Lateralny wzrost epitaksjalny (ELO)
|
|
- Magda Stasiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Fizyka, technologia oraz modelowanie wzrostu kryształów Lateralny wzrost epitaksjalny (ELO) 18 maj 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN Warszawa, Al. Lotników 32/46 tel: ext Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN Warszawa, ul Sokołowska 29/37 tel: stach@unipress.waw.pl, mike@unipress.waw.pl Wykład 2 godz./tydzień wtorek Interdyscyplinarne Centrum Modelowania UW Budynek Wydziału Geologii UW sala
2 Epitaxial Lateral Overgrowth (ELO) Lateralny Wzrost Epitaksjalny skrzydło warstwa ELO maska SiO 2 podłoże Wymagania: wzrost selektywny (brak zarodkowania na masce) duża pozioma (lateralna) prędkość wzrostu V lat mała pionowa (normalna) prędkość wzrostu V ver
3 Szybkość wzrostu różnych powierzchni kryształu(wykład SK) powierzchnia atomowo szorstka R (szybkość wzrostu) σ (przesycenie) Prawo wzrostu Wilsona - Frenkla
4 Szybkość wzrostu różnych powierzchni kryształu(wykład SK) powierzchnia atomowo-gładka bez dyslokacji - zarodki 2D R (szybkość wzrostu) szorstka 2D σ (przesycenie)
5 Szybkość wzrostu różnych powierzchni kryształu(wykład SK) powierzchnia atomowo-gładka z dyslokacjami R (szybkość wzrostu) szorstka 2D dyslokacje σ (przesycenie)
6 Mechanizm wzrostu warstw ELO (100), (111),... R (szybkość wzrostu) szorstka dyslokacje 2D gładka powierzchnia górna ELO szorstka powierzchnia boczna σ opt σ (przesycenie) podłoże Wybrać: gładką powierzchnię górną (mała V ver ) szorstką powierzchnię boczną (duża V lat ) dobrać przesycenie σ opt - LPE super!!! - VPE, MOVPE, HVPE - OK. - MBE???? słabo
7 Mechanizm wzrostu warstw ELO (100), (111),... gładka powierzchnia górna ELO szorstka powierzchnia boczna Zytkiewicz Cryst. Res. Technol WarstwaGaAsnapodłożu (100) GaAs (LPE) podłoże [011] (111)A [001] (111)B 8 równoważnych kierunków okien gdy podłoże bez dezorientacji (010) [011] gdy jest dezorientacja podłoża istnieje 1 optymalny kierunek okna 1.2 mm (100)
8 Zastosowanie ELO - struktury SOI otrzymywane techniką LPE wing Si ELO SiO 2 mask Si substrate - silicon-on-insulator structures - zagrzebany kontakt/zwierciadło light ELO MOS transistor on ELO Si/SiO 2 Bergmann et al. Appl. Phys. A (1992) mask substrate back mirror (photon recycling) ELO mask substrate buried electrical contact - separacja elektryczna od podłoża ELO (GaSb) substrate GaSb mask
9 Warstwy ELO Si/SiO 2 /Si - struktury SOI otrzymywane techniką LPE E. Bauser et al. Max-Planck Inst. Stuttgart ELO skąd taki kształt warstw ELO Si? - brak dyslokacji w podłożach Si stopnie podłoża seed ścięcie podłoża
10 Podsumowanie technik redukcji gęstości dyslokacji w heterostrukturach niedopasowanych sieciowo zwiększanie h cr filtrowanie powstałych defektów wzrost na cienkich podłożach (compliant substrates) bufory z SLS wygrzewanie wzrost na małych podłożach (mesy) lateralny wzrost epitaksjalny (epitaxial lateral overgrowth - ELO) Brak uniwersalnej metody redukcji TD w heterostrukturach niedopasowanych sieciowo; Najlepiej unikać niedopasowania sieciowego - znaleźć podłoże!!!
11 ELO = metoda redukcji gęstości dyslokacji w warstwach epitaksjalnych wing ELO jamki trawienia maska: SiO 2, Si 3 N 4, W, ZrN, grafit,... podłoże S W MOVPE GaN: S = 5 20 μm; W = 2-5 μm LPE GaAs: S = μm; W = 6-10 μm ELO GaN GaAs A x B 1-x C bufor podłoże GaN szafir GaAs Si A x B 1-x C binary nowa klasa podłóż o zaplanowanej stałej sieci a = f(x) potrzebne szerokie i cienkie warstwy ELO
12 filtracja dyslokacji w ELO - nowa idea? NeckinginBridgmangrowth Cu crystal Chochralski growth z T T top wing ELO recepta: weź z podłoża info o sieci krystalograficznej; nie bierz defektów N TD = cm -2 L = 100 nm ~ 200a
13 Mechanizm wzrostu ELO na podłożach z dyslokacjami porównanie ELO na podłożu bez dyslokacji Si/Si ELO na podłożu z dyslokacjami GaAs/GaAs Zytkiewicz et al. Cryst. Res. Technol warstwa ELO Si maska SiO 2 3 o podłożesi kierunek ścięcia seed GaAs substrate kierunek ścięcia wzrost tylko w kierunku ścięcia wzrost we wszystkich kierunkach wzrost ELO możliwy bez dezorientacji podłoża; ścięcie podłoża czasami stosowane (np. GaAs/Si)
14 aspect (width/thickness) ratio microfacetting on the side wall T opt ELO - optymalizacja przesycenia w LPE temperatura wzrostu undoped GaAs/GaAs thermal roughening of the upper face aspect ratio growth temperature T 0 [ o C] gładka powierzchnia ELO ELO GaAs - cooling rate 0,04 0,06 0,08 0,10 0,12 0,14 0,16 szorstka powierzchnia cooling rate α [ o C/min] podłoże
15 ELO - wpływ domieszkowania domieszkowanie szybkość wzrostu: wykład SK ELO GaAs - undoped (a) ELO GaAs - Si doped (b) 10μm 106 μm 25 μm aspect ratio aspect ratio [Si] = 0.5 % at. [Si] = 0 [Si] = 2.5 % at growth temperature To [ o C] T = 750 o C 0 0,0 0,5 1,0 1,5 2,0 2,5 Si concentration in liquid [at. %] gładka powierzchnia podłoże Model dopants d stopień ELO szorstka powierzchnia t 1 t 2 >t 1 t 3 >t 2 domieszki blokują przepływ stopni na górnej ścianie V ver maleje V lat rośnie
16 ELO - wbudowywanie domieszek domieszkowanie szybkość wzrostu: wykład T. Słupiński k = 0 C C( ) l o s k eff = C C k eff s l = k 0 + ( 1 k0 k0 ) exp( u δ / D) u - liniowa prędkość krystalizacji (prędkość przesuwania frontu krystalizacji) δ grubość warstwy dyfuzyjnej D stała dyfuzji domieszki w cieczy a 10 μm b ELO GaAs:Te SEM 10 μm wizualizacja rozwoju ELO CL k 0 mniej Te k eff >k 0 więcej Te t 4 t 3 t 2 t 1 seed substrate
17 Efekt Gibbsa-Thomsona wykład SK Efekt Gibbsa - Thomsona zmiana równowagi faz na powierzchni zakrzywionej p ( R) = p( ) 1+ C ( R) = C( ) 1+ Γ R Γ - capillarity constant ( 10-7 cm = 1 nm) Γ R R równowagowe ciśnienie (koncentracja) na powierzchni zakrzywionej jest większe niż na płaskiej warstwa ELO Si duża krzywizna ściany na początku wzrostu maska SiO 2 podłożesi Silier et al. J. Cryst. Growth 1996 Potrzebne wstępne przesycenie roztworu o ok. 1.8 o C by rozpocząć wzrost ELO Si metodą LPE; w przeciwnym wypadku warstwa nie może wyjść ponad maskę
18 Efekt Gibbsa-Thomsona wykład SK symulacje: ELO GaAs techniką LPE C bulk As bulk diffusion wizualizacja efektu Gibbsa-Thomsona: ELO GaAs techniką LPE growth C in C eq GaAs substrate near-surface diffusion thickness [μm] (a) Gibbs-Thomson effect OFF width [μm] laterally grown part of ELO vertically grown part of ELO SiO 2 mask window substrate thickness [μm] (b) Gibbs-Thomson effect ON width [μm] obecność dyslokacji podłożowych pozwala na wzrost ELO bez wstępnego przesycenia roztworu
19 ELO GaAs/GaAs otrzymywane metodą LPE L = 172 μm; t = 2.8 μm 10 μm thickness t = 2.8 μm width of the wing L = 172 μm aspect ratio 2L/t = 126
20 Filtrowanie dyslokacji w procesie ELO LPE - GaAs/Si GaAs ELO LPE - GaSb/GaAs GaSb ELO MBE GaAs buffer seed (001) Si substrate MBE GaSb buffer GaAs substrate EPD > 10-8 cm GaSb ELO MBE GaSb buffer device
21 Filtrowanie dyslokacji w procesie ELO: TEM GaAs/Si ELO GaAs ELO wing SiO 2 mask Si substrate 2 µm GaAs buffer LT GaAs wzrost 2-stopniowy (wykład 14)
22 Filtrowanie dyslokacji w procesie ELO: TEM HVPE GaN/szafir Sakai et al. APL 1998 TEM Szerokość skrzydła ELO skrzydło wing width L MOVPE LPE LPE GaN * GaAs/Si ** GaAs/GaAs 5 μm 90 μm 200 μm * Fini et al. JCG (2000) ** Chang et al. JCG (1998) dislocations blocked by the mask bending of TD s in window area!!!
