Fizyka, technologia oraz modelowanie wzrostu kryształów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka, technologia oraz modelowanie wzrostu kryształów"

Transkrypt

1 Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN Warszawa, ul Sokołowska 29/37 tel: stach@unipress.waw.pl, mike@unipress.waw.pl Zbigniew Żytkiewicz Instytut Fizyki PAN Warszawa, Al. Lotników 32/46 zytkie@ifpan.edu.pl Wykład 2 godz./tydzień wtorek Interdyscyplinarne Centrum Modelowania UW Budynek Wydziału Geologii UW sala

2 EPITAKSJA WARSTW PÓŁPRZEWODNIKOWYCH Michał Leszczyński Instytut Wysokich Ciśnień PAN i TopGaN W-wa 11 października 2011

3 DEFINICJA Epitaksja-nakładanie warstw monokrystalicznych na podłoże monokrystaliczne wymuszające strukturękrystalicznąwarstwy.

4 Reaktory do epitaksji związkow zkow półprzewodnikowych przewodnikowych w Polsce (MBE, MOVPE, HVPE) Unipress/ TopGaN ITME Azotkowe W Inne półprzew Razem W Inne instytucje Cała Polska

5 Plan Zastosowania struktur warstw epitaksjalnch Metody wzrostu warstw: MOVPE i MBE Problem niedopasowania sieciowego Wzrost studni kwantowych Domieszkowanie

6 I. Zastosowania struktur warstw epitaksjalnych Diody elektroluminescencyjne LED Diody laserowe LD Tranzystory i sensory Detektory światła Ogniwa słoneczne

7 Diody elektroluminescencyjne LED + GaN:Mg 100nm Al 0.20 GaN:Mg 60nm 4QW QW In X Ga 1-X N/QB In Y Ga 1-Y N:Si In 0.02 GaN:Si 50nm Al 0.16 GaN:Si 40nm GaN:Si 500nm -

8 Diody laserowe p-al0.3 GaN (10 nm) p-gan (50 nm) p-gan/p-al n-gan/al n-gan (140 nm) (26 Ĺ / 26 Ĺ) * 80 SL p-gan (70 nm) GaN ( 29 Ĺ / 29Ĺ )*110 SL GaN In 0.04 GaN:Si (8 nm) In10% GaN /In 4% GaN:Mg (45 Ĺ / 80 Ĺ) * 5 MQW GaN:Si (530 nm) bulk n-gan

9 HEMT, także sensory gazów i cieczy source ohmic gate metal (e.g. aluminum) Schottky diode ohmic drain t b δ n-algaas i-algaas i-gaas 2DEG Insulating substrate

10 Detektory światła Ni/Au Ti/Al GaN:Mg p-algan In Ga N/GaN x 1-x GaN:Si GaN Buffer Sapphire

11 Ogniwa słoneczne

12 II. Metody wzrostu warstw epitaksjalnych Molecular Beam Epitaxy (MBE) Metalorganic Vapour Phase Epitaxy (MOVPE), czasami zwane MOCVD

13 Zasada działania MBE

14 MBE

15 Appropriate other meanings of MBE Mostly Broken Equipment Massive Beer Expenditures Maniac Bloodsucking Engineers Mega-Buck Evaporator Many Boring Evenings (how do you think this list came about?) Minimal Babe Encounters (see previous item) Mainly B.S. and Exaggeration Medieval Brain Extractor Money Buys Everything Make Believe Experiments Management Bullshits Everyone Malcontents, Boobs, and Engineers Music, Beer, and Excedrin

16 RHEED- reflection high energy electron diffraction Gładkość Parametry sieci Rekonstrukcja powierzchni Szybkość wzrostu

17 RHEED

18 Mod wzrostu poprzez płynięcie stopni (step-flow) Brak oscylacji RHEED AFM

19 TEM struktury laserowej wzrastanej metodą MBE 10 nm

20 MOVPE-metalorganic chemical vapour phase epitaxy A(CH3)3+NH3->AN+3CH4 A= Ga, In, Al

21 MOVPE Reflektometria laserowa In-situ Przepływ górny (gaz nośny) podłoże Wlot grupy V NH3 SiH4 gaz nośny grzanie indukcyjne Wlot grupy III TMGa TMAl TMIn Cp2Mg Gaz nośny grafitowa podstawa pokryta SiC

22 MOVPE Układ gazowy Reaktor

23 Wielowaflowe (multiwafer) reaktory MOVPE

24 Reflektometria laserowa (monitorowanie wzrostu struktury niebieskiej diody 6 laserowej) 5 refl. int. [a.u.] time [s]

25 Wbudowywanie się In w InGaN w zależności od przepływu TMI

26 Wbudowywanie się In w InGaN w zależności od temperatury

27 III. Problem niedopasowania sieciowego Homoepitaksja Heteroepitaksja Przypadek warstw naprężonych Przypadek warstw zrelaksowanych

28 III. Relaksacja sieci Naprężone- fully strained Zrelaksowane- relaxed

29 Homoepitaksja Warstwa tego samego związku, co podłoże, może być niedopasowana sieciowo na poziomie ok %

30 Rozepchnięcie cie sieci przez swobodne elektrony E= f (V) + n* Ec de/dv= HP GaN a = a0+ n* Vd c(a) HVPE n(10 19 cm -3 )

31 Rozepchnięcie cie sieci przez swobodne elektrony

32 EL2-like defects 300 K 77 K dark 77 K nm LT GaAs GaAs nm Or +140 K

33

34 Jak stwierdzamy, czy warstwa jest zrelaksowana?

35 Wartości krytyczne do relaksacji critical thickness (nm) dislocations cracking mismatch (%) Wartości niedopasowania i grubości warstw występujących w laserze niebieskim

36 Wartości krytyczne zależą nie tylko od grubości i niedopasowania warstwy epitaksjalnej, ale także od: Dezorientacji (miscut) podłoża Domieszkowania Obecności defektów w podłożu Warunków wzrostu (temperatura, przepływy reagentów, ciśnienie) Grubości podłoża

37 Pękanie 1 µm AlGaN, Al=8% On 60 µm GaN On 120 µm GaN substrates

38 Wygięcie struktury laserowej w zależno ności od grubości podłoża R AlGaN HP GaN R(cm) 1000 cladding Akceptowalne Za małe µm 90 µm 60 µm Al content (%)

39 EPD w strukturze epitaksjalnej niebieskiego lasera 10 5 cm µm 20 µm m LD pasek Około o 5 dyslokacji na pasek, w tym 0-10 przecinających cych warstwę aktywną

40 EPD- informacja gdzie się dyslokacja zaczyna p-gan p-algan/p-gan 0.14 (86 A / 86 A ) * 25 p-gan n-gan n-algan/gan 0.11 (43 A/ 25 A )*98 InGaN 0.5%9 % MQW InGaN:Si 0.08 GaN:Si bulk n-gan Pod warstwą aktywną

41 EPD- informacja gdzie się dyslokacja zaczyna p-gan p-algan/p-gan 0.14 (86 A / 86 A ) * 25 p-gan n-gan n-algan/gan 0.11 (43 A/ 25 A )*98 InGaN 0.5%9 % MQW InGaN:Si 0.08 GaN:Si bulk n-gan Nad warstwą aktywną

42 GaN na szafirze-przykład bardzo dużego niedopasowania- 16% nachylenia ( tilt ) [0001] kąt nachylenia granice mozaiki - skręcenia ( twist ) szafir LT-bufor [11-20] kąt skręcenia

43 Lateralna epitaksja (ELOG-Lateral Epitaxial Overgrowth) jamki trawienia okno wzrostu ELOG maska dyslokacje w warstwie buforowej bufor szafir Model filtrowania dyslokacji w układach warstwowych o dużym niedopasowaniu sieciowym bufor GaN/szafir: gęstość dyslokacji przenikających ELOG cm cm -2

44 I (zliczenia/sek.) GaAs typu ELOG na Si (4% niedopasowania sieciowego) B A Krzywa odbić refl. 004 nie zrośniętych pasków GaAs typu ELOG dla dwóch geometrii pomiaru płaszczyzna dyfrakcji ω - ω max (sek.) płaszczyzna dyfrakcji oś obrotu kąta ω A B oś obrotu kąta ω

45 Dla ultrafioletowych laserów w nie ma szans usunięcia dyslokacji w technologii planarnej dislocations critical thickness (nm) cracking mismatch (%)

46 Zróbmy defekty tylko tam, gdzie nie ma paska laserowego AlN AlN-fully relaxed Type n Type p AlN Dyslokacje zatrzymują pękanie i zmniejszają wygięcie

47 AlGaN-owa warstwa na GaN Zwyczajne podłoże Z maską AlN Over AlN mask Pęknięcia Bez takowych

48 Struktura laserowa na pasiastym podłozu ozu Nie ma dyslokacji Dyslokacje: cm -2 nad maską AlN

49 IV. Studnie kwantowe Skład studni i bariery Szybkość wzrostu, temperatura, itp.. Czas zatrzymania wzrostu na międzypowierzchni Granica ostra albo rozmyta Może lepsze kropki kwantowe zamiast studni

50 Czasem wielostudnie są bliskie ideału intensity (cps) experimental intensity (cps) experimental simulation theta (deg) 1 simulation Angle (deg) 2 theta (deg) Nie ma segregacji indu. d(well)=3.2 nm,, d(barrier)=7.1 nm, x average = 3.2%

51 Czasem nie są s Krzywa odbić dla GaN/InGaN MQW z rozsegregowanym indem experiment simulation intensity [a. u.] ,1 0, Angle 2theta [rel. (arcsec.] sec)

52 Jak badamy gładkog adkość między dzy-powierzchni? Reflektometrią rentgenowską. RMS 1A RMS 20A

53 Reflektometrią też badamy grubość cienkich warstw 60 nm Ni on Si 10 nm Au 60 nm Ni on Si

54 Przykład badań: studnie InGaN QW samples Sample b1093: narrow (3 nm) QWs sample Q3 Sample b1045: wide (9 nm) QWs sample Q9 GaN capping, 20 nm MOCVD n-gan 5x [(3 nm or 9 nm In 0.09 Ga 0.91 N QW) / 9 nm GaN QB, [Si] = cm -3 ] Bulk n-gan

55 Fotoluminescencja E E (ev) Q3 Q9 Różnice Q3 and Q9: 1. Q3 ma S-shape, Q9 nie ma FWHM (ev) Intensity (a.u.) Q Q Q Q Temperature (K) 2. PL intensywność Q9 jest (i) wyższa (ii) Mniej zmienia się z temperaturą. 3. FWHM dla Q3 jest większa niż dla Q9.

56 Mapowanie katodoluminescencji CL peak energy (ev) CL peak energy (ev) T=6 K sample Q T=6 K sample Q Position (µm) Position (µm)

57 Inkorporacja indu w InGaN QW In content in QW [%] dqw [A] Gruba QW - więcej In ale λ taka sama Mniejsza segregacja

58 V. Domieszkowanie Donory np. Si, O w GaAs, GaN, InP (III-V) Akceptory, np. Be w GaAs, Mg w GaN Autokompensacja Kompensacja zanieczyszczeniami Tworzenie par, trójek i większych kompleksów Tworzenie defektów rozciągłych.

59 Warstwa AlGaN z za dużą koncentracją Al i Mg

60 TEM struktury laserowej z za dużą koncentracją domieszki Mg

61 Czego warto nauczyć się o epitaksji w dalszym ciągu wykładu? Zjawiska na powierzchni półprzewodnika w czasie wzrostu, Mechanizmy relaksacji sieci, Od czego zależą własności optyczne i elektryczne półprzewodnikowych struktur kwantowych, I wielu innych rzeczy...

Fizyka i technologia wzrostu kryształów

Fizyka i technologia wzrostu kryształów Fizyka i technologia wzrostu kryształów Wykład.2 Epitaksja warstw półprzewodnikowych Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa, ul Sokołowska 29/37 tel: 88

Bardziej szczegółowo

Wzrost kryształów objętościowych i warstw epitaksjalnych- informacje wstępne. Michał Leszczyński. Instytut Wysokich Ciśnień PAN UNIPRESS i TopGaN

Wzrost kryształów objętościowych i warstw epitaksjalnych- informacje wstępne. Michał Leszczyński. Instytut Wysokich Ciśnień PAN UNIPRESS i TopGaN Wzrost kryształów objętościowych i warstw epitaksjalnych- informacje wstępne Michał Leszczyński Instytut Wysokich Ciśnień PAN UNIPRESS i TopGaN Plan wykładu Laboratoria wzrostu kryształów w Warszawie Po

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej

Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej Michał Leszczyński Wykład 2 godz./tydzień wtorek 9.00 11.00 Interdyscyplinarne Centrum Modelowania UW, Siedziba A, Sala

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska

Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska Michał Leszczyński Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa,

Bardziej szczegółowo

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF

Bardziej szczegółowo

Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu

Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu Marcin Sarzyński Badania finansuje narodowe centrum Badań i Rozwoju Program Lider Instytut Wysokich Cisnień PAN Siedziba 1. Diody laserowe

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Zastosowanie struktur epitaksjalnych półprzewodników na świecie i w Polsce

Zastosowanie struktur epitaksjalnych półprzewodników na świecie i w Polsce Zastosowanie struktur epitaksjalnych półprzewodników na świecie i w Polsce Michał Leszczyński Instytut Wysokich Ciśnień PAN (UNIPRESS) i TopGaN Wykład 21 01 2013 1 Plan wykładu 1. Porównanie wartości produkcji

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów. II. semestr Wstęp. 16 luty 2010

Fizyka, technologia oraz modelowanie wzrostu kryształów. II. semestr Wstęp. 16 luty 2010 Fizyka, technologia oraz modelowanie wzrostu kryształów II. semestr Wstęp 16 luty 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 01 ext. 3363 E-mail:

Bardziej szczegółowo

Kształtowanie przestrzenne struktur AlGaInN jako klucz do nowych generacji przyrządów optoelektronicznych

Kształtowanie przestrzenne struktur AlGaInN jako klucz do nowych generacji przyrządów optoelektronicznych Kształtowanie przestrzenne struktur AlGaInN jako klucz do nowych generacji przyrządów optoelektronicznych Projekt realizowany w ramach programu LIDER finansowanego przez Narodowe Centrum Badań i Rozwoju

Bardziej szczegółowo

Epitaksja - zagadnienia podstawowe

Epitaksja - zagadnienia podstawowe Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja - zagadnienia podstawowe 13 marzec 2008 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 843 66 01 ext.

Bardziej szczegółowo

Z.R. Żytkiewicz IF PAN I Konferencja. InTechFun

Z.R. Żytkiewicz IF PAN I Konferencja. InTechFun Z.R. Żytkiewicz IF PAN I Konferencja Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun 9 kwietnia 2010 r., Warszawa

Bardziej szczegółowo

Lateralny wzrost epitaksjalny (ELO)

Lateralny wzrost epitaksjalny (ELO) Fizyka, technologia oraz modelowanie wzrostu kryształów Lateralny wzrost epitaksjalny (ELO) 15 kwietnia 2013 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 116 3363

Bardziej szczegółowo

Lateralny wzrost epitaksjalny (ELO)

Lateralny wzrost epitaksjalny (ELO) Fizyka, technologia oraz modelowanie wzrostu kryształów Lateralny wzrost epitaksjalny (ELO) 18 maj 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 01

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Fizyka i technologia wzrostu kryształów

Fizyka i technologia wzrostu kryształów Fizyka i technologia wzrostu kryształów Wykład.1 Wzrost kryształów objętościowych półprzewodników na świecie i w Polsce Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa,

Bardziej szczegółowo

Metody wytwarzania elementów półprzewodnikowych

Metody wytwarzania elementów półprzewodnikowych Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

ROZDZIAŁ 4. Polskie diody laserowe do wysokoczułych sensorów ditlenku azotu

ROZDZIAŁ 4. Polskie diody laserowe do wysokoczułych sensorów ditlenku azotu 39 ROZDZIAŁ 4 Polskie diody laserowe do wysokoczułych sensorów ditlenku azotu 4.1. Wstęp Związki (GaAlIn)N są drugą, co do ważności komercyjnej, grupą półprzewodników (za Si-Ge, ale znacznie przed (GaAlIn)(AsP)).

Bardziej szczegółowo

Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.

Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 01-142 Warszawa, ul Sokołowska 29/37 tel: 88 80 244 e-mail: stach@unipress.waw.pl,

Bardziej szczegółowo

Materiały fotoniczne

Materiały fotoniczne Materiały fotoniczne Półprzewodniki Ferroelektryki Mat. organiczne III-V, II-VI, III-N - źródła III-V (λ=0.65 i 1.55) II-IV, III-N niebieskie/zielone/uv - detektory - modulatory Supersieci, studnie Kwantowe,

Bardziej szczegółowo

Materiały w optoelektronice

Materiały w optoelektronice Materiały w optoelektronice Materiał Typ Podłoże Urządzenie Długość fali (mm) Si SiC Ge GaAs AlGaAs GaInP GaAlInP GaP GaAsP InP InGaAs InGaAsP InAlAs InAlGaAs GaSb/GaAlSb CdHgTe ZnSe ZnS IV IV IV III-V

Bardziej szczegółowo

Technologia wzrostu epitaksjalnego struktur azotkowych oraz badanie własności optycznych i elektrycznych niebieskich diod LED i LD

Technologia wzrostu epitaksjalnego struktur azotkowych oraz badanie własności optycznych i elektrycznych niebieskich diod LED i LD SPRAWOZDANIE Z PRAKTYKI STUDENCKIEJ Warszawa, lipiec 2006 Technologia wzrostu epitaksjalnego struktur azotkowych oraz badanie własności optycznych i elektrycznych niebieskich diod LED i LD Justyna Szeszko

Bardziej szczegółowo

Załącznik nr 1. Projekty struktur falowodowych

Załącznik nr 1. Projekty struktur falowodowych Załącznik nr 1 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

EPITAKSJA MOVPE AZOTKOW III GRUPY UKŁADU OKRESOWEGO - GŁÓWNE PROBLEMY TECHNOLOGICZNE

EPITAKSJA MOVPE AZOTKOW III GRUPY UKŁADU OKRESOWEGO - GŁÓWNE PROBLEMY TECHNOLOGICZNE PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 31-2003 NR 3/4 EPITAKSJA MOVPE AZOTKOW III GRUPY UKŁADU OKRESOWEGO - GŁÓWNE PROBLEMY TECHNOLOGICZNE Ewa Dumiszewska', Dariusz Lenkiewicz', Włodzimierz Strupiński',

Bardziej szczegółowo

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Janiszewskiego 11/17, Wrocław

Wydział Elektroniki Mikrosystemów i Fotoniki Janiszewskiego 11/17, Wrocław Wydział Elektroniki Mikrosystemów i Fotoniki Janiszewskiego 11/17, 50-372 Wrocław Laboratorium Nanotechnologii i Struktur Półprzewodnikowych Nasza lokalizacja: Campus ul. Długa 65 53-633 Wrocław, Polska

Bardziej szczegółowo

Epitaksja metodą wiązek molekularnych (MBE)

Epitaksja metodą wiązek molekularnych (MBE) Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja metodą wiązek molekularnych (MBE) 18 marzec 2013 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 22

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 1908099 (96) Data i numer zgłoszenia patentu europejskiego: 24.08.06 06792997.6 (13) (1) T3 Int.Cl. H01L 21/ (06.01) Urząd

Bardziej szczegółowo

Cienkie warstwy. Podstawy fizyczne Wytwarzanie Właściwości Zastosowania. Co to jest cienka warstwa?

Cienkie warstwy. Podstawy fizyczne Wytwarzanie Właściwości Zastosowania. Co to jest cienka warstwa? Cienkie warstwy Podstawy fizyczne Wytwarzanie Właściwości Zastosowania Co to jest cienka warstwa? Gdzie stosuje się cienkie warstwy? Wszędzie Wszelkiego rodzaju układy scalone I technologia MOS, i wytwarzanie

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Naprężenia i defekty w półprzewodnikowych lateralnych strukturach epitaksjalnych badane technikami dyfrakcji i topografii rentgenowskiej

Naprężenia i defekty w półprzewodnikowych lateralnych strukturach epitaksjalnych badane technikami dyfrakcji i topografii rentgenowskiej Instytut Fizyki Polskiej Akademii Nauk Naprężenia i defekty w półprzewodnikowych lateralnych strukturach epitaksjalnych badane technikami dyfrakcji i topografii rentgenowskiej Aleksandra Wierzbicka Rozprawa

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

V Konferencja Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie PROGRAM

V Konferencja Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie PROGRAM V Konferencja Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie PROGRAM Kwantowe Nanostruktury Półprzewodnikowe do Zastosowań w Biologii i Medycynie Rozwój i Komercjalizacja

Bardziej szczegółowo

Co to jest cienka warstwa?

Co to jest cienka warstwa? Co to jest cienka warstwa? Gdzie i dlaczego stosuje się cienkie warstwy? Układy scalone, urządzenia optoelektroniczne, soczewki i zwierciadła, ogniwa paliwowe, rozmaite narzędzia,... 1 Warstwy w układach

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

Mikrostruktura warstw InGaN stosowanych w niebieskich emiterach światła

Mikrostruktura warstw InGaN stosowanych w niebieskich emiterach światła Instytut Fizyki Polskiej Akademii Nauk Marcin Kryśko Mikrostruktura warstw InGaN stosowanych w niebieskich emiterach światła Rozprawa Doktorska wykonana w Instytucie Wysokich Ciśnień PAN Unipress Promotor:

Bardziej szczegółowo

Technologia cienkowarstwowa

Technologia cienkowarstwowa Physical Vapour Deposition Evaporation Dlaczego w próżni? 1. topiony materiał wrze w niższej temperaturze 2. zmniejsza się proces utleniania wrzącej powierzchni 3. zmniejsza się liczba zanieczyszczeń w

Bardziej szczegółowo

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH, Warszawa, PL

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH, Warszawa, PL PL 217755 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217755 (13) B1 (21) Numer zgłoszenia: 387290 (51) Int.Cl. H01S 5/125 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,

Bardziej szczegółowo

Skalowanie układów scalonych

Skalowanie układów scalonych Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna

Bardziej szczegółowo

Domieszkowanie półprzewodników

Domieszkowanie półprzewodników Jacek Mostowicz Domieszkowanie półprzewodników Fizyka komputerowa, rok 4, 10-06-007 STRESZCZENIE We wstępie przedstawiono kryterium podziału materiałów na metale, półprzewodniki oraz izolatory, zdefiniowano

Bardziej szczegółowo

WYTWARZANIE HETEROSTRUKTUR InP/InGaAs METODĄ EPITAKSJI Z FAZY GAZOWEJ Z UŻYCIEM METALOORGANIKI (MOVPE)

WYTWARZANIE HETEROSTRUKTUR InP/InGaAs METODĄ EPITAKSJI Z FAZY GAZOWEJ Z UŻYCIEM METALOORGANIKI (MOVPE) PL ISSN 020'í-0058 MATRRIAł.Y Hl.KKTRONK/NI T. 26-1998 NR 3/4 WYTWARZANIE HETEROSTRUKTUR InP/InGaAs METODĄ EPITAKSJI Z FAZY GAZOWEJ Z UŻYCIEM METALOORGANIKI (MOVPE) Agata Jasik', Włodzimierz Strupiński',

Bardziej szczegółowo

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów Typowe wymagania klasy czystości: 1000/100

Bardziej szczegółowo

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN

WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN P. Caban, K. Kościewicz, W. Strupiński,... PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 36-2008 NR 4 WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN Piotr Caban 1,2, Kinga Kościewicz 1,3, Włodzimierz Strupiński

Bardziej szczegółowo

Osadzanie z fazy gazowej

Osadzanie z fazy gazowej Osadzanie z fazy gazowej PVD (Physical Vapour Deposition) Obniżone ciśnienie PVD procesy, w których substraty dla nakładania warstwy otrzymywane są przez parowanie lub rozpylanie. PAPVD Plasma Assisted

Bardziej szczegółowo

Układy cienkowarstwowe cz. II

Układy cienkowarstwowe cz. II Układy cienkowarstwowe cz. II Czym są i do czego mogą się nam przydać? Rodzaje mechanizmów wzrostu cienkich warstw Sposoby wytwarzania i modyfikacja cienkich warstw półprzewodnikowych czyli... Jak zrobić

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

Co to jest cienka warstwa?

Co to jest cienka warstwa? Co to jest cienka warstwa? Gdzie i dlaczego stosuje się cienkie warstwy? Układy scalone, urządzenia optoelektroniczne, soczewki i zwierciadła, ogniwa paliwowe, rozmaite narzędzia,... 1 Warstwy w układach

Bardziej szczegółowo

Skalowanie układów scalonych Click to edit Master title style

Skalowanie układów scalonych Click to edit Master title style Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna

Bardziej szczegółowo

Epitaksja metodą wiązek molekularnych (MBE)

Epitaksja metodą wiązek molekularnych (MBE) Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja metodą wiązek molekularnych (MBE) 13 kwiecień 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel:

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Centrum Materiałów Zaawansowanych i Nanotechnologii

Centrum Materiałów Zaawansowanych i Nanotechnologii Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres I 2010 XII 2011 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane

Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Fizyka, technologia oraz modelowanie wzrostu kryształów Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN piotr@unipress.waw.pl Wykład:

Bardziej szczegółowo

Diody elektroluminescencyjne na bazie GaN z powierzchniowymi kryształami fotonicznymi

Diody elektroluminescencyjne na bazie GaN z powierzchniowymi kryształami fotonicznymi Diody elektroluminescencyjne na bazie z powierzchniowymi kryształami fotonicznymi Krystyna Gołaszewska Renata Kruszka Marcin Myśliwiec Marek Ekielski Wojciech Jung Tadeusz Piotrowski Marcin Juchniewicz

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII GaSb, GaAs, GaP Joanna Mieczkowska Semestr VII 1 Pierwiastki grupy III i V układu okresowego mają mało jonowy charakter. 2 Prawie wszystkie te kryształy mają strukturę blendy cynkowej, typową dla kryształów

Bardziej szczegółowo

Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej

Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej Robert P. Sarzała 1, Michał Wasiak 1, Maciej Kuc 1, Adam K. Sokół 1, Renata Kruszka 2, Krystyna Gołaszewska 2

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

MBE epitaksja z wiązek molekularnych

MBE epitaksja z wiązek molekularnych MBE epitaksja z wiązek molekularnych Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład w PTWK, 4 kwietnia,

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Fizyka Laserów wykład 10. Czesław Radzewicz

Fizyka Laserów wykład 10. Czesław Radzewicz Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e

Bardziej szczegółowo

III Pracownia Półprzewodnikowa

III Pracownia Półprzewodnikowa Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

Pomiary widm fotoluminescencji

Pomiary widm fotoluminescencji Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do

Bardziej szczegółowo

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy Plan 1. Przegląd struktur niskowymiarowych a. studnie kwantowe, supersieci, wytwarzanie b. druty kwantowe, kropki kwantowe; wytwarzanie nanokryształy struktury samorosnące c. charakter widm optycznych

Bardziej szczegółowo

Zaawansowana Pracownia IN

Zaawansowana Pracownia IN Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.

Bardziej szczegółowo

Niebieskie, zielone i białe emitery światła wytwarzane z półprzewodników A III -B N

Niebieskie, zielone i białe emitery światła wytwarzane z półprzewodników A III -B N Ukazuje się od 1919 roku 7'14 Organ Stowarzyszenia Elektryków Polskich Wydawnictwo SIGMA-NOT Sp. z o.o. Mariusz RUDZIŃSKI, Marek WESOŁOWSKI, Włodzimierz STRUPIŃSKI Instytut Technologii Materiałów Elektronicznych,

Bardziej szczegółowo

TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone,

TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, 1. Technologia wykonania złącza p-n W rzeczywistych złączach

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Epitaksja z fazy ciekłej (LPE)

Epitaksja z fazy ciekłej (LPE) Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 8 kwiecień 213 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext.

Bardziej szczegółowo

Fizyka i technologia wzrostu kryształów

Fizyka i technologia wzrostu kryształów Fizyka i technologia wzrostu kryształów Wykład 11. Wzrost kryształów objętościowych z fazy roztopionej (roztopu) Tomasz Słupiński e-mail: Tomasz.Slupinski@fuw.edu.pl Stanisław Krukowski i Michał Leszczyński

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

zasięg koherencji dla warstw nadprzewodzących długość fali de Broglie a w przypadku warstw dielektrycznych.

zasięg koherencji dla warstw nadprzewodzących długość fali de Broglie a w przypadku warstw dielektrycznych. Cienkie warstwy Cienka warstwa to dwuwymiarowe ciało stałe o specjalnej konfiguracji umożliwiającej obserwowanie specyficznych efektów nie występujących w materiale litym. Istotnym parametrem charakteryzującym

Bardziej szczegółowo

http://rcin.org.pl Maciej BUGAJSKI, Andrrej JAGODA, Leszek SZYMAŃSKI Insłyłuł Technologii Elektronowej 1. WST^P

http://rcin.org.pl Maciej BUGAJSKI, Andrrej JAGODA, Leszek SZYMAŃSKI Insłyłuł Technologii Elektronowej 1. WST^P Maciej BUGAJSKI, Andrrej JAGODA, Leszek SZYMAŃSKI Insłyłuł Technologii Elektronowej Wyznaczanie wewnętrznej sprawnotel kwantowej pekonnbinacll ppomfenistej w monokpystalicznym GaAs z pomiarów ffotoiuminescencii

Bardziej szczegółowo

WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN

WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN P. Caban, K. Kościewicz, W. Strupiński,... PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 36-2008 NR 4 WPŁYW TRAWIENIA PODŁOŻY 4H-SiC NA EPITAKSJĘ GaN Piotr Caban 1,2, Kinga Kościewicz 1,3, Włodzimierz Strupiński

Bardziej szczegółowo

SESJA PLAKATOWA I wtorek 23.06.2009, godz. 17:30 19:30

SESJA PLAKATOWA I wtorek 23.06.2009, godz. 17:30 19:30 SESJA PLAKATOWA I wtorek 23.06.2009, godz. 17:30 19:30 Nr plakatu P1 Bartnik P2 ukasz Bober P3 Lech Borowicz P4 Micha³ Byrczek P5 Joanna Cabaj P6 Piotr Caban P7 Piotr Caban P8 Jerzy Ciosek P9 Cezary Czosnek

Bardziej szczegółowo

Azotek galu GaN - półprzewodnik XXI w. od kryształów do struktur kwantowych.

Azotek galu GaN - półprzewodnik XXI w. od kryształów do struktur kwantowych. Azotek galu GaN - półprzewodnik XXI w. od kryształów do struktur kwantowych. Sylwester Porowski Izabella Grzegory Czesław Skierbiszewski Instytut Wysokich Ciśnień PAN 43 Zjazd Fizyków Polskich Kielce,

Bardziej szczegółowo

Aparatura do osadzania warstw metodami:

Aparatura do osadzania warstw metodami: Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża do osadzania warstw epitaksjalnych

Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża do osadzania warstw epitaksjalnych Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża... Monokryształy SI GaAs o orientacji [310] jako materiał na podłoża do osadzania warstw epitaksjalnych Andrzej Hruban, Wacław Orłowski,

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Specyfikacja istotnych warunków zamówienia publicznego

Specyfikacja istotnych warunków zamówienia publicznego INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK PL - 02-668 WARSZAWA, AL. LOTNIKÓW 32/46 Tel. (48-22) 843 66 01 Fax. (48-22) 843 09 26 REGON: P-000326061, NIP: 525-000-92-75 DZPIE/004/2010 Specyfikacja istotnych

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Epitaksja z fazy ciekłej (LPE)

Epitaksja z fazy ciekłej (LPE) Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 23 marzec 21 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext. 3363

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia aw. C-3, okój 413; tel.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

W stronę plazmonowego wzmocnienia efektów magnetooptycznych

W stronę plazmonowego wzmocnienia efektów magnetooptycznych W stronę plazmonowego wzmocnienia efektów magnetooptycznych Joanna Papierska J. Suffczyński, M. Koperski, P. Nowicki, B. Witkowski, M. Godlewski, A. Navarro-Quezada, A. Bonanni Warsztaty NanoWorld 2011,

Bardziej szczegółowo