Badanie pól elektrycznych w azotkach metodami optycznymi

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie pól elektrycznych w azotkach metodami optycznymi"

Transkrypt

1 Badanie pól elektrycznych w azotkach metodami optycznymi Krzysztof Zieleniewski Pod opieką dr. Anety Drabińskiej Proseminarium Fizyki Ciała Stałego, 8 kwietnia 2010

2 O czym będzie? Dlaczego azotki? Dlaczego pole elektryczne? Po co to wszystko, czyli o zastosowaniach Eksperyment, czyli jak się mierzy? Historia, czyli jak to się zaczęło? Teoria elektroodbicia, czyli z czego to wynika? Limity małego, średniego i dużego pola elektrycznego Fotoluminescencja na przykładzie D299 Fotoprzewodnictwo Podsumowanie

3 Dlaczego azotki? N. Ambacher et al., J. Appl. Phys. D 31, p (1998)

4 Dlaczego azotki? Na podstawie: Matsuoka Lab, Uniwersytet Tohoku, Japonia (2005)

5 Dlaczego azotki? AlN, GaN, InN Kryształy mieszane heterostruktury Studnie i kropki kwantowe Struktura wurcytu pole elektryczne Duża odporność mechaniczna, chemiczna i termiczna

6 Zastosowania Niebieski laser, detektory UV VIS IR, diody LED (do 250 nm) Blue nm Baterie słoneczne Urządzenia SAW (Surface Acoustic Waves) mikrofony, ekrany dotykowe Potencjalnie też tranzystory THz, optoelektronika, wzmacniacze mocy, detektory chemiczne i biologiczne M. A. Khan et al., Appl. Phys. Lett 63, p (1993)

7 Dlaczego pole elektryczne? Azotki mogą być kryształami III-V w strukturze wurcytu; wtedy mają polaryzację spontaniczną: AlN: -0,081 C/m2; GaN: -0,029 C/m2; InN -0,032 C/m2 [O. Ambacher et al., J. Appl. N. Granjean et al., Phys. D 31 (1998), p. 2654] J. Appl. Phys. 88, 1 (2000) Poza tym są piezoelektrykami, więc przy nawet minimalnych naprężeniach pojawiają się dodatkowe pola W heterostrukturach pola te indukują ładunki związane Jednocześnie swobodne ładunki ekranują te pola

8 Różne techniki eksperymentalne Odbicie i jego modulacje: elektroodbicie (ER), fotoodbicie (PR), piezoodbicie, termoodbicie Fotoluminescencja (PL) Fotoprzewodnictwo (PC)

9 O historii słów kilka Ignacy Filiński 1957, Phys. Rew. 107, 1193 ( ) Odkrycie Franza i Kiełdysza 1958 W. Franz, Z. Naturforschag 13a, 484 (1958) L. V. Keldysh, J. of Exp. and Theor. Phys. 34, 1138 (1958) B. O. Seraphin and N. Bottka, Phys. Rev. 139, 2A, p. 560 (1965) D. E. Aspnes wyjaśnił teoretycznie oscylacje Franza-Kiełdysza na początku lat '70 D. E. Aspnes, Phys. Rev. B 10, 4228 (1974)

10 PR/ER - Teoria Zmiany współczynnika odbicia są powiązane z funkcją dielektryczną J. Miesiewicz, P. Sitarek, G. Sęk, Introduction to te photoreflectance spectroscopy of semiconductor structures, Wrocław 1999 [tamże następne wzory]

11 PR/ER - Teoria Energia elektrooptyczna ħω

12 PR/ER - Teoria Parametr poszerzenia Mechanizmy poszerzenia (temperaturowe, ekscytonowe)

13 PR/ER - Słabe pole F ħω << Γ W przypadku małego pola, można je potraktować jako perturbację do rozwiązania bez niego zależność od trzeciej pochodnej funkcji czyni tę technikę bardzo czułą na zmiany parametrów.

