ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne"

Transkrypt

1 CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2) znać i rozumieć pojęcie rozkładu wielomianu na czynniki (2) znać i rozumieć wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów dwóch wyrażeń (2), suma i różnica sześcianów, sześcian sumy i różnicy dwóch wyrażeń (3) znać i rozumieć własność rozkładu wielomianu na czynniki (3) znać i rozumieć pojęcie trójmianu kwadratowego (2) znać i rozumieć pojęcie równania wielomianowego stopnia n (2) znać i rozumieć pojęcie pierwiastka wielomianu (2) znać i rozumieć pojęcie k-krotnego pierwiastka wielomianu (2) znać i rozumieć pojęcie nierówności wielomianowej (2) określać stopień wielomianu (2) dodawać, odejmować, mnożyć wielomiany (2,3,4) porządkować wielomiany i doprowadzać je do najprostszej postaci (2,3,4) rozkładać wielomiany na czynniki, stosując: wyłączanie wspólnego czynnika poza nawias wzory skróconego mnożenia metodę grupowania wyrazów rozkład trójmianu kwadratowego na czynniki w zależności od znaku wyróżnika (2,3,4,5) rozwiązywać równania wielomianowe (2,3,4,5) określać liczbę pierwiastków równania kwadratowego w zależności od znaku wyróżnika (2) znajdować pierwiastki wielomianów i ustalać ich krotności (3,4,5) wykonywać działania na wielomianach i przedstawiać otrzymane wielomiany w najprostszej postaci (4,5,6) podawać przykłady wielomianów spełniających określone warunki (4,5) ustalać liczbą rozwiązań równania wielomianowego (4,5) ustalać wartości parametrów, dla których dany wielomian ma określoną liczbę pierwiastków (4,5) Temat: Wyrażenia wymierne. (2 godz.) znać i rozumieć pojęcie wyrażenia wymiernego (2) znać i rozumieć pojęcie wartości liczbowej wyrażenia wymiernego (2) znać i rozumieć pojęcie dziedziny wyrażenia wymiernego (2) znać i rozumieć pojęcie równości wyrażeń wymiernych (2) obliczać wartości liczbowe wyrażeń wymiernych dla podanych wartości zmiennej (2,3) określać dziedzinę wyrażenia wymiernego (3,4)

2 podawać przykłady wyrażeń wymiernych spełniających dane warunki (3,4) upraszczać wyrażenia wymierne (2,3) dodawać, odejmować, mnożyć wyrażenia wymierne (2,3,4) określać dziedzinę wyrażenia wymiernego oraz wykonywać działania łączne na wyrażeniach wymiernych (4,5) określać, dla jakich wartości parametrów wyrażenia wymierne spełniają określone warunki (4,5) rozwiązywać zadania z zastosowaniem wyrażeń wymiernych (4,5,6) Temat: Hiperbola. (3 godz.) znać i rozumieć pojęcie hiperboli (2) znać i rozumieć zasady sporządzania wykresów funkcji: y = -f(x), y = f(x - a) + b, gdy dany jest wykres funkcji y = f(x) (3,4,5) znać i rozumieć pojęcie osi symetrii hiperboli (3) znać i rozumieć pojęcie wierzchołków hiperboli (3) rozumieć pojęcie asymptot poziomej i pionowej wykresu funkcji f(x) = x a, a 0 (2) rozumieć i określać położenie gałęzi hiperboli w zależności od znaku a (2) określać dziedzinę i sporządzać wykres funkcji f(x) = x a, a 0 (2) określać przedziały monotoniczności funkcji f(x) = x a, a 0 (2) dopasowywać wzór do wykresu funkcji f(x) = x a, a 0 i odwrotnie (3,4) określać wzór funkcji, która powstanie, gdy wykres funkcji f(x) = x a, a 0 odbijemy symetrycznie względem osi układu współrzędnych (3) odbijemy symetrycznie względem początku układu współrzędnych (3) przesuniemy równolegle o p jednostek w prawo lub w lewo i o q jednostek do góry lub w dół (3) a określać dziedzinę i sporządzać wykres funkcji f(x) = + q (3) x p określać równania asymptot i współrzędne punktów przecięcia wykresu funkcji a f(x) = + q z osiami układu współrzędnych (3) x p a określać przedziały monotoniczności i argumenty, dla których funkcja f(x) = + q x p przyjmuje wartości dodatnie, ujemne (3) a określać wartości parametru, dla którego funkcja f(x) = + q spełnia określone x p warunki (4,5,6) określać wzory funkcji, których wykresami są hiperbole spełniające określone warunki (4,5,6)

3 Ciągi Temat: Przykłady ciągów. (2 godz.) znać i rozumieć pojęcia: ciąg, wyrazy ciągu, ciąg skończony, ciąg nieskończony, ciąg liczbowy (2) znać pojęcie wzoru ogólnego ciągu (2,3) znać i rozumieć pojęcia: monotoniczność ciągu, ciąg malejący, ciąg rosnący, ciąg stały (2) rozumieć sposób określania ciągu za pomocą wzoru ogólnego (2,3) zapisywać dowolne wyrazy ciągów na podstawie ich wzorów ogólnych (2,3) podawać przykłady ciągów (2,3) obliczać sumę k początkowych wyrazów ciągu na podstawie jego wzoru ogólnego (4,5) obliczać kolejne wyrazy ciągu oraz określać ogólny wzór ciągu na podstawie danego wzoru na sumę n początkowych wyrazów ciągu (3,4) określać ciąg za pomocą wzoru ogólnego (3,4,5) Temat: Ciąg arytmetyczny. (3 godz.) znać i rozumieć pojęcia: ciąg arytmetyczny, różnica ciągu arytmetycznego (2) znać i rozumieć wzór ogólny ciągu arytmetycznego (2) znać i rozumieć wzór na sumę n początkowych wyrazów ciągu arytmetycznego (2) obliczać różnicę i kolejne wyrazy danego ciągu arytmetycznego (2) obliczać dowolne wyrazy ciągu arytmetycznego, gdy dane są jeden wyraz i różnica ciągu lub dwa dowolne wyrazy tego ciągu (2,3,4) podawać przykłady ciągów arytmetycznych spełniających określone warunki (2,3) zapisywać wzory ciągów arytmetycznych (3,4) obliczać sumę dowolnej liczby kolejnych wyrazów ciągu arytmetycznego (2,3,4) sprawdzać, czy dana liczba jest wyrazem danego ciągu arytmetycznego (3,4) ustalać, ile wyrazów ma podany ciąg arytmetyczny (3,4) określać wartości parametru, dla którego podane wyrażenia są kolejnymi wyrazami ciągu arytmetycznego (4) rozwiązywać zadania dotyczące ciągu arytmetycznego (4,5) rozwiązywać równania, których jedna strona jest sumą wyrazów ciągu arytmetycznego (4,5) Temat: Ciąg geometryczny. (3 godz.) znać i rozumieć pojęcia: ciąg geometryczny, iloraz ciągu geometrycznego (2) znać i rozumieć wzór ogólny ciągu geometrycznego (2) znać i rozumieć wzór na sumę n początkowych wyrazów ciągu geometrycznego (2) znać i rozumieć pojęcie średniej geometrycznej dwóch liczb nieujemnych (3) obliczać ilorazy oraz kolejne wyrazy danych ciągów geometrycznych (2,3) sprawdzać, czy podany ciąg jest ciągiem geometrycznym (2,3) zapisywać dowolne wyrazy ciągu geometrycznego, gdy dany jest: iloraz i dowolny wyraz tego ciągu dwa dowolne wyrazy ciągu geometrycznego (2,3,4) sprawdzać, czy dana liczba jest wyrazem danego ciągu geometrycznego (3,4) obliczać sumę kolejnych wyrazów ciągu geometrycznego (3,4)

4 obliczać wartości zmiennych, które wraz z danymi liczbami tworzą ciąg geometryczny (4,5) rozwiązywać zadania dotyczące ciągów geometrycznych (4,5,6) Temat: Procent składany. (2 godz.) znać i rozumieć pojęcia: procent prosty, procent składany (3) rozwiązywać zadania z stosowaniem procentu prostego oraz procentu składanego (3,4,5) Funkcje wykładnicze i logarytmiczne Temat: Logarytmy. (2 godz.) znać i rozumieć pojęcie logarytmu (2) znać i rozumieć pojęcia logarytm dziesiętny oraz logarytm naturalny (2) znać i rozumieć własności logarytmów (2,3) obliczać logarytmy (2,3,4) wykorzystywać kalkulator do obliczania logarytmów dziesiętnych oraz naturalnych (2,3) rozwiązywać równania, stosując definicję logarytmu (2,3,4) Temat: Własności logarytmów. (2 godz.) znać i rozumieć twierdzenia o: logarytmie iloczynu logarytmie ilorazu logarytmie potęgi zmianie podstawy logarytmu (3) wykonywać działania na logarytmach, stosując poznane twierdzenia (3,4) rozwiązywać zadania z zastosowaniem definicji oraz własności logarytmów (4,5) Temat: Funkcje wykładnicze. (2 godz.) znać i rozumieć definicję funkcji wykładniczej (2) znać i rozumieć własności funkcji wykładniczych (3) sporządzać wykresy i określać własności funkcji wykładniczych (3,4) dopasowywać wzory do wykresów funkcji wykładniczych (3,4) określać wzory funkcji wykładniczych spełniających określone warunki (4,5) przekształcać wykresy funkcji wykładniczych (4,5,6) rozwiązywać zadania z zastosowaniem funkcji wykładniczych i ich własności (4,5,6)

5 Wielokąty, figury podobne Temat: Wielokąty podobne. (2 godz.) znać i rozumieć pojęcie figur podobnych (2) znać i rozumieć pojęcie skali podobieństwa (2) znać i rozumieć własności figur podobnych (2) rozpoznawać figury podobne (2,3) znajdować długości boków wielokątów podobnych, gdy dana jest skala podobieństwa i odwrotnie (3,4) rozwiązywać zadania z zastosowaniem własności podobieństwa (4,5) Temat: Pola figur podobnych. (3 godz.) znać i rozumieć zależność między stosunkiem pól figur podobnych a skalą podobieństwa (2) obliczać pola figur podobnych (3,4) obliczać skalę podobieństwa, gdy dane są pola figur podobnych (3,4) rozwiązywać zadania dotyczące pól figur podobnych (4,5) Statystyka Temat: Średnia arytmetyczna, mediana, dominanta. (2 godz.) znać i rozumieć pojęcie średniej arytmetycznej (2) znać i rozumieć pojęcia: mediana, dominanta (2) obliczać średnią arytmetyczną, medianę i dominantę (2,3,4) rozwiązywać zadania z zastosowaniem obliczania średniej arytmetycznej, mediany i dominanty (4,5) Temat: Średnia ważona. (2 godz.) znać i rozumieć pojęcie średniej ważonej (2) obliczać średnie ważone zestawu danych (2,3) rozwiązywać zadania z zastosowaniem obliczania średniej ważonej (4,5) Temat: Odchylenie standardowe. (2 godz.) znać i rozumieć pojęcie odchylenia standardowego (3) rozumieć interpretację wartości przeciętnej i odchylenia standardowego (3) obliczać odchylenie standardowe zestawu danych (3) interpretować wartości przeciętne i odchylenia standardowe (3) rozwiązywać zadania z zastosowaniem obliczania odchylenia standardowego (4,5,6)

6 Prawdopodobieństwo Temat: Zdarzenia losowe. (5 godz.) znać i rozumieć pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie losowe (2) znać i rozumieć klasyczną definicję prawdopodobieństwa (2) znać i rozumieć zasadę mnożenia (2) określać zbiór wszystkich zdarzeń elementarnych danego doświadczenia losowego (2,3,4) określać zbiór zdarzeń elementarnych sprzyjających danemu zdarzeniu losowemu (2,3,4) obliczać prawdopodobieństwa zdarzeń, korzystając z klasycznej definicji prawdopodobieństwa (2,3,4,5) stosować zasadę mnożenia (2,3,4,5) Temat: Drzewka. (3 godz.) znać i rozumieć metodę drzewek (2) obliczać prawdopodobieństwa zdarzeń, korzystając z metody drzewek (2,3,4,5) Temat: Własności prawdopodobieństwa. (3 godz.) znać i rozumieć pojęcia: suma, iloczyn, różnica zdarzeń, zdarzenia wykluczające się (2) znać i rozumieć pojęcie zdarzenia przeciwnego (2) znać i rozumieć pojęcia: zdarzenie pewne, zdarzenie niemożliwe (2) znać i rozumieć własności prawdopodobieństwa (2) znać i rozumieć twierdzenie o prawdopodobieństwie sumy zdarzeń (2) ustalać zdarzenia przeciwne do danych (2) rozpoznawać zdarzenia wykluczające się (2,3) określać sumę, iloczyn, różnicę zdarzeń (2,3) obliczać prawdopodobieństwa zdarzeń, korzystając z własności prawdopodobieństwa (2,3,4,5) Stereometria Temat: Wielościany. (2 godz.) znać i rozumieć pojęcie figury wypukłej (2) znać i rozumieć pojęcia graniastosłup i ostrosłup (2) znać i rozumieć pojęcia: podstawa, ściana boczna, wierzchołek, krawędź boczna, krawędź podstawy graniastosłupa i ostrosłupa (2) znać i rozumieć pojęcia: prostopadłościan, graniastosłup prosty, graniastosłup pochyły (2) znać i rozumieć pojęcia graniastosłup prawidłowy i ostrosłup prawidłowy (2) znać i rozumieć pojęcie czworościanu (2) znać i rozumieć pojęcia: wysokość graniastosłupa, wysokość ostrosłupa, spodek wysokości (2) znać i rozumieć twierdzenia dotyczące ostrosłupów prawidłowych (2)

7 znać i rozumieć reguły rysowania rzutów brył (2) wskazywać graniastosłupy pochyłe i graniastosłupy proste (2) wskazywać wierzchołki, podstawy, ściany boczne, krawędzie podstawy i krawędzie boczne graniastosłupów i ostrosłupów (2) rysować rzuty graniastosłupów i ostrosłupów (2) rysować siatki graniastosłupów i ostrosłupów (2) rozpoznawać siatki graniastosłupów i ostrosłupów (2,3) obliczać liczbę wierzchołków, krawędzi, ścian bocznych graniastosłupów i ostrosłupów (2,3,4) wyznaczać długości odcinków w graniastosłupach i ostrosłupach, korzystając z twierdzenia Pitagorasa oraz funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym (2,3,4,5) Temat: Kąty w wielościanach. (2 godz.) znać i rozumieć pojęcia: proste równoległe w przestrzeni, proste prostopadłe w przestrzeni, proste skośne (2) znać i rozumieć pojęcie prostej prostopadłej do płaszczyzny (2) znać i rozumieć pojęcia kąt dwuścienny i kąt między prostą a płaszczyzną (2) wskazywać na rysunkach graniastosłupów odcinki równoległe, prostopadłe oraz skośne (2,3,4) wskazywać kąty między odcinkami oraz kąty między odcinkami i ścianami w graniastosłupach i ostrosłupach (2,3) wskazywać kąty między ścianami graniastosłupów i ostrosłupów (3,4,5) wyznaczać miary kątów między odcinkami, miary katów między odcinkami i ścianami oraz między ścianami w graniastosłupach i ostrosłupach (2,3,4) rozwiązywać zadania z wykorzystaniem obliczania miar kątów między odcinkami, miar kątów między odcinkami i ścianami oraz między ścianami w graniastosłupach i ostrosłupach (4,5,6) Temat: Pola powierzchni i objętości graniastosłupów i ostrosłupów. (4 godz.) znać i rozumieć wzory na obliczanie pól figur płaskich (2) znać i rozumieć wzór na obliczanie objętości i pola powierzchni graniastosłupa (2) znać i rozumieć wzór na obliczanie objętości i pola powierzchni ostrosłupa (2) obliczać pola powierzchni i objętości graniastosłupów (2,3,4) obliczać pola powierzchni i objętości ostrosłupów (2,3,4) rozwiązywać zadania z zastosowaniem obliczania pól powierzchni i objętości graniastosłupów i ostrosłupów (4,5,6) Temat: Pola powierzchni i objętości wielościanów. (2 godz.) znać i rozumieć pole powierzchni i objętość wielościanu (2) rysować rzuty wielościanów (2,3,4,5) obliczać pola powierzchni i objętości wielościanów (3,4,5) rozwiązywać zadania z zastosowaniem obliczania pól powierzchni i objętości wielościanów (4,5,6)

8 Temat: Bryły obrotowe. (6 godz.) znać i rozumieć pojęcia: walec, stożek, kula, sfera (2) znać i rozumieć pojęcia: podstawy walca, podstawa stożka, promień podstawy, wysokość, tworząca walca i stożka (2) znać i rozumieć pojęcia: oś obrotu, przekrój osiowy walca i stożka (2) znać i rozumieć pojęcia spodek wysokości i kąt rozwarcia stożka (2) znać i rozumieć pojęcia: środek, promień, średnica, koło wielkie kuli (2) znać i rozumieć wzory na obliczanie pól powierzchni oraz wzory na obliczanie objętości walca, stożka i kuli (2) rysować rzuty walca, stożka i kuli (2) rysować siatki walca i stożka (2) wskazywać kąty między odcinkami oraz odcinkami i podstawami w walcu (2,3) wskazywać kąty między odcinkami oraz odcinkami i podstawą w stożku (2,3) wskazywać kąty między przekrojami kuli (2,3) obliczać pola powierzchni i objętości walców, stożków i kul (2,3,4) rozwiązywać zadania z zastosowaniem obliczania pól powierzchni i objętości walców, stożków i kul (4,5) rozwiązywać zadania na obliczanie pól powierzchni i objętości brył wpisanych w walec i opisanych na walcu wpisanych w stożek i opisanych na stożku wpisanych w kulę i opisanych na kuli (4,5,6) Temat: Bryły podobne. (2 godz.) znać i rozumieć pojęcie brył podobnych (2) znać i rozumieć własności brył podobnych (2) znać i rozumieć zależność między polami powierzchni brył podobnych (2) znać i rozumieć zależność między objętościami brył podobnych (2) wykorzystywać zależności między polami powierzchni i objętościami brył podobnych (2,3,4) rozwiązywać zadania z zastosowaniem zależności między polami powierzchni i objętościami brył podobnych (4,5) ***** Ocena powinna zależeć od zakresu umiejętności ucznia (obowiązuje kumulowanie wymagań): 1. Wykorzystanie i tworzenie informacji. 2. Wykorzystanie i interpretowanie reprezentacji. 3. Modelowanie matematyczne. 4. Użycie i tworzenie strategii. 5. Rozumowanie i argumentacja. Opracowała Romualda Malich (w oparciu o zasoby GWO)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

1 wyznacza współrzędne punktów przecięcia prostej danej

1 wyznacza współrzędne punktów przecięcia prostej danej Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Kształcenie w zakresie rozszerzonym. Klasa IV

Kształcenie w zakresie rozszerzonym. Klasa IV Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

PDM 3 zakres podstawowy i rozszerzony PSO

PDM 3 zakres podstawowy i rozszerzony PSO PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA . Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III 1 NAUCZYCIEL BEATA ZAGÓRSKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III KONTRAKT NAUCZYCIEL UCZEŃ 1. Na początku roku szkolnego uczniowie zostają poinformowani przez

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń powinien

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax, Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie potęgi o wykładniku naturalnym, -wzór na mnożenie i dzielenie potęg o tych samych podstawach, -wzór na potęgowanie iloczynu

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocena dopuszczająca: Uczeń: Zna pojęcie potęgi o wykładniku naturalnym Rozumie pojęcie potęgi o wykładniku naturalnym Umie zapisać potęgi w postaci iloczynów

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej, KLASA II POTĘGI 1) zna i rozumie pojęcie potęgi o wykładniku naturalnym, 2) umie zapisać potęgę w postaci iloczynów, 3) umie zapisać iloczyny jednakowych czynników w postaci potęgi, 4) umie obliczyć potęgi

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

DZIAŁ 1. POTĘGI. stopień

DZIAŁ 1. POTĘGI. stopień DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W TECHNIKUM

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W TECHNIKUM PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W TECHNIKUM (ITAn, IITAn1, IITAn2, IIITAn) WRAZ Z WYMAGANIAMI EDUKACYJNYMI (ZAKRES PODSTAWOWY) Matematyka z plusem dla szkoły ponadgimnazjalnej GWO Rok szkolny

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

Liczby i działania klasa III

Liczby i działania klasa III Liczby i działania klasa III - oblicza wartość bezwzględną liczby - wykonuje działania w zbiorze liczb rzeczywistych proste przykłady - potęguje liczby naturalne proste przykłady - pierwiastkuje liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo