Trójwymiarowa grafika komputerowa rzutowanie
|
|
- Filip Grzelak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej
2 Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie parametrów rzutowania obcinanie w trzech wymiarach rzutowanie i wyświetlanie
3 Rzutowanie w przestrzeni 3D Koncepcyjny model procesu rzutowania 3D
4 Rzuty rzuty przekształcają punkty w n-wymiarowym układzie współrzędnych w punkty w układzie współrzędnych o wymiarze mniejszym niż n rzut obiektu 3D jest określony przez promienie rzutujące wychodzące ze środka rzutowania, przechodzące przez każdy punkt obiektu i przecinające płaszczyznę rzutowania
5 Rzutowanie w przestrzeni 3D Klasyfikacja płaskich rzutów geometrycznych
6 Rzutowanie perspektywiczne
7 Rzuty odcinek AB i jego rzut perspektywiczny
8 Rzuty odcinek AB i jego rzut równoległy
9 Rzuty perspektywiczne rzuty perspektywiczne dowolnego zbioru linii równoległych, które nie są równoległe do rzutni, zbiegają się w punkcie zbieżności. jeżeli rozważany zbiór linii jest równoległy do jednej z trzech osi, to punkt, w którym się zbiegają jest określany jako osiowy punkt zbieżności. rzuty perspektywiczne są dzielone ze względu na liczbę osiowych punktów zbieżności.
10 Rzuty perspektywiczne jednopunktowy rzut perspektywiczny sześcianu na płaszczyznę przecinającą oś Z z z
11 Rzuty perspektywiczne konstrukcja jednopunktowego rzutu perspektywicznego
12 Rzuty perspektywiczne rzut sześcianu w perspektywie dwupunktowej z x y
13 Rzutowanie równoległe
14 Rzuty równoległe rozróżniamy rzuty: prostokątny skośny najbardziej typowe rzuty ortogonalne: przedni górny boczny
15 Rzuty równoległe konstrukcja trzech rzutów prostokątnych:
16 Rzuty równoległe w aksonometrycznych rzutach prostokątnych rzutnia nie jest prostopadła do głównej osi co umożliwia obserwację kilku stron obiektu. często stosowanym rzutem aksonometrycznym jest rzut izometryczny normalna do rzutni tworzy równe kąty z głównymi osiami
17 Rzuty równoległe konstrukcja rzutu izometrycznego dla sześcianu jednostkowego:
18 Rzuty równoległe rzuty ukośne normalna do rzutni i kierunek rzutowania różnią się łączą własności rzutów prostokątnych czołowego, górnego i bocznego z właściwościami rzutu aksonometrycznego na rzutach innych płaszczyzn obiektu można dokonywać pomiarów odległości wzdłuż głównych osi, ale nie dotyczy to kątów.
19 Rzuty równoległe konstrukcja rzutu ukośnego
20 Dowolny rzut 3D Rzutnia inaczej płaszczyzna rzutowania, Płaszczyznę rzutowania określa: punkt na tej płaszczyźnie tzw. punkt odniesienia rzutni (VRP), normalna do płaszczyzny tzw. Normalna do rzutni (VPN),
21 Dowolny rzut 3D W celu wyznaczenia okna dla rzutni należy określić: minimalną i maksymalną współrzędną okna, układ współrzędnych rzutowania (VRC), dwie osie na rzutni jedna do niej prostopadła, punkt (VRP) będący początkiem układu (VRC)
22 Dowolny rzut 3D jedną z osi układu (VRC) jest oś normalna oznaczana jako n wyznaczana przez wektor normalny (VPN) drugą oś układu (VRC) oznaczaną jako v wyznacza wektor (VUP) skierowany ku górze, a właściwie jego rzut
23 Dowolny rzut 3D rzutnia jest wyznaczana przez wektor (VPN) i punkt (VRP), oś v określona przez rzut wektora (VUP) równolegle do (VPN) na rzutnię, oś u tworzy z osiami n i v prawoskrętny układ współrzędnych
24 Dowolny rzut 3D Układ współrzędnych rzutowania (VRC) Dla przyjętego układu rzutowania można określić współrzędne u i v okna rzutowania
25 Rzut perspektywiczny bryła widzenia jest otwartym ostrosłupem z wierzchołkiem w (PRP) i krawędziach przechodzących przez rogi okna, obszar z tyłu za środkiem rzutu nie jest włączany do bryły widzenia
26 Rzut równoległy bryła widzenia jest nieskończonym równoległościanem o bokach równoległych do kierunku rzutowania, jest to kierunek od punktu (PRP) do środka okna.