14 PR/ER - Średnie pole F Γ < ħω << efa0 Oscylacje Franza-Kiełdysza Mechanizm powstawania tunelowanie elektronów przez trójkątną barierę potencjału M. Beck, Uniwersytet w Erlangen

15 Średnie pole F Wzór opisujący (przybliżenie): Co można wywnioskować z okresu, a co z konturu

16 PR/ER Studnia kwantowa Rozszczepienie Starka

17 PR/ER - Silne pole F Rozszczepienie Starka

18 PR/ER - Silne pole F Rozszczepienie Starka K. Korona et al., Warna 2008

19 Układ eksperymentalny do PR Na podstawie: J. Miesiewicz, P. Sitarek, G. Sęk, Introduction to te photoreflectance spectroscopy of semiconductor structures, Wrocław 1999

20 Średnie pole F - PR Wetzler et al., J. Appl. Phys., 85, 7 (1999)

21 Układ eksperymentalny do ER Na podstawie: J. Miesiewicz, P. Sitarek, G. Sęk, Introduction to te photoreflectance spectroscopy of semiconductor structures, Wrocław 1999

22 Średnie pole F - ER Rysunek wykonany przez A. Drabińską

23 Średnie pole F - ER Rysunek wykonany przez A. Drabińską

24 PR/ER - porównanie Fotoodbicie nie wymaga kontaktów W fotoodbiciu zmiany pola elektrycznego zachodzą jedynie do energii pobudzania przez laser, podczas gdy w elektroodbiciu cała struktura się pochyla

25 Fotoluminescencja Mechanizm powstawania Skala czasowa ns K. Korona et al., Warna 2008

26 Układ eksperymentalny do PL

27 Fotoluminescencja K. Pakuła Opis próbek D277-D299 (2010)

28 Fotoluminescencja

29 Fotoprzewodnictwo Kreowanie światłem nośników i badanie, jak to wpływa na przewodnictwo Takie nośniki migrują zgodnie z polem elektrycznym i je ekranują

30 Fotoprzewodnictwo K. Korona et al., Warna 2008

31 Fotoprzewodnictwo Zależność od przyłożonego napięcia i od czasu: K. Korona et al., Warna 2008 H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, J. Appl. Phys. 82, 2 (1997)

32 Inne zastosowania eksperymentalne Co jeszcze można tym mierzyć? Skład Koncentracja nośników Grubość próbki Stany pułapkowe Zmiany energii od T Naprężenia

33 Skład Sprawdzenie składu próbek z energii bariery danej próbki Elektroodbicie i fotoluminescencja

34 Koncentracja nośników Koncentracja nośników wpływa na skuteczność ekranowania pola elektrycznego, jak również na kształt FKO X. Zhang, S.-J. Chua, Wei Liu, and K.-B. Chong, Appl. Phys. Lett. 72, 15, p (1998)

35 Grubość próbki Grubość próbki interferencje na grubości płytki w zakresie podczerwonym i optycznym (tu: 510 nm) Rysunek wykonany przez K. Masztalerz

36 Zależność temperaturowa N. Granjean et al., J. Appl. Phys. 88, 1 (2000)

37 Podsumowanie Azotki mają skomplikowane i duże pola elektryczne, co rodzi wyzwania Takeuchi 2010 fizyczne, jak i bogactwo zastosowań Jest wiele źródeł pola elektrycznego: spontaniczne, piezoeletryczne (naprężenia wewnętrzne i zewnętrzne) Istnieje kilka różnych technik PR, ER, PL, PC i inne W średnim polu pojawiają się FKO

38 Dziękuję za uwagę Referencje: I. Filiński, Phys. Rev. 107, 1193 (1957) L. Sosnowski, Phys. Rev. 107, (1957) W. Franz, Z. Naturforschag 13a, 484 (1958) L. V. Keldysh, J. of Exp. and Theor. Phys. 34, 1138 (1958) D. E. Aspnes, Surface Science 37, 418 (1973) D. E. Aspnes, Phys. Rev. B 10, 4228 (1974) M. A. Khan et al., Appl. Phys. Lett 63, 2455 (1993) H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, J. Appl. Phys. 82, 2 (1997) X. Zhang, S.-J. Chua, Wei Liu, and K.-B. Chong, Appl. Phys. Lett. 72, 15, p (1998) O. Ambacher et al., J. Appl. Phys. D 31 (1998), p J. Miesiewicz, P. Sitarek, G. Sęk, Introduction to te photoreflectance spectroscopy of semiconductor structures, Wrocław 1999

39 Dalsze referencje C. Wetzler, T. Takeuchi, H. Amano, and I. Akasaki, J. Appl. Phys. 85, 7, p (1999) N. Granjean et al., J. Appl. Phys. 88, 1 (2000) A. Drabińska et al., Phys. Status Solidi A 206, 5, p (2009) K. Korona, A. Drabińska, J. Borysiuk, P. Caban, Nitride-based photodetectors containing quantum wells in tunable electric field, 15th International School on Condenset Matter Physics, Warna 2008 M. Beck, Uniwersytet w Erlangen, dostęp: [dostęp: ] K. Takeuchi, S. Adachi, K. Ohtsuka, J. Appl. Phys. 107, (2010) K. Pakuła, Opis próbek D277-D299 (2010)

40 Nieużyte: C. Van Hoof et al., Appl. Phys. Lett. 54, 7 (1989) F. Cerdeira et al., Phys. Rev. B 42, 15 (1990) J. Wu et al., Appl. Phys. Lett. 80, 21(2002), DOI: / T. Graf et al., Appl. Phys. Lett. 81, 27 (2002), DOI: / K. P. Korona et al., A. Phys. Polonica 114, 5 (2008)

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

Badania właściwości dwuwymiarowego gazu swobodnych nośników w zewnętrznym polu elektrycznym lub magnetycznym

Badania właściwości dwuwymiarowego gazu swobodnych nośników w zewnętrznym polu elektrycznym lub magnetycznym Załącznik nr 2 Autoreferat Badania właściwości dwuwymiarowego gazu swobodnych nośników w zewnętrznym polu elektrycznym lub magnetycznym Aneta Drabińska Zakład Fizyki Ciała Stałego, Instytut Fizyki Doświadczalnej,

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Krawędź absorpcji podstawowej

Krawędź absorpcji podstawowej Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka

Bardziej szczegółowo

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Materiały fotoniczne

Materiały fotoniczne Materiały fotoniczne Półprzewodniki Ferroelektryki Mat. organiczne III-V, II-VI, III-N - źródła III-V (λ=0.65 i 1.55) II-IV, III-N niebieskie/zielone/uv - detektory - modulatory Supersieci, studnie Kwantowe,

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H

Bardziej szczegółowo

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej. Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie

Bardziej szczegółowo

Położenie pasma przewodnictwa oraz walencyjnego w nienaprężonych i naprężonych związkach półprzewodnikowych

Położenie pasma przewodnictwa oraz walencyjnego w nienaprężonych i naprężonych związkach półprzewodnikowych Położenie pasma przewodnictwa oraz walencyjnego w nienaprężonych i naprężonych związkach półprzewodnikowych Plan wykładu Związki półprzewodnikowe mieszane: - przybliżenie kryształu wirtualnego, prawo Vegarda,

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 2 Badanie własności ferroelektrycznych soli Seignette a Celem ćwiczenia jest wyznaczenie zależności temperaturowej

Bardziej szczegółowo

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach

Bardziej szczegółowo

Spintronika fotonika: analogie

Spintronika fotonika: analogie : analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Grafen perspektywy zastosowań

Grafen perspektywy zastosowań Grafen perspektywy zastosowań Paweł Szroeder 3 czerwca 2014 Spis treści 1 Wprowadzenie 1 2 Właściwości grafenu 2 3 Perspektywy zastosowań 2 3.1 Procesory... 2 3.2 Analogoweelementy... 3 3.3 Czujniki...

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wysokowydajne falowodowe źródło skorelowanych par fotonów

Wysokowydajne falowodowe źródło skorelowanych par fotonów Wysokowydajne falowodowe źródło skorelowanych par fotonów Michał Karpioski * Konrad Banaszek, Czesław Radzewicz * * Instytut Fizyki Doświadczalnej, Instytut Fizyki Teoretycznej Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Nanofizyka co wiemy, a czego jeszcze szukamy?

Nanofizyka co wiemy, a czego jeszcze szukamy? Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Egzamin / zaliczenie na ocenę*

Wykład Ćwiczenia Laboratorium Projekt Seminarium Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ Podstawowych problemów Techniki / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Projektowanie Materiałów i Sturktur Nazwa w języku angielskim Design of Materials and Structures

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Liniowe i nieliniowe własciwości optyczne chromoforów organiczych. Summer 2012, W_12

Liniowe i nieliniowe własciwości optyczne chromoforów organiczych. Summer 2012, W_12 Liniowe i nieliniowe własciwości optyczne chromoforów organiczych Powszechność SHG: Każda molekuła niecentrosymetryczna D-p-A p musi być łatwo polaryzowalna CT o niskiej energii Uporządkowanie ukierunkowanie

Bardziej szczegółowo

Mikroskop sił atomowych

Mikroskop sił atomowych Mikroskop sił atomowych AFM: jak to działa? Krzysztof Zieleniewski Proseminarium ZFCS, 5 listopada 2009 Plan seminarium Łyczek historii Możliwości mikroskopu Budowa mikroskopu na Pasteura Podstawowe mody

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH

Bardziej szczegółowo

Pole elektryczne w ośrodku materialnym

Pole elektryczne w ośrodku materialnym Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała

Bardziej szczegółowo

Fizyka Laserów wykład 10. Czesław Radzewicz

Fizyka Laserów wykład 10. Czesław Radzewicz Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e

Bardziej szczegółowo

Organiczne ogniwa słonecznes. Ogniwa półprzewodnikowe. p przewodnikowe zasada ania. Charakterystyki fotoogniwa

Organiczne ogniwa słonecznes. Ogniwa półprzewodnikowe. p przewodnikowe zasada ania. Charakterystyki fotoogniwa j Elektronika plastikowa i organiczna Organiczne ogniwa słonecznes Ogniwa półprzewodnikowe p przewodnikowe zasada działania ania Charakterystyki fotoogniwa współczynnik wypełnienia, wydajność Moc w obwodzie

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM) Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Załącznik nr 1. Projekty struktur falowodowych

Załącznik nr 1. Projekty struktur falowodowych Załącznik nr 1 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) VII OSKNF 8 XI 2008 Plan Po co nam optyka kwantowa? Czerwony + Czerwony = Niebieski?

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Detektor CCD. aparaty cyfrowe kamery VIDEO spektroskopia mikrofotografia astrofizyka inne

Detektor CCD. aparaty cyfrowe kamery VIDEO spektroskopia mikrofotografia astrofizyka inne Wykład VIII CCD 1 Detektor CCD Uran - pierwszy obiekt sfotografowany przy pomocy CCD w r. 1975. (61 calowy teleskop w górach Santa Catalina w pobliżu Tucson - Arizona). Zdjęcie zrobione zostało przy 0.89mm.

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

Optyczne elementy aktywne

Optyczne elementy aktywne Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

- 1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

- 1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW 33/01 WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim Fizyka 3.3 Nazwa w języku angielskim Physics 3.3 Kierunek studiów: Automatyka i Robotyka Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo