Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x wykonaj następujące polecenia: (A Sprawdź czy funkcja jest rosnąca Jaką to ma interpretację ekonomiczną? (B Sprawdź czy spełnione jest prawo Gossena Jaką to ma interpretację ekonomiczną? (C Wyznacz krańcową stopę substytucji towaru pierwszego przez drugi s oraz towaru drugiego przez pierwszy s Podaj ich interpretacje (D Wyznacz elastyczność substytucji towaru pierwszego przez drugi e oraz towaru drugiego przez pierwszy e Podaj ich interpretacje (E Narysuj krzywą obojętności dla dowolnie ustalonego poziomu użyteczności Czy kształt wykresu zgadza się z wyznaczonymi wcześniej wielkościami (czy jest to linia rosnąca czy malejąca? Zad Dla funkcji użyteczności (a u (x x = x x (b u (x x = ln x + 4 ln x (c u (x x = x x = x x (d u (x x = x + x = x + x (e u (x x = x 4 x wykonaj następujące polecenia: (A Zapisz zadanie maksymalizacji użyteczności konsumenta (B Zapisz warunki Kuhna-Tuckera wyznaczające rozwiązanie Zinterpretuj te warunki (C Wyznacz rozwiązanie zadania i zapisz funkcję popytu konsumenta ϕ(p (D Wyznacz krańcową stopę substytucji towaru pierwszego przez drugi s w punkcie optymalnym Czy jest ona równa stosunkowi cen p /p? (E Oblicz elastyczności dochodowe ε d ε d elastyczności cenowe proste ε c ε c i elastyczności cenowe krzyżowe ε c ε c Zinterpretuj je oraz ustal jakiego rodzaju dobrami są towary i (F Sprawdź stopień jednorodności funkcji popytu ϕ Zinterpretuj wynik Rozwiązania Zad (a Obliczamy pochodne cząstkowe x = > 0 x = > 0
Obie pochodne są większe od zera a zatem jest to funkcja rosnąca Obliczamy drugie pochodne proste: u x = 0 u x = 0 Nie są mniejsze od zera a zatem prawo Gossena nie jest spełnione Krańcowe stopy substytucji: s = Elastyczności substytucji: (b Pochodne cząstkowe: x x = s = x x = e = s x x = x x e = s x x = x x x = x x > 0 x = x > 0 są większe od zera a zatem funkcja jest rosnąca Drugie pochodne proste u x = x > 0 u x = 0 nie są mniejsze od zera a więc funkcja nie spełnia prawa Gossena Krańcowe stopy substytucji: s = Elastyczności substytucji: x = x x x = x s = x x x = x x = x x x x x e = s = x x x = e = s = x x = x x x x x x (c Funkcja jest rosnąca i spełnia prawo Gossena Krańcowe stopy substytucji i elastyczności substytucji wynoszą: s = 4x x s = x 4x e = 4 e = 4 (d Funkcja jest rosnąca i spełnia prawo Gossena Krańcowe stopy substytucji i elastyczności substytucji wynoszą: s = x x e = x x s = x x e = x x Zad (a Zadanie maksymalizacji użyteczności ma postać: max x x
pod warunkiem że p x + p x x x 0 Pochodne cząstkowe funkcji użyteczności: = x x x = x x x Warunki Kuhna-Tuckera mają postać: x x = λp x x = λp p x + p x = Aby otrzymać rozwiązanie dzielimy dwa pierwsze równania przez siebie stronami Otrzymujemy: Upraszczamy do czyli a zatem x x x x x x + = λp λp = p p x x = p p p x = p x Podstawiamy to do trzeciego równania i otrzymujemy p x + p x = czyli [ p x + ] = a zatem p x = Rozwiązaniem tego równania jest Rozwiązaniem dla x jest więc x = p x = p Krańcowa stopa substytucji dla tej funkcji użyteczności wynosi s = x x Podstawiamy otrzymany wcześniej punkt optymalny i otrzymujemy s = p = p p p
A zatem krańcowa stopa substytucji w punkcie optymalnym jest równa stosunkowi cen ( ϕ (p p = p Pochodne cząstkowe funkcji popytu względem cen i względem dochodu wynoszą ϕ = ϕ p p =0 p ϕ ϕ =0 = p p ϕ = ϕ p = Wobec tego elastyczności cenowe proste wynoszą: ε c = ϕ p = p ϕ ε c = ϕ p = p ϕ p p p p p p = p p = Oba towary są dobrami normalnymi Elastyczności cenowe krzyżowe: ε c = ϕ p = 0 p ϕ ε c = ϕ p p p p = 0 = 0 p ϕ p = 0 Towary i nie są ani substytucyjne ani komplementarne Elastyczności dochodowe: ε d = ϕ ε d = ϕ = p ϕ p = = p ϕ p = Oba towary są zatem dobrami wyższego rzędu (b Pochodne funkcji użyteczności: p x = x x = 4 x Warunki Kuhna-Tuckera: x =λp 4 x =λp p x + p x = ( ϕ (p p = p 4 p ε c = ε c = ε c =0 ε c =0 ε d = ε d = 4
(c Warunki Kuhna-Tuckera: x x =λp x x =λp p x + p x = ( ϕ (p p = p p (d Warunki Kuhna-Tuckera: ( ϕ (p p = ε c = ε c = ε c =0 ε c =0 ε d = ε d = x x =λp =λp p x + p x = p p (p + p p p (p + p ε c = p + p p + p ε c = p + p p + p ε c = p p + p ε c = p p + p ε d = ε d = Są to dobra normalne i wyższego rzędu Są substytucyjne względem siebie