23 Zytkiewicz Thin Solid Films 412 (2002) 64 Filtrowanie dyslokacji w procesie ELO - katodoluminescencja Yu et al. MRS Internet Nitride Semicond. Res integrated CL LPE GaAs/Si MOVPE GaN on sapphire band edge emission 365 nm wing GaAs grown over the seed
24 Kozodoy et al. APL 1998 Gdzie na warstwie ELO umieścić przyrządy? Nakamura et al. MRS Internet J. Nitride Semicond. Res. 4S1, G1.1 (1999)!!! CW RT blue LD - Nichia large leakage current due to TD on the wing j th = 3 ka/cm 2 on the window j th = 6-9 ka/cm 2
25 Naprężenia w warstwach ELO (XRD - wykład M. Leszczyński) XRD geometry ELO GaAs on SiO 2 -coated GaAs Zytkiewicz et al. JAP 1998 ϕ angle ϕ = 0 o ϕ = 90 o scattering plane Δω angle ELO stripes Intensity [cps] rotation axis substrate ω angle [deg] poszerzenie RC: różne stałe sieci??? wiele pasków o różnej orientacji??? wygięcie sieci - w którą stronę? ω angle [deg] porządny GaAs
26 Naprężenia w warstwach ELO technika lokalnej dyfrakcji XRD X-ray beam sample rotation axis in the ω scan seed window ELO layer t SiO 2 mask W substrate sample movement L y X-ray beam 5 10 μm mm sample movement step 5 20 μm RC, RSM, measured locally mapping
27 Lokalna XRD - przykład sample rotation axis in the ω scan X - rays ELO layer R α α ω - ω 0 [deg] α 0 - α R α α ELO substrate 0 y position on the sample substrate ω - ω 0 [deg] α 0 - α ELO substrate 0 y position on the sample SRXRD mapping: tilt angle α(y) can be measured tilt direction easy to determine curvature radius R(y) can be measured locally shape of lattice planes can be analyzed α(y) ~ h (y) width of ELO can be measured Intensity substrate left wing right wing Intensity substrate left wing right wing Standard Rocking Curve: tilt angle α can be measured tilt direction cannot be determined - α 0 α - α 0 α ω - ω 0 [deg] ω - ω 0 [deg]
28 Naprężenia w warstwach ELO (mapy krzywych odbić) width of the ELO stripe 302 μm Czyzak et al. Appl. Phys. A 2008 ω-ω 0 [arcsec] ELO substrate Position across the stripe x [μm] 25,00 31,98 40,90 52,31 66,91 85,58 109,5 140,0 179,1 229,0 292,9 374,7 479,2 613,0 784, ,30 1,175E4 2Δα=0,5 o 0,25 0,20 kształt płaszczyzn (001) obliczone z XRD Δh [μm] 0,15 0,10 0,05 0, Position across the stripe x [μm]
29 Intensity [cps] ω ω 0 [arcsec] ϕ = 0 o 2ΔΘ max ω angle [deg] as grown SiO 2 removed wing 1 seed wing 2 substrate Position across the stripe x [μm] Wygięcie warstw ELO ΔΘ max window window 1,000 1,462 2,138 3,127 4,573 6,687 9,779 14,30 20,91 30,58 44,72 65,40 95,64 139,9 204,5 299,1 437,3 639,6 935, Δα = 55 ELO layer GaAs substrate ELO layer GaAs substrate ELO GaAs on SiO 2 -coated GaAs region I seed SiO 2 mask [Si] region I > [Si] region II a region I < a region II wygięcie skrzydła do góry ELO wing region II GaAs substrate Resztkowe wygięcie wywołane niejednorodnym domieszkowaniem
30 Wygięcie warstw ELO powszechne w ELO GaN, Si, GaAs, etc. ELO GaN on sapphire Kim et al. JCG 2002 ELO GaN bufor GaN maska SiO 2 szafir KRZEM kierunek i kąt wygięcia z dyfrakcji elektronów w TEM XRD na synchrotronie
31 Zrastanie pasków ELO low angle grain boundary 1 µm Zytkiewicz et al. JAP 2007 growth window front of coalescence left wing right wing ELO GaAs void 1 µm no dislocations above the mask edge GaAs substrate SiO 2 mask GaAs substrate Similar effect in: ELO Si on Si - Banhart et al. Appl. Phys ELO GaN on sapphire - Sakai et al. APL 1998 PE GaN on sapphire - Chen et al. APL
32 Naprężenia termiczne w warstwach ELO (GaAs/SiO 2 /GaAs/Si) ELO GaAs GaAs buffer ELO GaAs GaAs buffer Intensity [cps] 10 Intensity [cps] q x q z q x q z X-rays X-rays
33 Naprężenia termiczne w warstwach ELO (GaAs/SiO 2 /GaAs/Si) Zytkiewicz et al. APL 1999 ELO GaAs/Si: wings hanging over the SiO 2 mask (no mask-induced tilt) wings tilted upwards Our model: direction of tilt sign of thermal strain in the buffer GaAs/Si GaN/sapphire α GaAs > α Si α GaN < α sapphire tension in GaAs buffer compression in GaN buffer intensity [cps] FWHM=94'' 2ΔΘ=250'' 2ΔΘ=216'' as grown SiO2 removed ω angle [arcsec] upwards tilt SiO 2 mask GaAs buffer Si substrate Fini et al. Appl. Phys. Lett ΔΘ downwards tilt
34 Inna koncepcja ELO (m. in. Pendeo-epitaxy) Epitaxial Lateral Overgrowth buffer substrate New concept buffer substrate
35 Pendeo-epitaxy pendeo - hanging on suspending from Nitronex Corp., Raileigh, North Caroline University Al 2 O 3 substrate PE GaN GaN buffer mask Davis et al. JCG 2001 PE vs. ELO: reduction of TD density over the whole wafer within one PE process
36 Pendeo-epitaxy Chen et al. APL 1999 TEM B A C Advantage: maskless versions of PE possible for GaN on SiC or SiC-coated Si Strittmatter et al. APL 2001; Davis et al. JCG 2001
37 buffer substrate ELO recepta na wzrost warstw o małym EPD na zdyslokowanych podłożach weź info o sieci podłoża (bufora), Nie bierz defektów!!! ELO rozwiązanie problemów niedopasowania sieciowego? Osiągnięcia: 1. Znacząca redukcja gęstości defektów w heterostrukturach niedopasowanych sieciowo 2. Łatwiejsza relaksacja naprężeń termicznych Problemy: 1. Oddziaływanie z maską i wygięcie 2. Generacja defektów na zroście warstw buffer substrate
38 zastosowania Nichia przemysłowe wykorzystanie struktur ELO GaN/szafir Lumilog produkcja podłóż GaN/szafir Fizyka naturalnych procesów ELO w heterostrukturach z dużym niedopasowaniem sieciowym random mask (SiN coverage below 1 ML)
Lateralny wzrost epitaksjalny (ELO)
Fizyka, technologia oraz modelowanie wzrostu kryształów Lateralny wzrost epitaksjalny (ELO) 15 kwietnia 2013 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 116 3363
Epitaksja - zagadnienia podstawowe
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja - zagadnienia podstawowe 13 marzec 2008 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 843 66 01 ext.
Fizyka, technologia oraz modelowanie wzrostu kryształów. II. semestr Wstęp. 16 luty 2010
Fizyka, technologia oraz modelowanie wzrostu kryształów II. semestr Wstęp 16 luty 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 01 ext. 3363 E-mail:
Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska
Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska Michał Leszczyński Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa,
InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych
Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF
Epitaksja z fazy ciekłej (LPE)
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 23 marzec 21 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext. 3363
Fizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Wykład.2 Epitaksja warstw półprzewodnikowych Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa, ul Sokołowska 29/37 tel: 88
Epitaksja z fazy ciekłej (LPE)
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 8 kwiecień 213 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext.
Fizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Wykład.1 Wzrost kryształów objętościowych półprzewodników na świecie i w Polsce Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa,
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej Michał Leszczyński Wykład 2 godz./tydzień wtorek 9.00 11.00 Interdyscyplinarne Centrum Modelowania UW, Siedziba A, Sala
Z.R. Żytkiewicz IF PAN I Konferencja. InTechFun
Z.R. Żytkiewicz IF PAN I Konferencja Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun 9 kwietnia 2010 r., Warszawa
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa, ul Sokołowska 29/37 tel: 88 80 244 e-mail: stach@unipress.waw.pl,
Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu
Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu Marcin Sarzyński Badania finansuje narodowe centrum Badań i Rozwoju Program Lider Instytut Wysokich Cisnień PAN Siedziba 1. Diody laserowe
Kształtowanie przestrzenne struktur AlGaInN jako klucz do nowych generacji przyrządów optoelektronicznych
Kształtowanie przestrzenne struktur AlGaInN jako klucz do nowych generacji przyrządów optoelektronicznych Projekt realizowany w ramach programu LIDER finansowanego przez Narodowe Centrum Badań i Rozwoju
Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża do osadzania warstw epitaksjalnych
Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża... Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża do osadzania warstw epitaksjalnych Andrzej Hruban, Wacław Orłowski,
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa, ul Sokołowska 29/37 tel: 88 80 244 e-mail: stach@unipress.waw.pl,
Naprężenia i defekty w półprzewodnikowych lateralnych strukturach epitaksjalnych badane technikami dyfrakcji i topografii rentgenowskiej
Instytut Fizyki Polskiej Akademii Nauk Naprężenia i defekty w półprzewodnikowych lateralnych strukturach epitaksjalnych badane technikami dyfrakcji i topografii rentgenowskiej Aleksandra Wierzbicka Rozprawa
Wzrost kryształów objętościowych i warstw epitaksjalnych- informacje wstępne. Michał Leszczyński. Instytut Wysokich Ciśnień PAN UNIPRESS i TopGaN
Wzrost kryształów objętościowych i warstw epitaksjalnych- informacje wstępne Michał Leszczyński Instytut Wysokich Ciśnień PAN UNIPRESS i TopGaN Plan wykładu Laboratoria wzrostu kryształów w Warszawie Po
Fizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Wykład 11. Wzrost kryształów objętościowych z fazy roztopionej (roztopu) Tomasz Słupiński e-mail: Tomasz.Slupinski@fuw.edu.pl Stanisław Krukowski i Michał Leszczyński
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Wykład 13. Wzrost kryształów objętościowych z roztopu Tomasz Słupiński Wydział Fizyki, Uniwersytet Warszawski e-mail: tomslu@fuw.edu.pl Stanisław
Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.
Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H
Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-4 Warszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mail: stach@unipress.waw.pl,
ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY
ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład
WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY
WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład w ICM
Metody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
Skalowanie układów scalonych Click to edit Master title style
Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.
Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207
Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy
Computer Modeling in Cost-Efficient Solar Cell Production Technology
MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Set The Environment Protection Rocznik Ochrona Środowiska Volume/Tom
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
Technologia cienkowarstwowa
Physical Vapour Deposition Evaporation Dlaczego w próżni? 1. topiony materiał wrze w niższej temperaturze 2. zmniejsza się proces utleniania wrzącej powierzchni 3. zmniejsza się liczba zanieczyszczeń w
Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych
Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Monika KWOKA, Jacek SZUBER Instytut Elektroniki Politechnika Śląska Gliwice PLAN PREZENTACJI 1. Podsumowanie dotychczasowych prac:
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Skalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ
TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW
TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW Gdzie spotykamy monokryształy? Rocznie, na świecie produkuje się 20000 ton kryształów. Większość to Si, Ge, GaAs, InP, GaP, CdTe. Monokryształy można otrzymywać:
WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN
P. Caban, K. Kościewicz, W. Strupiński,... PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 36-2008 NR 4 WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN Piotr Caban 1,2, Kinga Kościewicz 1,3, Włodzimierz Strupiński
ROZDZIAŁ 4. Polskie diody laserowe do wysokoczułych sensorów ditlenku azotu
39 ROZDZIAŁ 4 Polskie diody laserowe do wysokoczułych sensorów ditlenku azotu 4.1. Wstęp Związki (GaAlIn)N są drugą, co do ważności komercyjnej, grupą półprzewodników (za Si-Ge, ale znacznie przed (GaAlIn)(AsP)).
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
1. WPROWADZENIE. Dariusz Lipiński 1, Jerzy Sarnecki 1, Andrzej Brzozowski 1, Krystyna Mazur 1
D. Lipiński, J. Sarnecki, A. Brzozowski,... KRZEMOWE WARSTWY EPITAKSJALNE DO ZASTOSOWAŃ FOTOWOLTAICZNYCH OSADZANE NA KRZEMIE POROWATYM Dariusz Lipiński 1, Jerzy Sarnecki 1, Andrzej Brzozowski 1, Krystyna
Wytwarzanie niskowymiarowych struktur półprzewodnikowych
Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja
Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle
Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia
Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane
Fizyka, technologia oraz modelowanie wzrostu kryształów Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN piotr@unipress.waw.pl Wykład:
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym A. Kozioł-Rachwał Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science
The role of band structure in electron transfer kinetics at low dimensional carbons
The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW
TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW Gdzie spotykamy monokryształy? Rocznie, na świecie produkuje się 20000 ton kryształów. Większość to Si, Ge, GaAs, InP, GaP, CdTe. 1 Monokryształy można otrzymywać:
PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH, Warszawa, PL
PL 217755 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217755 (13) B1 (21) Numer zgłoszenia: 387290 (51) Int.Cl. H01S 5/125 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Diody elektroluminescencyjne na bazie GaN z powierzchniowymi kryształami fotonicznymi
Diody elektroluminescencyjne na bazie z powierzchniowymi kryształami fotonicznymi Krystyna Gołaszewska Renata Kruszka Marcin Myśliwiec Marek Ekielski Wojciech Jung Tadeusz Piotrowski Marcin Juchniewicz
Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości
Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
Spis publikacji. dr hab. Agata Zdyb a.zdyb@pollub.pl. telefon: +48 81 538 4747
Spis publikacji dr hab. Agata Zdyb a.zdyb@pollub.pl telefon: +48 81 538 4747 1994 K. Sangwal, A. Zdyb, D. Chocyk, E. Mielniczek-Brzózka,,,Wpływ przesycenia i temperatury na morfologię wzrostu kryształów
Podstawy technologii monokryształów
1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz
Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Struktura CMOS PMOS NMOS. metal I. metal II. warstwy izolacyjne (CVD) kontakt PWELL NWELL. tlenek polowy (utlenianie podłoża) podłoże P
Struktura CMOS NMOS metal II metal I PMOS przelotka (VIA) warstwy izolacyjne (CVD) kontakt tlenek polowy (utlenianie podłoża) PWELL podłoże P NWELL obszary słabo domieszkowanego drenu i źródła Physical
Domieszkowanie półprzewodników
Jacek Mostowicz Domieszkowanie półprzewodników Fizyka komputerowa, rok 4, 10-06-007 STRESZCZENIE We wstępie przedstawiono kryterium podziału materiałów na metale, półprzewodniki oraz izolatory, zdefiniowano
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Heteroepitaksjalne struktury GaAs Si
Jacek TOMASZEWSKI, Włodzimierz STRUPIŃSKI, Mirosław CZUB, Waldemar BRZOZOWSKI INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH ul. Wólczyńska 133, 01-919 Warszawa Heteroepitaksjalne struktury GaAs Si WSTĘP
Cienkie warstwy. Podstawy fizyczne Wytwarzanie Właściwości Zastosowania. Co to jest cienka warstwa?
Cienkie warstwy Podstawy fizyczne Wytwarzanie Właściwości Zastosowania Co to jest cienka warstwa? Gdzie stosuje się cienkie warstwy? Wszędzie Wszelkiego rodzaju układy scalone I technologia MOS, i wytwarzanie
Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.
Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:
Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej
Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej Robert P. Sarzała 1, Michał Wasiak 1, Maciej Kuc 1, Adam K. Sokół 1, Renata Kruszka 2, Krystyna Gołaszewska 2
Rezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia aw. C-3, okój 413; tel.
Laboratorium z Alternatywnych Źródeł Energii dla studentów IV roku EiT
Laboratorium z Alternatywnych Źródeł Energii dla studentów IV roku EiT 1. Analiza roli parametrów bazy i emitera dla sprawności ogniw fotowoltaicznych symulacja PC1D Laboratorium 309, C-3, III piętro (ćwiczenie
Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia
Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie
Tekstura krystalograficzna pomocna w interpretacji wyników badań materiałowych
Tekstura krystalograficzna pomocna w interpretacji wyników badań materiałowych Jan T. Bonarski Instytut Metalurgii i Inżynierii Materiałowej POLSKA AKADEMIA NAUK, Kraków www.imim.pl Ogniwo słoneczne wykonane
I Konferencja. InTechFun
I Konferencja Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun 9 kwietnia 2010 r., Warszawa POIG.01.03.01-00-159/08
Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
9. Struktury półprzewodnikowe
9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp
BADANIE ROZKŁADÓW WŁAŚCIWOŚCI ELEKTRYCZNYCH I OPTYCZNYCH MONOKRYSZTAŁÓW GaP STOSOWANYCH W OPTYCE PODCZERWIENI
Wzrost monokryształów Badanie antymonku rozkładów galu w właściwości kierunku elektrycznych oraz i optycznych... meotdą Cz. BADANIE ROZKŁADÓW WŁAŚCIWOŚCI ELEKTRYCZNYCH I OPTYCZNYCH MONOKRYSZTAŁÓW
WZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU)
WZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU) Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl
V Konferencja Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie PROGRAM
V Konferencja Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie PROGRAM Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie Rozwój i Komercjalizacja
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Pomiar kontaktowej różnicy potencjałów na powierzchniach półprzewodników
Pomiar kontaktowej różnicy potencjałów na powierzchniach półprzewodników Promotor: dr hab. inż. Bogusława Adamowicz Opiekun: dr inż. Marcin Miczek Dyplomant: Emilia Sołtys Plan prezentacji Motywacja Cel
Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Fixtures LED HEDRION
K A R T Y K ATA L O G O W E Fixtures LED HEDRION Oprawy lampy LED Hedrion do zastosowań profesjonalnych Fixtures LED lamps Hedrion for professional applications NATRIUM Sp. z o.o. ul. Grodziska 15, 05-870
Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.
Dr inż. Przemysław Skrzyniarz Kierownik pracy: Prof. dr hab. inż. Paweł Zięba Tytuł pracy w języku polskim: Charakterystyka mikrostruktury spoin Ag/X/Ag (X = Sn, In) uzyskanych w wyniku niskotemperaturowego
PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL
PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.
Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski
Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie
Co to jest cienka warstwa?
Co to jest cienka warstwa? Gdzie i dlaczego stosuje się cienkie warstwy? Układy scalone, urządzenia optoelektroniczne, soczewki i zwierciadła, ogniwa paliwowe, rozmaite narzędzia,... 1 Warstwy w układach
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Badanie pól elektrycznych w azotkach metodami optycznymi
Badanie pól elektrycznych w azotkach metodami optycznymi Krzysztof Zieleniewski Pod opieką dr. Anety Drabińskiej Proseminarium Fizyki Ciała Stałego, 8 kwietnia 2010 O czym będzie? Dlaczego azotki? Dlaczego
9. Struktury półprzewodnikowe
9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp
Układy cienkowarstwowe cz. II
Układy cienkowarstwowe cz. II Czym są i do czego mogą się nam przydać? Rodzaje mechanizmów wzrostu cienkich warstw Sposoby wytwarzania i modyfikacja cienkich warstw półprzewodnikowych czyli... Jak zrobić
Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania
Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit