PRZEMYSŁAW ŻOŁĄDEK PROGRAM ZAJĘĆ STACJE BOLIDOWE



Podobne dokumenty
Obserwator meteorów i jego łowy

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

GRAWITACJA I ELEMENTY ASTRONOMII

SCENARIUSZ TEMATYCZNY. Prawa Keplera (fizyka, informatyka poziom rozszerzony)

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Ciała drobne w Układzie Słonecznym

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

Dokument komputerowy w edytorze grafiki

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.

Wstęp do astrofizyki I

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego.

Ruchy planet. Wykład 29 listopada 2005 roku

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Warsztat nauczyciela: Badanie rzutu ukośnego

I KONKURS METEORYTOWY

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.

Grawitacja - powtórka

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

Sposoby przedstawiania algorytmów

Temat 1. Więcej o opracowywaniu tekstu

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

Zapisywanie algorytmów w języku programowania

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

ASTRONOMIA Klasa Ia Rok szkolny 2012/2013

SCENARIUSZ LEKCJI: TEMAT LEKCJI: Postać kanoniczna funkcji kwadratowej. Interpretacja danych w arkuszu kalkulacyjnym

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

IV. SCENARIUSZ ZAJĘĆ INTERDYSCYPLINARNYCH. 44 S t r o n a. Temat: Jak zbudować samolot i wznieść się do nieba? Czas trwania: 45 min.

Zasady oceniania karta pracy

Mapa niewyczerpane źródło informacji

Maksimum aktywności Leonidów 2009

WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych)

Gwiazdy zmienne. na przykładzie V729 Cygni. Janusz Nicewicz

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox

języka obcego i sprawności językowych. Korelacja języka angielskiego z innymi przedmiotami to

WYKORZYSTANIE KOMPUTERA NA LEKCJI MATEMATYKI W I KLASIE GIMNAZJUM.

Analiza spektralna widma gwiezdnego

2. Metoda i forma pracy - Metody: poszukująca, problemowa, aktywizująca ucznia - Formy: praca grupowa, praca indywidualna ucznia

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

Treści dopełniające Uczeń potrafi:

RAPORT z diagnozy umiejętności matematycznych

RAPORT ZBIORCZY z diagnozy umiejętności matematycznych

Wymagania edukacyjne na poszczególne stopnie szkolne z geografii w klasie I gimnazjum Ocenę celującą otrzymuje uczeń, który: - opanował wiadomości i

WYMAGANIA EDUKACYJNE. Informatyka Szkoła Podstawowa Klasa 4 NA ŚRÓDROCZNĄ I ROCZNĄ OCENĘ KLASYFIKACYJNĄ

KONSPEKT ZAJĘĆ EDUKACYJNYCH

SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO

Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z INFORMATYKI II. Uczeń umie: Świadomie stosować się do zasad regulaminów (P).

Wędrówki między układami współrzędnych

Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.

KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM

Sposoby sprawdzania osiągnięć edukacyjnych uczniów

I. WYNIKI TESTU. Średni wynik klas : klasa III A 59,6% (15,5 pkt) klasa III B 61,2% (15,9 pkt) Średni wynik szkoły 60,4% (15,7 pkt)

Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI

TEMAT : Przykłady innych funkcji i ich wykresy.

Opozycja... astronomiczna...

Kształcenie w zakresie podstawowym. Klasa 2

Zapisywanie w wybranej notacji algorytmów z warunkami i iteracyjnych

Sposoby prezentacji problemów w statystyce

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

Analiza wyników próbnego egzaminu gimnazjalnego. z przedmiotów przyrodniczych dla uczniów klas III

Zadania do testu Wszechświat i Ziemia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA

Prezentacja. Układ Słoneczny

Matematyka z kluczem - program nauczania matematyki zgodny z podstawą programową z dnia 14 lutego 2017 r.

Analiza wyników egzaminu gimnazjalnego 2015

Przedmiotowy system oceniania z przyrody w kl. 6

Opis programu Konwersja MPF Spis treści

biegle i poprawnie posługuje się terminologią informatyczną,

ROZKŁADY MATERIAŁU PRZEDMIOT ELEMENTY INFORMATYKI KLASA IV, V I VI.

Konspekt lekcji z fizyki z zastosowaniem technologii komputerowej. (ścieżka edukacyjna medialna)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

XXIII. Europa i świat w II połowie XIX i na początku XX wieku. Uczeń:

Projekt O czym świadczy moja masa ciała i wzrost

Tematyka i rozwiązania metodyczne kolejnych zajęć lekcyjnych wraz z ćwiczeniami.

Programowanie i techniki algorytmiczne

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

Przedmiotowy system oceniania fizyka

Transkrypt:

PRZEMYSŁAW ŻOŁĄDEK PROGRAM ZAJĘĆ STACJE BOLIDOWE

WSTĘP Obserwacje meteorów różnymi technikami to od wielu lat jedna z najbardziej produktywnych dziedzin astronomii przy czym ze względu na swoją specyfikę jest to dziedzina przystępna dla miłośników astronomii, w najprostszym wariancie nie wymagająca posiadania drogiego sprzętu. Rozwinięcie pewnych umiejętności, staranności w opracowaniu danych pozwala uzyskać w krótkim czasie wyniki o wartości naukowej. Poniżej przedstawiony program ma za zadanie zapoznać uczniów z podstawami praktycznej astronomii meteorowej. Początkowo prowadzone będą zajęcia powtórzeniowe, utrwalające wiedzę na temat Układu Słonecznego i wyjaśniające podstawowe pojęcia dotyczące najdrobniejszych ciał którymi będziemy się zajmować. Uczniowie zostaną zaznajomieni z techniką obserwacji wizualnych i z obróbką danych uzyskanych poprzez własne obserwacje meteorów Planowane jest praktyczne użycie stacji bolidowych zamontowanych w czterech Astrobazach (Jabłonowo Pomorskie, Gostycyn, Żnin, Dobrzyń). Uczniowie zostaną zapoznani z obsługą sprzętu a następnie będą zaznajamiani z obróbką uzyskiwanych danych. Dane te będą wzajemnie wymieniane pomiędzy Astrobazami celem porównywania, będą też niezależnie opracowywane przez opiekuna astroteamu. Opiekun raz w miesiącu przesyłał będzie obszerne podsumowanie dotyczące wyników naukowych uzyskanych przez kamery w Astrobazach. W kolejnych miesiącach poruszona zostanie tematyka innych metod obserwacji meteorów, z naciskiem na obserwacje radiowe które w warunkach szkolnych da się przeprowadzić bez większego problemu. W ramach programu zaplanowano obserwacje radiowe meteorów. Kilka ostatnich godzin zajęć przewidziano na tematykę meteorytową. Po ukończeniu programu uczniowie powinni posiąść umiejętności typowe dla zaawansowanych miłośników astronomii zajmujących się tematyką meteorową, między innymi będą w stanie samodzielnie prowadzić obserwacje wizualne i radiowe. Od strony prowadzenia zajęć zapewne część opisanych niżej zadań może wymagać nieco specjalistycznej wiedzy i materiałów. Ze swej strony służę prowadzącym wszelką pomocą merytoryczną i materiałami potrzebnymi do prowadzenia zajęć Użyte oznaczenia: Przemysław Żołądek Zajęcia w astrobazie Zajęcia na platformie e learningowej (36A) numer lekcji przewidzianej do realizacji w Astrobazie (48P) numer lekcji przewidzianej do realizacji przy użyciu platformy e learningowej

1. Układ Słoneczny (1A) Powtórzenie ogólnych wiadomości dotyczących układu Słonecznego. Meteoroidy są obiektami krążącymi właśnie w granicach Układu Słonecznego (choć hipotetycznie zakłada się istnienie meteoroidów w przestrzeni międzygwiazdowej) Podczas lekcji planowany jest przegląd ciał Układu Słonecznego Słońca, planet, ze zwróceniem uwagi na istnienie pasa planetoid, Pasa Kuipera. Dobrze jest zwrócić uwagę na istnienie planet wewnętrznych, o dużej gęstości i planet gazowych w większej odległości od Słońca. Warto na przykładach uzmysłowić sobie skalę Układu Słonecznego 2. Ruch po orbicie podstawowe pojęcia (2A) Opis ruchu orbitalnego, pojęcia związane z opisem orbity elementy orbitalne, okres obiegu, prawa Keplera 3. Ruch po orbicie zajęcia z platformą e learningową (1P) Na platformie umieszczone zostaną podstawowe elementy orbitalne planet Układu Słonecznego. Podczas zajęć należy porównać orbity planetarne zwracając szczególną uwagę na ich rozmiary, nachylenie i eliptyczność. 4. Pas planetoid, pas Kuipera, obłok Oorta (3A) Charakterystyka pasa planetoid pomiędzy orbitami Marsa i Jowisza. Opis największych obiektów pada planetoid, próba określenia położenia planetoid za pomocą programu komputerowego (np. Celestia). Istnienie przerw Kirkwooda, rodziny planetoid. Warto zwrócić na charakterystyczne nachylenie orbit planetoidy głównego pasa krążą po orbitach bliskich ekliptyce bądź też nieznacznie nachylonych.

5. Pas planetoid zajęcia z platformą e learningową (2P) Na podstawie dostępnych danych uczniowie wykonują wykresy elementów orbitalnych nachylenia orbity do ekliptyki i półosi wielkiej. Technika dowolna 6. Pas Kuipera zajęcia z platformą e learningową (3P) Podobnie jak w przypadku pasa planetoid uczniowie wykonują wykres nachylenia orbit i półosi wielkiej orbity dla odnalezionych w dowolnym źródle obiektów Pasa Kuipera 7. Komety (4A) Opis budowy komet, podział na komety krótkookresowe, długookresowe. Zachowanie komet podczas przelotu przez centralne obszary Układu Słonecznego 8. Komety zajęcia z platformą e learningową (4P) Odnaleźć i scharakteryzować, przedstawić w postaci wykresu elementy orbitalne komet. 9. Próba wykonania modelu komety w warunkach pracowni szkolnej (5A) Tworzenie modelu komety z suchego lodu 10. Wielkie komety zajęcia z platformą e learningową (5P) Uczniowie przygotowują w ramach pracy domowej prezentacje dotyczące wybranych przez siebie komet opisują okoliczności odkrycia, w jaki sposób i gdzie była widoczna, dalsze losy komety, opisują po jakiej orbicie się porusza

11. Meteory, meteoroidy, meteoryty (6A) Podczas zajęć następuje zapoznanie z podstawowymi pojęciami dotyczącymi drobnej materii Układu Słonecznego. Charakteryzowane są meteoroidy, ich własności, rozmiary. Opisywane jest zjawisko meteoru wywoływane przez wejście meteoroidu do atmosfery ziemskiej. W przypadkach szczególnych dochodzi do upadku meteorytów na powierzchnię naszej planety. Należy położyć nacisk na czytelne rozdzielenie powyższych pojęć które w codziennym życiu i w mediach są bardzo często mylone 12. Skąd się biorą spadające gwiazdy (7A) Na zajęciach opisywane jest powstawanie strumieni meteoroidowych podczas przejść komet w pobliżu Słońca. Podczas każdego peryhelium z jąder kometarnych wyrzucane są drobiny materii meteoroidy. Rozkładają się one wzdłuż orbity komety macierzystej tworząc strumień. Strumień z czasem zwiększa swoją objętość a kometa wciąż dostarcza nowego materiału. Inne źródło meteoroidów to zderzenia obiektów planetoidalnych powstają wówczas meteoroidy o dużej gęstości (np. kamienne, żelazo niklowe) 13. Roje meteorów 10 S (8A) Różne komety zostawiają za sobą strumienie meteoroidów. Jeśli strumień taki przechodzi blisko orbity ziemskiej to meteoroidy lecące w takim strumieniu wpadają do ziemskiej atmosfery. Obserwujemy zjawisko roju meteorów. Meteory wybiegają z jednego obszaru na niebie zwanego radiantem. Istnieje wiele rojów meteorowych tu można w skrócie, w ramach zajęć opisać te najważniejsze, na razie w skrócie Kwadrantydy, Lirydy, Perseidy, Orionidy, Geminidy 14. Roje meteorów Praca z platformą e learningową (6P) Z pomocą dostępnych źródeł ustalić jakie roje meteorów widoczne są podczas aktualnej nocy Z pomocą dowolnej mapy nieba i dostępnych źródeł określić położenia wszystkich ważniejszych rojów meteorowych

15. Rozkłady jasności (9A) Podczas zajęć ćwiczona będzie umiejętność przydatna do przyszłego opracowania wyników obserwacji wizualnych Na podstawie rzeczywistych danych pochodzących z dawnych obserwacji rojów tworzony będzie podział zjawisk na grupy o określonej jasności 16. Rozkłady jasności praca z platformą e learningową (7P) Uczniowie na podstawie dostarczonych wcześniej danych wykonają rozkłady jasności dla przykładowego roju, dla różnych godzin, w formie tabelki 17. Współczynnik masowy r (10A) Pojęcie współczynnika masowego jest stosunkowo proste i nie powinno sprawić problemu uczniom. Współczynnik r mówi nam o ile więcej meteorów o jasności m+1 zawiera rój w porównaniu do meteorów o jasności m. Inaczej mówiąc roje z wysokim r składają się w przeważającej części ze słabych meteorów, roje z niskim r mają bardziej wyrównany stosunek zjawisk jaśniejszych i słabszych. Na podstawie wykonanych wcześniej rozkładów jasności w prosty sposób określić można r 18. Współczynnik masowy r (11A) Uczniowie wyznaczają współczynnik r dla przedziałów czasu użytych wcześniej przy wykonywaniu rozkładów jasności. Wyniki nanoszą na wykres i interpretują 19. Prędkości i wysokości zjawisk meteorowych (12A) Przedstawione zostaną prędkości dla różnych rojów meteorowych. Można schematycznie pokazać w jaki sposób dodają się prędkości orbitalne Ziemi i meteoroidów podczas wzajemnego spotkania. Uczeń który zna zakres prędkości dla meteorów jest w stanie ocenić jak szybko przemieszczają się one na niebie. Znajomość prędkości pozwala przypisywać meteory do rojów podczas późniejszych obserwacji Prędkość kątowa na niebie określona jest prostym wzorem wiażącym prędkość

rzeczywistą ciała, odległość kątową od radiantu i średnią wysokość meteoru na niebie. Wzór daje wyniki przybliżone ale na potrzeby obserwacji jest zupełnie wystarczający. Warto zauważyć że im dalej meteor od radiantu tym większa jego prędkość kątowa i im niżej na niebie (czyli dalej od obserwatora) tym jego prędkość mniejsza. 20. Ocena prędkości kątowej praca z platformą e learningową (8P) Uczeń powinien wykonać tabelkę w której określi prędkość kątową dla meteorów z kilku znanych rojów. Należy wyznaczyć prędkość dla meteoru znajdującego się na różnej wysokości na niebie, w różnych odległościach od radiantu 21. Kryteria przynależności do rojów (13A) Znając pojęcie prędkości kątowej i potrafiąc ją wyznaczać, znając pojęcie radiantu roju i wiedząc o istnieniu różnych rojów uczeń może przypisywać meteory obserwowane na niebie (lub w tym przypadku nakreślane na mapie nieba) do konkretnych rojów (lub może stwierdzić że meteor do żadnego roju nie należy). Kryteria przynależności to kierunek, prędkość i długość. O ile dwa pierwsze są już wyjaśnione to w przypadku długości należy pamiętać że meteory należące do danego roju są 2 razy krótsze niż odległość od końca meteoru do jego radiantu 22. Ocena przynależności praca z platformą e learningową (9P) Uczeń otrzymuje mapy nieba z zaznaczonymi meteorami oraz ich prędkościami. Na postawie takich danych samodzielnie przypisuje meteory do rojów

23. Pojęcie ZHR (14A) Przy znajomości wcześniejszych pojęć zrozumienie czym jest ZHR nie powinno być szczególnie trudne. ZHR pozwala określić w sposób bezwzględny aktywność danego roju. Wychodząc od ZHR możemy określić rzeczywistą aktywność przy danej widoczności (mniej meteorów widać w mieście, więcej pod ciemnym niebem) i przy danej wysokości radiantu. ZHR można też wyznaczać z obserwacji i jest to pierwszy naukowy wynik jaki można uzyskać z prostych obserwacji meteorów. ZHR jest zmienny w czasie, dość trudny do przewidzenia i wyznaczany w prawidłowy sposób niesie rzeczywiste informacje dotyczące budowy roju. 24 25. Jak wykonujemy obserwacje wizualne (15A 16A) Krótkie przygotowanie do obserwacji wizualnych. Uczniowie wiedzą już jak rozpoznawać meteory z danych rojów. Podczas zajęć należy wspomnieć o metodzie przeprowadzania obserwacji wizualnych uczeń zlicza meteory z danych rojów i notuje do notatnika. Zliczenia dzieli na przedziały czasowe. Określa jasność meteorów porównując ze znanymi gwiazdami. Co jakiś czas określa widoczność w miejscu obserwacji. Przy wyznaczaniu widoczności stosuje się specjalną metodę zliczania gwiazd w określonych polach widzenia Osobny temat do omówienia do czysto praktyczne wskazówki uczniowie muszą być ciepło ubrani (nawet w miesiącach wiosennych i letnich, obserwator leżący nieruchomo dość szybko traci ciepło). Uczniowie powinni posiadać latarki z czerwonym światłem. Oświetlanie notatek światłem telefonów psuje adaptację wzroku do ciemności. Obserwacje należy prowadzić z dala od latarni. W warunkach szkolnych może to być trudne, najważniejsze aby osłonić się przed bezpośrednim światłem latarni. Temat ten jest szeroki i może wymagać 2 godzin na przygotowanie. 26. Ćwiczenia obserwacyjne (17A) W przypadku dobrej pogody uczeń zabiera na obserwacje mapy nieba z zaznaczonymi jasnościami gwiazd najlepiej po kilka gwiazd dla każdej magnitudy, tak aby mieć różne punkty odniesienia dla skali jasności. Pojawiające się meteory porównuje z gwiazdami i wyznacza ich jasność.

27. Zadanie obserwacyjne próba pełnej obserwacji (18A) Próba obserwacji pod nocnym niebem. Uczeń notuje początek obserwacji, wyznacza widoczność graniczną, notuje pojawiające się zjawiska. Po upływie jednej godziny czasu efektywnego ponownie wyznacza widoczność, notuje kolejne zjawiska, na zakończenie obserwacji wyznacza widoczność. W przypadku zmian zachmurzenia odnotowuje warunki pogodowe (np. 50% zachmurzenia od godziny x do godziny y). 28 29. Obserwacje meteorów zadanie obserwacyjne pod kontrolą prowadzącego (19A 20A) Zajęcia w Astrobazach mające na celu utrwalenie umiejętności obserwacyjnych uczniów. Uczniowie przed obserwacją sprawdzają listę widocznych danej nocy rojów meteorowych. Zaznaczają położenia radiantów na mapach. Obserwacje powinny rozpocząć się w około godzinę po zachodzie Słońca i powinny trwać 2 godziny. Spodziewane są raczej niewielkie ilości zjawisk w związku z czym obserwacja taka nie powinna sprawiać problemów początkującym obserwatorom 30 31. Wykonywanie raportów z obserwacji praca z platformą e learningową (10P 11P) Na podstawie wskazówek i materiałów zawartych na platformie uczniowie wypełniają raporty z obserwacji wizualnej. W przypadku braku danych obserwacyjnych (brak pogody w dniu planowanej obserwacji) uczniowie wypełniają raporty na podstawie danych przykładowych 32. Wprowadzenie raportu z obserwacji do formularza IMO (21A) Prowadzący krok po kroku przedstawia sposób wprowadzenia obserwacji do formularza IMO tak aby uczniowie byli w stanie powtórzyć całą operację na podstawie własnych danych obserwacyjnych

33 34. Wprowadzenie danych obserwacyjnych do formularza IMO przez uczniów. wykonanie raportu (12P 13P) Uczniowie wprowadzają wyniki swojej pracy do formularza IMO, wyniki obserwacji trafiają do ogólnie dostępnej bazy danych 35. Zapoznanie uczniów ze sprzętem obserwacyjnym (22A) Przedstawienie stacji bolidowych Starlight Oculus. Budowa, parametry, zapoznanie ze sprzętem w miejscu zainstalowania 36 37. Zapoznanie z funkcjami programu sterującego (14P 15P) Uczniowie zapoznają się z podstawowymi funkcjami programu. Co najmniej kilka osób z grupy powinno posiąść umiejętność samodzielnego obsługiwania stacji bolidowej. Obsługa stacji ogranicza się do uruchomienia stacji o określonej godzinie, wprowadzenia parametrów ekspozycji, ilości klatek do wykonania i do ściągnięcia danych po nocy. Stacja powinna być dostępna zdalnie przy pomocy programu takiego jak TeamViewer tak aby mogła być obsługiwana z dowolnego miejsca. Wyznaczane są osoby odpowiedzialne za obsługę, mogą obsługiwać urządzenie na zmianę. Od tego momentu stacje rejestrują dane 38 Zapoznanie z obsługa plików FITS (16P) Kamery Oculus zapisują dane w 16 bitowym formacie FITS używanym powszechnie w astronomii. Do przeglądu obrazków zapisanych w tym formacie potrzebne jest dodatkowe oprogramowanie (darmowe, łatwo dostępne). Uczniowie powinni zaznajomić się z techniką prostej obsługi plików FITS tak aby wyciągnąć maksymalną ilość danych z zarejestrowanych obrazków

39 40 Przegląd i obróbka danych ze stacji bolidowych (17P 18P) Uczniowie pobierają obrazki ze stacji dzieląc się nimi w sposób równomierny. Przeglądają obrazki za pomocą dostępnego oprogramowania, sprawdzają pod kątem obecności różnego rodzaju liniowych śladów wśród których mogą być meteoryty 41 Przegląd i omówienie danych ze stacji bolidowych (23A) Uczniowie przedstawiają zjawiska wykryte na stacjach bolidowych i pod nadzorem prowadzącego klasyfikują zjawiska pod kątem rodzaju (meteory, bolidy, satelity, samoloty itp.). Pliki z meteorami powinny zostać skopiowane do osobnego katalogu celem późniejszej obróbki. 42 Porównanie danych ze wszystkich stacji bolidowych (24A) Na zajęciach po raz pierwszy lokalna sieć bolidowa składająca się z 4 stacji będzie potraktowana jako całość. Do czasu zajęć poszczególne Astrobazy powinny wzajemnie wymienić się danymi. Zadaniem uczniów będzie odnalezienie wspólnych zjawisk dla wszystkich Astrobaz. Zjawiska takie nazywane są zjawiskami bazowymi analizując obrazki i używając odpowiedniego oprogramowania będzie można próbować wyznaczyć położenie meteorów w przestrzeni jak też będzie można wyznaczać orbity obiektów. 43 Obsługa stacji bolidowej platforma (19P) Zdalna obsługa stacji bolidowej przez uczniów, przegląd danych według wcześniejszych wskazówek prowadzącego 44 Wspólny przegląd danych ze stacji bolidowych (25A) Uczniowie przedstawiają zjawiska wykryte na stacjach bolidowych i pod nadzorem prowadzącego klasyfikują zjawiska pod kątem rodzaju (meteory, bolidy, satelity, samoloty itp.). Pliki z meteorami powinny zostać skopiowane do osobnego katalogu celem późniejszej obróbki.

45 46 Pomiary współrzędnych meteoru za pomocą oprogramowania AstroRecord (20P 21P) AstroRecord jest standardowo stosowanym programem do pomiaru pozycji meteorów na obrazkach ze stacji bolidowych. W szczególności program ten dobrze radzi sobie z pomiarem bardzo dużych pól widzenia. Program nie jest trudny w obsłudze, tym niemniej jego prawidłowe opanowanie może wymagać około 2 godzin pracy pod nadzorem prowadzącego. Przed pomiarem należy przekonwertować obrazek z formatu FITS do BMP. Uczeń wprowadza dane meteoru (moment pojawienia się, współrzędne Astrobazy), zaznacza widoczne na obrazku gwiazdy (pierwsze 3 ręcznie, kolejne podpowiadane są przez program) a na koniec zaznacza położenie meteoru. Tak uzyskany plik zapisuje w katalogu z obrazkiem. 47 48 Praca z platformą obróbka dotychczas zebranych obrazków za pomocą oprogramowania AstroRecord (22P 23P) 49 Wspólna obróbka danych zebranych przez stacje sprawdzenie danych zebranych przez uczniów ze stacji bolidowych (26A) 50 51 Praca z platformą e learningową pomiary zebranych obrazków za pomocą oprogramowania AstroRecord (24P 25P) 52 Prosta fotometria meteorów z użyciem programu ImageJ (26P) ImageJ jest darmowym programem przeznaczonym do obróbki zdjęć, między innymi w formacie FITS. Program ten potrafi wykonywać krzywe blasku meteorów wyskalowane w jednostkach umownych. Należy wykonać taki profil i zapisać do pliku TXT. Jednocześnie należy zmierzyć jasności pikseli dla widocznych na obrazku gwiazd odniesienia zapisując wyniki do osobnego pliku. Fotometria wykonywana taką metodą nie jest doskonała, jest jednak łatwa do opanowania i wystarcza do stwierdzenia jasności z dokładnością około 1 magnitudy.

53 54. Praca z platformą e learningową pomiary jasności meteorów zebranych przez stacje bolidowe w sposób przedstawiony na zajęciach (27P 28P) 55 Praca z platformą Podsumowanie działania sieci przez opiekuna astroteamu z wykorzystaniem możliwości platformy e learningowej (29P) Dane zbierane przez stacje bolidowe będą jednocześnie analizowane w Pracowni Komet i Meteorów. Zjawiska będą brane pod uwagę przy analizach nie tylko w ramach samych Astrobaz ale też w połączeniu z danymi Polskiej Sieci Bolidowej. Podsumowanie dostarczone przez opiekuna astroteamu będzie przedstawiało wyniki naukowe uzyskane z pomocą kamer obsługiwanych przez uczniów. Wyszczególnione zostaną trajektorie po jakich poruszały się ciała, orbity meteoroidów, opisane zostaną wszelkie inne ciekawe kwestie związane z działaniem stacji. Tego typu podsumowania będą przeprowadzane regularnie w miarę spływania danych ze stacji. 56 Obserwacje wideo (30P) Podczas zajęć opisane zostają techniki obserwacji za pomocą kamer video przedstawiany jest sprzęt (kamery, obiektywy, komputery z odpowiednim oprogramowaniem na podstawie dostarczonych materiałów, nie musi to być pokaz rzeczywistego sprzętu). Zajęcia mają uświadomić uczniom wady i zalety obserwacji wideo. Są to obserwacje precyzyjne, pozwalające na dokładne wyznaczanie radiantów rojów, trajektorii i orbit. Nie pozwalają na dokładne wyznaczanie ZHR, tu wciąż ludzkie oko ma przewagę. W porównaniu do innych technik obserwacji mają jednak bardzo dobrą skuteczność 57 Przegląd danych zebranych na zajęciach, pomiary programem AstroRecord, wyznaczanie krzywych blasku zarejestrowanych zjawiska (27A)

58 Obserwacje fotograficzne (31P) Obserwacje fotograficzne mogą być prowadzone za pomocą lustrzanek bądź też za pomocą kamer CCD. Obserwacje prowadzone w Astrobazach są właśnie rodzajem obserwacji fotograficznych. Dane tego rodzaju charakteryzuje wysoka rozdzielczość co przekłada się na bardzo wysoką precyzję wyznaczanych trajektorii i orbit. Warto zwrócić uwagę że obserwacje takie można przeprowadzać zwykłymi lustrzankami co może przynieść nawet wyższą rozdzielczość kosztem możliwości przeprowadzenia dobrej fotometrii (kamery CCD dają bardziej jednoznaczną ocenę jasności) 59 Zebranie wyników z Astrobaz (28A) Wymiana danych pomiędzy Astrobazami (powinno do niej dojść przed zajęciami), próba odnalezienia wspólnych zjawisk, porównanie pozycji na niebie dla wspólnych zjawisk, próba wyciągnięcia wniosków dotyczących położenia zjawisk względem stacji. 60 Obserwacje radiowe (32P) Przedstawiana jest idea obserwacji radiowych. Zjawisko meteoru wywołuje krótkotrwałą jonizację atmosfery wokół przelatującego meteoroidu. W tym krótkim czasie ślad meteoru odbija fale radiowe o konkretnych częstotliwościach, odbicie fal można rejestrować stosunkowo tanim i nieskomplikowanym sprzętem 61 dzienne roje meteorów praca z platformą e learningową (33P) Oprócz dobrze znanych nocnych rojów meteorowych istnieją roje dzienne, rejestrowane tylko radiowo. Uczniowie powinni zebrać informacje dotyczące takich zjawisk w postaci tabelki oceniając kiedy najlepiej zorganizować obserwacje radiowe

62 Próba wykonania prostego zestawu do obserwacji radiowych (29A) Potrzebny będzie odbiornik radiowy FM z gniazdem słuchawkowym, komputer, kabel audio. Odpowiednie oprogramowanie do odbioru sygnału zostanie dostarczone przez opiekuna astroteamu. Odbiornik radiowy ustawiony w większej odległości od komputera, z dala od zakłóceń należy nastroić na wolną częstotliwość na której nie słychać żadnych stacji. Jednocześnie powinna być to częstotliwość na której znajduje się odległa stacja FM niesłyszalna bezpośrednio. Na komputerze uruchamiamy oprogramowanie do obserwacji radiowych, ustawiamy według dostarczonych wskazówek, próbujemy rejestrować zjawiska. Istnieje niewielka szansa na zarejestrowanie meteorów podczas pierwszych zajęć tym niemniej należy zapamiętać sposób w jaki zbudowana jest tego typu stacja radiowa. 63 Przegląd danych ze stacji bolidowych dokonywany na zajęciach (30A) 64 Podsumowanie ze strony opiekuna astroteamu (34P) Przedstawienie najciekawszych wyników naukowych uzyskanych za pomocą stacji bolidowych 65 Sieć bolidowa oparta o Astrobazy (35P) Podczas zajęć dokładnie charakteryzowana jest sieć oparta o astrobazy. Mierzone są odległości pomiędzy stacjami, wzajemne azymuty. Warto zrobić mapę wskazująca położenie meteoru na wysokości 100km dla kątów widzenia 60 stopni, 45 stopni, 30 stopni. Pozwoli to na lepsze wyobrażenie sobie rzeczywistych położeń meteorów obserwowanych przez stacje 66 Polska Sieć Bolidowa (36P) Zapoznanie z Polską Siecią Bolidową. Położenia stacji bolidowych, używany sprzęt, kierunki kamer

67. Sprawdzenie danych ze stacji pod nadzorem prowadzącego zajęcia (31A) 68 Europejska sieć bolidowa (37P) Sieć bolidowa istniejąca od połowy lat 50 tych, początkowo w Czechach, w latach późniejszych pokryła obszar Europy Środkowej. Sieć przez ponad 50 lat swojego istnienia odnotowała dziesiątki interesujących zjawisk. Za pomocą urządzeń należących do sieci zarejestrowanych zostało kilka spektakularnych spadków meteorytów Pribram, Neuschwanstein, Benesov 69 Wyznaczanie trajektorii w przestrzeni (38P) Istnieją dwie metody wyznaczania trajektorii meteorów w przestrzeni. Wchodzenie w opis matematyczny może być zbyt trudne dla uczniów tym niemniej graficzne przedstawienie sposobu wyznaczania trajektorii dla obu metod powinno w sposób zadowalający opisać drogę od obrazka na stacji bolidowej do trajektorii meteoroidu w przestrzeni 70 Wyznaczanie orbit (39P) Znając trajektorię zjawiska i prędkość początkową możemy określić orbitę ciała wchodzącego do atmosfery. Samo wyznaczenie orbity nie jest zbyt trudne matematycznie, wystarczające są umiejętności na poziomie liceum. Przy użyciu dostarczonego oprogramowania możliwe będzie eksperymentowanie z orbitami dla różnych pozycji radiantów, różnych prędkości i różnych dat. 71. Ciemny lot czyli upadek meteorytu (40P) Po osiągnięciu prędkości około 4km/s rozpoczyna się tzw ciemny lot (o ile do tego czasu dotrwały jakieś fragmenty meteoroidu). Meteoroid dość szybko hamowany jest na dużych wysokościach i w stosunkowo krótkim czasie rozpoczyna się spadek swobodny zaburzany przez wiatry wiejące na dużych wysokościach. Wiatry te mają decydujący wpływ na miejsce w którym dochodzi do spadku meteorytu. Jedynie najbardziej masywne cząstki zachowują początkowy pęd.

72. Najważniejsze zjawiska upadku meteorytów (41P) Omówienie najważniejszych spadków meteorytowych w historii sieci bolidowych Pribram, Lost City, Peekskill, Moravka, Kosice, Czelabińsk 73. Podsumowanie ze strony opiekuna astroteamu (42P) Najciekawsze zjawiska zarejestrowane przez stacje bolidowe w Astrobazach, przedstawienie położeń zarejestrowanych meteorów, orbit i innych ciekawych wniosków związanych z pracą stacji bolidowych 74. Przygotowanie i uruchomienie zestawu radiowego (32A) Uruchomienie zestawu radiowego według opisu z poprzednich lekcji. Optymalnym momentem na uruchomienie radia jest okres aktywności roju meteorowego przy czym w tym wypadku może to być zarówno klasyczny rój meteorowy jak i rój dzienny, możliwy do obserwacji tylko na falach radiowych. 75. Meteoryty (33A) Wstęp do tematyki meteorytowej opisywane są różnego rodzaju typy meteorytów chondryty, achondryty, meteoryty żelazne, opisywany jest ich skład i właściwości 76. Meteoryty polskie (43P) Podczas zajęć przedstawione zostaną najsłynniejsze polskie spadki meteorytów Pułtusk, Łowicz, Morasko. Wskazane zostaną rejony w których warto prowadzić poszukiwania. W razie potrzeby można zadanie to wykonać w formie pracy domowej zlecając uczniom przygotowanie prac dotyczących tego tematu

77 78. Platforma e learningowa obsługa stacji bolidowej przez uczniów (44P 45P) 79. Sprawdzenie wyników ze stacji bolidowych podczas zajęć (34A) 80 81. Nauka rozpoznawania meteorytów (46 47P) Meteoryty zazwyczaj różnią się od skał ziemskich wyglądem zewnętrznym, ciężarem i kilkoma innymi cechami. Uczniowie zapoznają się ze sposobami rozpoznawania meteorytów jak też dowiedzą się jakie cechy znalezionego obiektu wykluczają jego meteorytowe pochodzenie. Wskazane jest wypożyczenie lub zakup rzeczywistych meteorytów w przypadku niesklasyfikowanych meteorytów pustynnych NWA jest to wbrew powszechnym wyobrażeniom bardzo niewielki koszt. 82 83. Zabawa w poszukiwanie meteorytów (35A 36A) Warto przeprowadzić zajęcia na świeżym powietrzu organizując zabawę w poszukiwanie obiektów imitujących meteoryty na dużym obszarze trawiastym. Prowadzący ukrywa takie obiekty wcześniej (mogą to być specjalnie przygotowane kamienie, pomalowane na ciemny kolor, imitujące meteoryty). Zadaniem uczniów jest zorganizować poszukiwania w sposób uporządkowany, tak aby w możliwie krótkim czasie odnaleźć imitacje meteorytów. 84. Podsumowanie przez opiekuna astroteamu (48P) Przedstawione zostaną wyniki naukowe uzyskane z pomocą stacji znajdujących się w Astrobazach. Przedstawione zostaną wskazówki dotyczące kontynuacji obsługi stacji bolidowych przez uczniów zainteresowanych tematyką.