej falki zaprezentujemy czym jest problem

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY FALKOWEJ DO DIAGNOSTYKI ŁOŻYSK TOCZNYCH SILNIKÓW INDUKCYJNYCH

ZASTOSOWANIE ANALIZY FALKOWEJ DO DIAGNOSTYKI ŁOŻYSK TOCZNYCH SILNIKÓW INDUKCYJNYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Paweł EWERT*, Czesław T. KOWALSKI* monitorowanie stanu łożysk tocznych,

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ

POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Krystian Pyka POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Streszczenie. W pracy przedstawiono wyniki badań nad wykorzystaniem falek do analizy

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia: Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch

Bardziej szczegółowo

Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew

Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew Analiza i modelowanie przepływów w sieci Internet Andrzej Andrijew Plan referatu Samopodobieostwo w sieci Internet Samopodobne procesy stochastyczne Metody sprawdzania samopodobieostwa Modelowanie przepływów

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował

Bardziej szczegółowo

Pałkowa analiza sygnałów

Pałkowa analiza sygnałów Remigiusz J. RAK, Andrzej MAJKOWSKI Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych Pałkowa analiza sygnałów Streszczenie. Cechą charakterystyczną lalkowej

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów

III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM GRAFICZNE ŚRODOWISKA PROGRAMOWANIA S.P. WPROWADZENIE DO UŻYTKOWANIA ŚRODOWISKA VEE (1) I. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

1 Wprowadzenie. WFiIS

1 Wprowadzenie. WFiIS WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM

PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM Akustyka mowy opracowanie: M. Kaniewska, A. Kupryjanow, K. Łopatka PLAN WYKŁADU Zasada przetwarzania sygnału w czasie rzeczywistym Algorytmy zmiany czasu trwania

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji) WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH (komputerowe metody symulacji) Zagadnienia: Filtr bierny, filtry selektywne LC, charakterystyka amplitudowo-częstotliwościowa, fazowo-częstotliwościowa, przebiegi

Bardziej szczegółowo

Mazowiecki Elektroniczny Wniosek Aplikacyjny

Mazowiecki Elektroniczny Wniosek Aplikacyjny Mazowiecki Elektroniczny Wniosek Aplikacyjny Generator Offline Instrukcja użytkownika Problemy z aplikacją można zgłaszad pod adresem: zgloszenie@mazowia.eu SPIS TREŚCI Zawartość 1 Instalacja Generatora

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14 Danych Meteorologicznych Sylwester Arabas (ćwiczenia do wykładu dra Krzysztofa Markowicza) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 18. stycznia 2010 r. Zadanie 14.1 : polecenie znalezienie

Bardziej szczegółowo

ZASTOSOWANIE CIĄGŁEJ TRANSFORMATY FALKOWEJ DO OCENY PROFILI CHROPOWATOŚCI POWIERZCHNI PO OBRÓBCE ZAHARTOWANEJ STALI AISI52100

ZASTOSOWANIE CIĄGŁEJ TRANSFORMATY FALKOWEJ DO OCENY PROFILI CHROPOWATOŚCI POWIERZCHNI PO OBRÓBCE ZAHARTOWANEJ STALI AISI52100 KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2006 SEBASTIAN BROL *, WIT GRZESIK ** ZASTOSOWANIE CIĄGŁEJ TRANSFORMATY FALKOWEJ DO OCENY PROFILI CHROPOWATOŚCI

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

Łukasz Januszkiewicz Technika antenowa

Łukasz Januszkiewicz Technika antenowa Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCICOS

WPROWADZENIE DO ŚRODOWISKA SCICOS Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.

Bardziej szczegółowo

profesor PS, dr hab. inż. Alexander Ţariov pok. 211;

profesor PS, dr hab. inż. Alexander Ţariov pok. 211; 1 profesor PS, dr hab. inż. Alexander Ţariov pok. 211; atariov@wi.ps.pl 2 Obecnie analitycy sygnału mają do dyspozycji imponujący arsenał narzędzi. Prawdopodobnie najbardziej znanym z nich jest analiza

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Laboratorium Cyfrowego Przetwarzania Obrazów

Laboratorium Cyfrowego Przetwarzania Obrazów Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,

Bardziej szczegółowo

Filtry. Przemysław Barański. 7 października 2012

Filtry. Przemysław Barański. 7 października 2012 Filtry Przemysław Barański 7 października 202 2 Laboratorium Elektronika - dr inż. Przemysław Barański Wymagania. Sprawozdanie powinno zawierać stronę tytułową: nazwa przedmiotu, data, imiona i nazwiska

Bardziej szczegółowo

KONCEPCJA I UKŁADOWA REALIZACJA SYSTEMU DETEKCJI ZDARZEŃ KRYTYCZNYCH Z UDZIAŁEM MOTOCYKLI

KONCEPCJA I UKŁADOWA REALIZACJA SYSTEMU DETEKCJI ZDARZEŃ KRYTYCZNYCH Z UDZIAŁEM MOTOCYKLI Dr hab. inż. Jan PIETRASIEŃSKI, prof. WAT Dr inż. Witold MILUSKI Dr inż. Dariusz RODZIK Mgr inż. Witold BUŻANTOWICZ Mgr inż. Jakub MIERNIK Wojskowa Akademia Techniczna Mgr inż. Krzysztof PARAMUSZCZAK KERATRONIK

Bardziej szczegółowo

Hybrydowa analiza transformat w rozpoznawaniu wysokości dźwięków w polifonicznych nagraniach instrumentów muzycznych

Hybrydowa analiza transformat w rozpoznawaniu wysokości dźwięków w polifonicznych nagraniach instrumentów muzycznych Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Streszczenie rozprawy doktorskiej Hybrydowa analiza transformat w rozpoznawaniu wysokości dźwięków w polifonicznych nagraniach

Bardziej szczegółowo

Instrukcja użytkownika ARSoft-WZ3

Instrukcja użytkownika ARSoft-WZ3 02-699 Warszawa, ul. Kłobucka 8 pawilon 119 tel. 0-22 853-48-56, 853-49-30, 607-98-95 fax 0-22 607-99-50 email: info@apar.pl www.apar.pl Instrukcja użytkownika ARSoft-WZ3 wersja 1.5 1. Opis Aplikacja ARSOFT-WZ3

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Szybkie metody projektowania filtrów aktywnych

Szybkie metody projektowania filtrów aktywnych Szybkie metody projektowania filtrów aktywnych Aby szybko rozpocząć projektowanie układów filtrów aktywnych należy znać: Wartości dostępnych źródeł zasilania: zasilanie plus/minus (symetryczne) czy tylko

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa. Nr ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa. Nr ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW POMIAROWYCH Grupa Nr ćwicz. 2 1... kierownik 2... 3... 4... Data

Bardziej szczegółowo

XI Konferencja Sieci i Systemy Informatyczne Łódź, październik 2003 APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW

XI Konferencja Sieci i Systemy Informatyczne Łódź, październik 2003 APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW Łódź, październik 003 Marcin Cegielski Instytut Informatyki Politechniki Łódzkiej APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW Streszczenie Celem pracy jest prezentacja aplikacji służącej

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Laboratorium Telewizji Cyfrowej

Laboratorium Telewizji Cyfrowej Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

TEORIA WYTWARZANIA DŹWIĘKÓW

TEORIA WYTWARZANIA DŹWIĘKÓW 1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo