Ekonometria. Zaj cia 1 / 2: Badania operacyjne. Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER

Podobne dokumenty
Ekonometria. wiczenia 10 / 11 / 12: Badania operacyjne. Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Funkcje, wielomiany. Informacje pomocnicze

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Lab. 02: Algorytm Schrage

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki


RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Zmiany przepisów ustawy -Karta Nauczyciela. Warszawa, kwiecień 2013

ZASADY PROWADZENIA CERTYFIKACJI FUNDUSZY EUROPEJSKICH I PRACOWNIKÓW PUNKTÓW INFORMACYJNYCH

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,

2 Liczby rzeczywiste - cz. 2

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Funkcje. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

1 Metody iteracyjne rozwi zywania równania f(x)=0

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

ZP Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych


3 4 5 Zasady udzielania urlopów 6 7 8

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0, S 2 0,4 0,2 0 0, Ceny x

ZARZĄDZENIE NR 155/2014 BURMISTRZA WYSZKOWA z dnia 8 lipca 2014 r.

Zasady wystawiania oceny z przedmiotu Statystyka i SKJ procesów.

Szeregowanie zada« Przedmiot fakultatywny 15h wykªadu + 15h wicze« dr Hanna Furma«czyk. 7 pa¹dziernika 2013

GPW: Program Wspierania Płynności

Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700

Kraków, dnia 19 kwietnia 2016 r. Poz UCHWAŁA NR XVIII/249/16 RADY MIEJSKIEJ W NIEPOŁOMICACH. z dnia 30 marca 2016 roku

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

Rozdziaª 8. Modele Krzywej Dochodowo±ci

1 Bª dy i arytmetyka zmiennopozycyjna

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, Dawid Rasaªa Metody numeryczne 1 / 9

Regulamin Wynagradzania Pracowników Urz du Gminy Pi tek.

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Morska Stocznia Remontowa Gryfia S.A. ul. Ludowa 13, Szczecin. ogłasza

EKONOMETRIA II SYLABUS A. Informacje ogólne

UZASADNIENIE. I. Potrzeba i cel renegocjowania Konwencji

Metodydowodzenia twierdzeń

Programowanie wspóªbie»ne

Regulamin opłat wraz z tabelą opłat za naukę w Wyższej Szkole Logistyki

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy

Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6

Ogólna charakterystyka kontraktów terminowych

Fundusze europejskie dla rozwoju lubuskiego. Zapytanie ofertowe

USTAWA. z dnia 26 czerwca 1974 r. Kodeks pracy. 1) (tekst jednolity)

Rozwi zania klasycznych problemów w Rendezvous

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

Wojewódzki Konkurs Matematyczny

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

URZĄD OCHRONY KONKURENCJI I KONSUMENTÓW

Zastosowania matematyki

Metody probablistyczne i statystyka stosowana

1 Przedmiot Umowy 1. Przedmiotem umowy jest sukcesywna dostawa: publikacji książkowych i nutowych wydanych przez. (dalej zwanych: Publikacjami).

UCHWAŁA NR... RADY MIASTA KIELCE. z dnia r.

Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, Warszawa, NIP:, REGON:.. reprezentowaną przez:

WYKRESY FUNKCJI NA CO DZIEŃ

Twoja droga do zysku! Typy inwestycyjne Union Investment TFI

Ukªady równa«liniowych

Wst p i organizacja zaj

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Projekt "Integracja i aktywność" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Procedura uzyskiwania awansu zawodowego na stopień nauczyciela mianowanego przez nauczycieli szkół i placówek

Wektory w przestrzeni

Uchwała Nr.. /.../.. Rady Miasta Nowego Sącza z dnia.. listopada 2011 roku

Wytyczne ministerialne przewidywały niekorzystny sposób rozliczania leasingu w ramach dotacji unijnych. Teraz się to zmieni.

Liniowe zadania najmniejszych kwadratów

EDUKARIS - O±rodek Ksztaªcenia

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego

Rozdziaª 10: Portfel inwestycyjny

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ZARZĄDZENIE Nr Or/9/Z/05

Szczegółowe zasady obliczania wysokości. i pobierania opłat giełdowych. (tekst jednolity)

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

- 70% wg starych zasad i 30% wg nowych zasad dla osób, które. - 55% wg starych zasad i 45% wg nowych zasad dla osób, które

PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu:

REGULAMIN KONTROLI ZARZĄDCZEJ W MIEJSKO-GMINNYM OŚRODKU POMOCY SPOŁECZNEJ W TOLKMICKU. Postanowienia ogólne

INFORMACJA O ZMIANACH DANYCH OBJĘTYCH PROSPEKTEM INFORMACYJNYM AMPLICO FUNDUSZU INWESTYCYJNEGO OTWARTEGO PARASOL KRAJOWY Z WYDZIELONYMI SUBFUNDUSZAMI:

Instrumenty wsparcia ze środków Funduszu Termomodernizacji i Remontów

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Najwyższa Izba Kontroli Delegatura w Gdańsku

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Zarządzenie nr 538 Wójta Gminy Zarszyn z dnia 9 czerwca 2014 r.

Teoria wymiany mi dzynarodowej

DZIENNIK URZĘDOWY WOJEWÓDZTWA ŁÓDZKIEGO

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe

Regulamin przyznawania naukowych stypendiów doktoranckich Fundacji Narodowego Banku Polskiego

Przetwarzanie sygnaªów

Makroekonomia I. wiczenia 1: Rachunek dochodu narodowego i wielko±ci pokrewnych. 19 lutego Karolina Konopczak. Katedra Ekonomii Stosowanej

Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r.

wzór Załącznik nr 5 do SIWZ UMOWA Nr /

PROCEDURY PRZYJĘCIA UCZNIA DO TRZYLETNIEGO (Z MOŻLIWOŚCIĄ ROCZNEGO WYDŁUŻENIA) XIX LICEUM OGÓLNOKSZTAŁCACEGO SPECJALNEGO

Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =

Transkrypt:

Ekonometria Zaj cia 1 / 2: Badania operacyjne Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER 1 / 15 pa¹dziernika 2017 Karolina Konopczak Katedra Ekonomii Stosowanej

Plan wicze«sprawy organizacyjne Badania operacyjne Zadania programowania liniowego Analiza pooptymalizacyjna

Plan wicze«sprawy organizacyjne Badania operacyjne Zadania programowania liniowego Analiza pooptymalizacyjna

Kontakt karolina.konopczak@sgh.waw.pl konsultacje: pi tki g. 7.00 (sala B-12) http://www.e-sgh.pl/konopczak/ekonometria_sn_2017

Zasady zaliczenia (1): wiczenia sprawdziany komputerowe: SOLVER (tematy 11-13 minimum programowego) > max. 6 pkt. GRETL (tematy 1-8 minimum programowego) > max. 6 pkt. nie mog by poprawiane wyj tek: jeden sprawdzian w przypadku usprawiedliwionej nieobecno±ci punkty autorskie > ª cznie max. 6 pkt. aktywno± : max. 1 pkt na zaj cia prace domowe kartkówka zaliczenie wicze«(warunek przyst pienia do egzaminu) > min. 6 pkt poprawa: w sesji poprawkowej (sprawdziany GRETL + SOLVER)

Zasady zaliczenia (2): przedmiot egzamin centralny kartka A4 z notatkami + kalkulator 4 lub 5 zada«90 min. max. 32 pkt. ( + max. 18 pkt. z wicze«) Š czna liczba punktów Ocena <24 2 24-29 3 30-34 3+ 35-39 4 40-44 4+ 45 5 egzamin zerowy tylko dla studentów wyje»d»ajacych na studia zagraniczne

Przydatne adresy program i zasady zaliczenia przedmiotu http://kolegia.sgh.waw.pl/pl/kae/struktura/ie/oferta/strony/ekonometria.aspx materiaªy do podr cznika: http://kolegia.sgh.waw.pl/pl/kae/struktura/ie/oferta/strony/podrecznik-z- Ekonometrii.aspx program GRETL pod Windows: http://gretl.sourceforge.net/win32/

Zaj cia 1. 1.10: Zadanie programowania liniowego / Typy zada«/ SOLVER 2. 15.10: Metoda graczna / Analiza pooptymalizacyjna 3. 29:10: SPRAWDZIAN 1 * / Wst p do modelowania ekonometrycznego / GRETL 4. 19.11: Diagnostyka modelu ekonometrycznego / Prognozowanie 5. 3.12: KARTKÓWKA / Modele nieliniowe 6. 17.12: Modele zmiennej jako±ciowej 7. 20.01: SPRAWDZIAN 2 / Modelownie szeregów czasowych 8. 21.01: Powtórzenie / uzupeªnienie * SPRAWDZIAN 1 odb dzie si 29.10 lub 19.11

Plan wicze«sprawy organizacyjne Badania operacyjne Zadania programowania liniowego Analiza pooptymalizacyjna

Badania operacyjne - denicja Badania operacyjne (operations research, OR): zastosowanie metod matematycznych w celu znalezienia rozwi zania problemu decyzyjnego, tj. okre±lenia najlepszej decyzji spo±ród wszystkich mo»liwych pocz tki: XIX w. (Charles Babbage) rozwój: II woja ±wiatowa st d nazwa: operacyjne dotycz ce operacji wojskowych

Badania operacyjne - zakres zaj rozdziaªy: 11, 12, 13 zagadnienia: sformuªowanie problemu decyzyjnego w postaci zadania programowania matematycznego problemy decyzyjne w zakresie: produkcji, diety, protfela inwestycyjnego, harmonogramu, transportu, przydziaªu, mieszanki, rozkroju rozwi zanie zadania programowania liniowego z u»yciem dodatku SOLVER w programie Excel rozwi zanie zadania programowania liniowego z dwiema zmiennymi decyzyjnymi metod graczn badanie wra»liwo±ci (stabilno±ci) decyzji optymalnej na zmian parametrów zadania

Sformuªowanie zadania programowania matematycznego 1. Zdeniowanie zmiennych decyzyjnych. 2. Zdeniowanie funkcji celu i kryterium optymalizacji (minimalizacja lub maksymalizacja). 3. Zdeniowanie warunków ograniczaj cych.

Rozwi zanie zadania programowania matematycznego rozwi zanie zadania znalezienie decyzji optymalnej minimalizacja/maksymalizacja funkcji celu przy zadanych warunkach ograniczaj cych

Plan wicze«sprawy organizacyjne Badania operacyjne Zadania programowania liniowego Analiza pooptymalizacyjna

Problem planu produkcji Cukiernia Markiza specjalizuje si w produkcji dwóch rodzajów ciast tortu i ciasta czekoladowego. Zysk z kilograma pierwszego ciasta wynosi 2,5 zª, za± z drugiego 3,5 zª. Do produkcji wykorzystuje si wod, m k, cukier i kakao. Woda wyst puje w nieograniczonych ilo±ciach i jest bezpªatna. Zasoby trzech pozostaªych skªadników s ograniczone. Miesi czne zapasy wynosz odpowiednio: 18 kg, 15 kg i 6 kg. Do produkcji 1 kg tortu zu»ywane jest 1,2 kg m ki, 1,5 kg cukru i 0,3 kg kakao, za± ciasta czekoladowego odpowiednio: 1,5 kg, 1 kg, 0,4 kg. Kierownictwu zale»y na jak najwy»szym zysku. Jaki plan produkcji powinni przyj, bior c pod uwag fakt, i» zwi zani s umow z lokaln restauracj na dostaw 5 kg tortu miesi cznie.

Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy dziecku przynajmniej 1 jedn. witaminy B1, 4 jedn. witaminy D, 400 kalorii. Dziecko chce je± wyª cznie mleko i ciasto. 100 ml mleka kosztuje 3,8 zª i dostarcza 0,1 jedn. witaminy B1, 1 jedn. witaminy D oraz 100 kalorii. 100 g ciasta kosztuje 4,2 zª i dostarcza 0,25 jedn. witaminy B1, 0,25 jedn. witaminy D i 120 kalorii. Jaki zestaw ±niadaniowy b dzie odpowiedni dla dziecka i satysfakcjonuj cy dla oszcz dnych rodziców?

Problem portfela inwestycyjnego Fundusz powierniczy chce zainwestowa 20 mld zª. Doradca inwestycyjny funduszu oszacowaª oczekiwane stopy zwrotu oraz ryzyko dla 5 mo»liwych inwestycji. Jak zainwestowa posiadany kapitaª, aby zmaksymalizowa oczekiwany zysk pod warunkiem,»e ±redni wska¹nik ryzyka nie mo»e przekroczy 0,05, a ª czna warto± inwestycji w akcje nie mo»e przekroczy 3 mld zª. Zakªadamy niezale»no± stóp zwrotu z poszczególnych inwestycji. Rodzaj inwestycji Oczekiwana stopa zwrotu Ryzyko Nieruchomo±ci 0,16 0,05 Obligacje rmy ubezpieczeniowej 0,15 0,04 Akcje A 0,25 0,30 Obligacje skarbowe 0,12 0,00 Akcje B 0,20 0,10

Problem harmonogramu (1) Urz d pocztowy dy»uruje przez caª dob, za± ka»dy zatrudniony pracownik w ci gu doby pracuje bez przerwy 8 godzin, zaczynaj c prac o jednej z nast puj cych godzin: 0:00, 4:00, 8:00, 12:00, 16:00, 20:00. Z powodu ró»nej w ró»nych porach doby liczby klientów, minimalna liczba osób niezb dnych do funkcjonowania urz du jest zmienna: Pora dnia Minimalna liczba pracowników 0:00-4:00 3 4:00-8:00 4 8:00-12:00 8 12:00-16:00 4 16:00-20:00 10 20:00-24:00 4 Jak liczb pracowników nale»aªoby minimalnie zatrudni,»eby zapewni funkcjonowanie urz du?

Problem harmonogramu (2) Jak zmieniªby si model, gdyby jako kryterium przyj minimalizacj ª cznego uposa»enia pracowników: 1. przyjmuj c,»e wysoko± pensji nie zale»y od pory dnia, na któr przypadaj godziny pracy 2. przyjmuj c,»e wynagrodzenie za o±miogodzinny czas pracy w zale»no±ci od godziny rozpocz cia zmiany ksztaªtuj si nast puj co: Pora dnia Wynagrodzenie 0:00-4:00 400 4:00-8:00 300 8:00-12:00 200 12:00-16:00 200 16:00-20:00 300 20:00-24:00 400

Zadanie transportowe niezbilansowane (1) Hurtownia posiada w kraju trzy oddziaªy terenowe, w których znajduje si 72, 46 oraz 60 ton m ki. M k t nale»y rozwie¹ do trzech odbiorców zgªaszaj cych zapotrzebowanie w wysoko±ci 27, 50 i 47 ton. Jednostkowe koszty transportu (w tys. zª/ton ) mi dzy hurtowniami a odbiorcami podano w tabeli. Hurtownia Odbiorca 1 2 3 1 33 20 21 2 45 15 35 3 26 25 22 Ustali plan dostaw, z którym zwi zany byªby minimalny koszt transportu.

Zadanie transportowe niezbilansowane (2) Jak uwzgl dni» dania, aby: 1. odbiorca drugi nie otrzymaª m ki z drugiej hurtowni 2. z pierwszej hurtowni wywie¹ caªy zapas m ki 3. z pierwszej hurtowni wywie¹ co najmniej 60 ton maki 4. odbiorca pierwszy dostaª m k tylko z pierwszej hurtowni

Problem przydziaªu W zakªadzie jubilerskim zatrudniaj cym trzech pracowników mo»na wytwarza cztery rodzaje pier±cionków. Tygodniowa wydajno± pracowników mierzona liczba pier±cionków, które mo»e dana osoba wykona, dana jest macierz : W = 3 3 1 4 1 4 2 3 2 2 2 4 Pier±cionki s sprzedawane po cenach odpowiednio 20, 15, 25 i 10 tys. zª. Wªa±ciciel zakªadu chciaªby przydzieli zadania swoim pracownikom, aby ka»dy z nich wytwarzaª jeden, inny ni» pozostali, rodzaj pier±cionków i by tygodniowa warto± produkcji byªa mo»liwie najwi ksza.

Problem mieszanki Raneria produkuje 2 gatunki benzyny: zwykª (Z) i wysookoktanow (W), mieszaj c w tym celu trzy skªadniki: S1, S2, S3. Cena 1 tony benzyny Z wynosi 0,5 jp., za± benzyny W - 0,54 jp. Ceny poszczególnych skªadników (w jp. za ton ), ich zapasy (w tonach) oraz skªad benzyny obu typów jest nast puj cy: Skªadniki Cena Zasób Benzyna Z Benzyna W S1 0,25 5000 Co najwy»ej 30% Co najmniej 25% S2 0,30 10000 Co najmniej 40% Co najwy»ej 40% S3 0,42 10000 Co najwy»ej 20% Co najmniej 30% Wywi zanie si z kontraktów podpisanych z odbiorcami wymaga produkcji co najmniej 10000 ton benzyny Z. Jaki plan produkcji benzyny pozwoliªby na maksymalizacj zysku ranerii.

Problem rozkroju W tartaku produkowane s meble do samodzielnego zªo»enia. Ka»dy zestaw skªada si z 2 elementów o dªugo±ci 0,7m, 3 elementów o dªugo±ci 1,5m oraz 1 elementu o dªugo±ci 2,5m. Elementy wycinane s w tartaku z desek o dªugo±ci 3m. Do tartaku przyjechaªa wªa±nie dostawa 2000 desek. 1. W jaki sposób nale»y poci deski, aby liczba zestawów mebli do skªadania byªa jak najwi ksza. 2. W jaki sposób poci deski, aby zrealizowa zamówienie na 600 zestawów i zmarnowa mo»liwie maªo surowca. Podpowied¹: Na pocz tku trzeba ustali mo»liwe sposoby poci cia pojedynczej deski (chodzi o takie sposoby, aby z pozostaªej cz ±ci deski nie daªo si wykroi»adnego elementu).

Plan wicze«sprawy organizacyjne Badania operacyjne Zadania programowania liniowego Analiza pooptymalizacyjna

Analiza pooptymalizacyjna Badanie wra»liwo±ci (stabilno±ci) decyzji optymalnej na zmian parametrów zadania optymalizacyjnego wspóªczynnika funkcji celu np. zmiana jednostkowej ceny lub jednostkowego zysku z produkowanych dóbr wyrazu wolnego w warunku ograniczaj cym np. zmiana zapasów danego czynnika produkcji liczby warunków ograniczaj cych np. podpisanie umowy na dostaw okre±lonej ilo±ci jednego z produktów liczby zmiennych decyzyjnych np. wprowadzenie nowego produktu do oferty wspóªczynnika przy zmiennej decyzyjnej w warunku ograniczaj cym np. zmiana technologii produkcji przy pozostaªych parametrach niezmienionych.

Zmiana wspóªczynnika funkcji celu przykªad: zmiana ceny rynkowej (i tym samym jednostkowego zysku z) tortu przy wszystkich pozostaªych parametrach (tj. cenie ciasta, kosztach produkcji, zasobach skªadników, technologii) niezmienionych zmiana wspóªczynników funkcji celu > zmiana nachylenia warstwicy funkcji celu, które determinuje to, który wierzchoªek jest rozwi zaniem optymalnym szukamy przedziaªu stabilno±ci dla danego wspóªczynnika funkcji celu pytanie: dla jakich warto±ci wspóªczynnika funkcji celu decyzja optymalna jest stabilna przy niezmienionych pozostaªych parametrach zadania?

Zmiana wyrazu wolnego w warunku ograniczaj cym (1) przykªad: cz ± z posiadanych przez cukierni zapasów ulegªa zepsuciu przy pozostaªych warunkach niezmienionych zmiana wyrazu wolnego warunku ograniczaj cego > równolegªe przesuni cie prostej warunku w gór lub w dóª, co mo»e zmieni zbiór rozwi za«dopuszczalnych je±li dany warunek nie jest w optimum napi ty, zmiana wyrazu wolnego mo»e nie mie wpªywu na zbiór rozwi za«dopuszczalnych je±li dany warunek jest w optimum napi ty, zmiana wyrazu wolnego zawsze wywoªa zmian decyzji optymalnej st d w tym przypadku badamy nie tyle stabilno± decyzji optymalnej, ile stabilno± barier dla decyzji optymalnej, czyli czy po zmianie zasobu warunki pozostan napi te

Zmiana wyrazu wolnego w warunku ograniczaj cym (2) struktura bazowa rozwi zania optymalnego > zbiór warunków deniuj cych dane rozwi zanie optymalne (wi» cych) st d badamy, czy struktura bazowa rozwi zania optymalnego nie ulegnie zmianie po zmianie danego zasobu szukamy przedziaªu stabilno±ci struktury bazowej rozwi zania optymalnego pytanie: dla jakich warto±ci wyrazu wolnego warunku ograniczaj cego zbiór warunków napi ty w wyj±ciowym rozwi zaniu optymalnym jest stabilny? dla warunku lu¹nego > nie tylko zachowanie struktury bazowej, ale równie» samego rozwi zania

Cena dualna cena dualna > przyrost/spadek warto±ci funkcji celu wywoªany jednostkowym przyrostem/spadkiem wyrazu wolnego danego warunku pod warunkiem, ze zmiana nie wykracza poza przedziaª stabilno±ci dla warunku lu¹nego cena dualna = 0