27 Dowolny rzut 3D W celu zmniejszenia liczby rzutowanych prymitywów stosuje się ograniczoną bryłę widzenia: zastosowanie płaszczyzn obcinających, płaszczyzny są równoległe do rzutni, Normalna do płaszczyzn to wektor (VPN).
28 Rzut równoległy 3D Obcięta bryła widzenia dla rzutu równoległego prostokątnego. (DOP) kierunek rzutu.
29 Obcieta bryła widzenia eliminacja niepotrzebnych obiektów, możliwość skoncentrowania się na określonym fragmencie sceny, eliminacja obiektów bardzo odległych od środka rzutowania.
30 Rzut perspektywiczny 3D Obcięta bryła widzenia dla rzutu perspektywicznego.
31 Dowolny rzut 3D Do reprezentowania pełnego zbioru parametrów rzutowania, standartowo wykorzystuje się dwie macierze 4x4: macierz odwzorowania rzutu macierz orientacji rzutu
32 Dowolny rzut 3D Macierz orientacji rzutu tworzą: (VRP), (VPN), (VUP) macierz ta przekształca pozycje reprezentowane we współrzędnych świata w pozycje reprezentowane w układzie współrzędnych rzutowania VRC przy tym przekształceniu istnieje ścisła relacja pomiędzy osiami u, v i n oraz x, y, z
33 Dowolny rzut 3D Macierz odwzorowania rzutu tworzą: parametry bryły widzenia określone przez: (PRP), u min, u max, y min, y max, F (płaszczyzna front ) i B (płaszczyzna back ) razem z parametrami pola wizualizacji 3D określonymi przez x min, x max, y min, y max, z min, z max. przy tym przekształceniu punkty z układu (VRC), przechodzą w punkty w znormalizowanych współrzędnych rzutowania (NPC) o zakresie współrzędnych 0 do 1. Sciana z = 1 w układzie NPC jest odwzorowywana na największy kwadrat możliwy do wyświetlenia.
34 Dowolny rzut 3D przykłady rzutowania Dwupunktowy rzut perspektywiczny domu
35 Dowolny rzut 3D Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (0, 0, 0) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (0.5, 0.5, 1.0) okno (VRC) (0, 1, 0, 1) rodzaj rzutu równoległy
36 Dowolny rzut 3D Dom używany jako przykład zestawu danych.
37 Dowolny rzut 3D a) Związek między współrzędnymi układu rzutowania a współrzędnymi układu świata. Przypadek gdzie współrzędne u,v,n pokrywają się ze współrzędnymi x,y,z
38 Dowolny rzut 3D b) Domniemana bryła widzenia dla rzutu równoległego
39 Dowolny rzut 3D c) Bryła widzenia dla rzutu perspektywicznego.
40 Dowolny rzut 3D rzuty perspektywiczne Efekt rzutowania perspektywicznego jednopunktowego można uzyskać: na przedniej płaszczyźnie bryły widzenia umieszcza się środek rzutowania (8, 6, 84), wartość x tak dobrana aby znajdowała się w połowie poziomego wymiaru okna, wartość y tak dobrana aby dopowiadała przybliżonemu poziomowi oka obserwatora, wartość z przesunięta o 30 jednostek przed dom.
41 Dowolny rzut 3D rzuty perspektywiczne Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (0, 0, 0) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (8, 6, 84) okno (VRC) (-50, 50, -50, 50) rodzaj rzutu perspektywiczny
42 Dowolny rzut 3D rzuty perspektywiczne Rzut domu w perspektywie jednopunktowej.
43 Dowolny rzut 3D rzuty perspektywiczne Efekt rzutowania perspektywicznego można uzyskać: przednia ściana domu i rzutnia pokrywają się umieszczamy rzutnię w płaszczyźnie ściany przedniej domu przyjmując punkt (VRP) np. (0, 0, 54) określamy środek rzutu (PRP) w układzie (VRC) (8, 6, 30)
44 Dowolny rzut 3D rzuty perspektywiczne Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (0, 0, 54) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (8, 6, 30) okno (VRC) (-1, 17, -1, 17) rodzaj rzutu perspektywiczny
45 Dowolny rzut 3D Zestaw parametrów rzutowania.
46 Dowolny rzut 3D rzuty perspektywiczne Efekt rzutowania perspektywicznego można uzyskać również: punkt VRP określamy (8, 6, 54), środek rzutu PRP znajduje się w punkcie (0, 0, 30), zmiana okna rzutowania.
47 Dowolny rzut 3D rzuty perspektywiczne Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (8, 6, 54) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (0, 0, 30) okno (VRC) (-9, 9, -7, 11) rodzaj rzutu perspektywiczny
48 Dowolny rzut 3D Alternatywne parametry rzutowania.
49 Dowolny rzut 3D rzuty perspektywiczne Tworzenie rzutu perspektywicznego z dwoma punktami zbieżności: środek rzutowania umieszczamy w punkcie (36, 25, 74), punkt (VRP) umieszczamy w (16, 0, 54), rzutnia pokrywa się z przodem budynku.
50 Dowolny rzut 3D rzuty perspektywiczne Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (16, 0, 54) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (25, 25, 20) okno (VRC) (-20, 20, -5, 35) rodzaj rzutu perspektywiczny
51 Dowolny rzut 3D Rzut perspektywiczny domu z (36,25,74) z punktu (VPN). Wektor normalny jest równoległy do osi z.
52 Dowolny rzut 3D rzuty perspektywiczne Ponieważ powyższy rzut jest jednopunktowy należy: zmienić orientację rzutni aby przecinała obie osie x i y, ustalić wektor (VPN) (1, 0, 1)
53 Dowolny rzut 3D rzuty perspektywiczne Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (16, 0, 54) Początek układu VPN (1, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (25, 25, 20 2 ) okno (VRC) (-20, 20, -5, 35) rodzaj rzutu perspektywiczny
54 Dowolny rzut 3D rzuty perspektywiczne Rzutnia i układ współrzędnych (VRC).
55 Dowolny rzut 3D rzuty perspektywiczne Rzut domu uzyskany po obrocie wektora (VUP).
56 Dowolny rzut 3D rzuty równoległe Określenie rzutu równoległego: przyjęcie, że kierunek rzutowania jest równoległy do osi z, kierunek rzutowania jest określony przez (PRP) i środek okna. punkt (PRP) o współrzędnych (8, 8, 100) określa kierunek rzutowania,
57 Dowolny rzut 3D rzuty równoległe Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (0, 0, 0) Początek układu VPN (0, 0, 1) Oś z VUP (0, 1, 0) Oś y PRP (8, 8, 100) okno (VRC) (-1, 17, -1, 17) rodzaj rzutu równoległy
58 Dowolny rzut 3D rzuty równoległe Parametry rzutowania z czołowym rzutem domu. Punkt (PRP) może być w dowolnym miejscu dla którego x=8, y=8.
59 Dowolny rzut 3D skończone bryły widzenia Czołowy rzut perspektywiczny z obciętą tylną ścianą uzyskuje się: do parametrów rzutowania dodaje się płaszczyzny obcinania F i B, w przypadku danej odległości następuje obcinanie.
60 Dowolny rzut 3D skończone bryły widzenia Parametry rzutowania: Parametr rzutowania Wartość Komentarz VRP (0, 0, 54) dolny lewy róg domu VPN (0, 0, 1) oś z VUP (0, 1, 0) oś y PRP (8, 6, 30) okno (VRC) (-1, 17, -1, 17) rodzaj rzutu perspektywiczny F(VRC) +1 jedna jednostka z przodu domu dla z=54+1=55 B(VRC) -23 jedna jednostka z tyłu domu dla z=54-23=31
61 Dowolny rzut 3D skończone bryły widzenia Rzut perspektywiczny domu z tylną ścianą obcinającą z=31
62 Rzutowanie w przestrzeni 3D Rzut perspektywiczny
63 Rzutowanie w przestrzeni 3D Alternatywny rzut perspektywiczny
64 Dowolna prosta ze zbioru prostych równoległych k k k b b b z y x z y x,,,, k b x dowolny punkt prostej o równaniu: po przekształceniu perspektywicznym ma postać: d k z k y d k z k x z b y b z b x b,
65 Punkt na prostej ze zbioru prostych równoległych po rzutowaniu perspektywicznym inna postać współrzędnych punktu : co w granicy (gdy zmierza do nieskończoności) prowadzi do wartości niezależnych od współrzędnych punktu: z y z x k d k k d k, d z k y k d z k x k b z b y b z b x,
66 Rzutowanie w przestrzeni 3D Dwie kanoniczne bryły widzenia dla rzutów: a) równoległego; b) perspektywicznego
67 Rzutowanie w przestrzeni 3D Implementacja rzutowania 3D
68 Rzutowanie w przestrzeni 3D Końcowy rzut równoległy obciętego domu
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
gdzie (4.20) (4.21) 4.3. Rzut równoległy
4.3. Rzut równoległy 75 gdzie (4.20) Punkt zbiegu, określony wzorami (4.19) (4.20), leży na prostej przechodzącej przez środek rzutowania i równoległej do wektora u. Zauważmy, że gdy wektor u jest równoległy
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Obraz realistyczny Pojęcie obrazu realistycznego jest rozumiane w różny sposób Nie zawsze obraz realistyczny
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
płaskie rzuty geometryczne
płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny
Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.
RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE
RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak
Rzutowanie. dr Radosław Matusik. radmat
www.math.uni.lodz.pl/ radmat Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl
Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
Grafika komputerowa Wykład 4 Geometria przestrzenna
Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia
2 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne
2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
Transformacje obiektów 3D
Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy
Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA
RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA WYKŁAD 2 dr inŝ. Beata Sadowska 1. Zasady rzutowania elementów i obiektów budowlanych 2. Rzuty budynku 3. Wymiarowanie rysunków architektoniczno-budowlanych Normy
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5
Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Problem I. Model UD Dana jest bryła, której rzut izometryczny przedstawiono na rysunku 1. (W celu zwiększenia poglądowości na rysunku 2. przedstawiono
RZUTOWANIE PROSTOKĄTNE
RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
GEOMETRIA WYKREŚLNA ZADANIA TESTOWE
Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...
Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.
Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.
WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku
Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku jego wymiary (długość, szerokość, grubość). Wymiary te
GEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej
Spis treści. Słowo wstępne 7
Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne
Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).
Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Wstęp do grafiki inżynierskiej
Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały
Wprowadzenie do rysowania w 3D. Praca w środowisku 3D
Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
SZa 98 strona 1 Rysunek techniczny
Wstęp Wymiarowanie Rodzaje linii rysunkowych i ich przeznaczenie 1. linia ciągła cienka linie pomocnicze, kreskowanie przekrojów, linie wymiarowe, 2. linia ciągła gruba krawędzie widoczne 3. linia kreskowa
Płaszczyzny, żebra (pudełko)
Płaszczyzny, żebra (pudełko) Zagadnienia. Płaszczyzny, Żebra Wykonajmy model jak na rys. 1. Wykonanie Rysunek 1. Model pudełka Prostopadłościan z pochylonymi ścianami Wykonamy zamknięty szkic na Płaszczyźnie
Ekoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30
Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE
SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
METODA RZUTÓW MONGE A (II CZ.)
RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,
GRK 2. dr Wojciech Palubicki
GRK dr Wojciech Palubicki Macierz wektor produkt jako Transformacja T: R n R m T Ԧx = A Ԧx Przemieszczanie wierzchołków - Transformacje Skalowanie Rotacja Translacja -y -y Macierz rotacji M wobec punktu
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
DLA KLAS 3 GIMNAZJUM
DLA KLAS 3 GIMNAZJUM ROLA RYSUNKU W TECHNICE Rysunek techniczny - wykonany zgodnie z przepisami i obowiązującymi zasadami - stał się językiem, którym porozumiewają się inżynierowie i technicy wszystkich
Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem
przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,
Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej
Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie
RYSUNEK ODRĘCZNY PERSPEKTYWA
RYSUNEK ODRĘCZNY PERSPEKTYWA WYKŁAD 3B DR INŻ. BEATA SADOWSKA rysunek odręczny budowlany rysunek techniczny stwarza możliwość przekazu informacji stwarza możliwość przekazu informacji ułatwia porozumienie
Skrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie
Przekształcenia geometryczne w grafice komputerowej. Marek Badura
Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)
Matematyka z kluczem
Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych
Geometria wykreślna 7. Aksonometria
Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane
GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.
GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
Ćwiczenie nr 5 Zautomatyzowane tworzenie dokumentacji
Ćwiczenie nr 5 Zautomatyzowane tworzenie dokumentacji technicznej Od wersji 2013 programu AutoCAD istnieje możliwość wykonywania pełnej dokumentacji technicznej dla obiektów 3D tj. wykonywanie rzutu bazowego