Spór o atom droga do mechaniki kwantowej. Wpływ filozofii antycznej na współczesną fizykę według Wernera Heisenberga

Podobne dokumenty
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna

Fizyka współczesna a ontologie Demokryta i Platona

Wielcy rewolucjoniści nauki

Fizyka 3. Konsultacje: p. 329, Mechatronika

Filozofia przyrody - Filozofia Eleatów i Demokryta

Filozofia przyrody, Wykład V - Filozofia Arystotelesa

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tytuł: Dzień dobry, mam na imię Atom. Autor: Ada Umińska. Data publikacji:

h 2 h p Mechanika falowa podstawy pˆ 2

Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Filozofia, Historia, Wykład V - Filozofia Arystotelesa

Modele i teorie w kosmologii współczesnej przykładem efektywnego wyjaśniania w nauce

Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów.

PODSTAWY MECHANIKI KWANTOWEJ

Spis treści. Wstęp Wybrane zagadnienia z teorii i metodologii filozofii przyrody... 17

Fizyka 3. Konsultacje: p. 329, Mechatronika

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

Filozofia, Historia, Wykład IV - Platońska teoria idei

Atomowa budowa materii

SCENARIUSZ LEKCJI DO DZIAŁU:

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy fizyki relatywistycznej

Plan Zajęć. Ćwiczenia rachunkowe

Fizyka 3.3 WYKŁAD II

LHC i po co nam On. Piotr Traczyk CERN

Filozofia przyrody podstawowe zagadnienia

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

FILOZOFIA PRZYRODY PODSTAWOWE ZAGADNIENIA

IX. MECHANIKA (FIZYKA) KWANTOWA

Elementy rachunku różniczkowego i całkowego

Dlaczego matematyka jest wszędzie?

Filozofia, ISE, Wykład VII - Platońska teoria idei cz. 2.

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Postulaty mechaniki kwantowej

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Elementy filozofii i metodologii INFORMATYKI

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1

KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego

Można Kraussa też ujrzeć w video debacie z teologiem filozofem Williamem Lane Craigiem pod tytułem Does Science Bury God (Czy nauka grzebie boga ).

K o n cep cje filo zo fii przyrody

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN

Mechanika kwantowa Schrödingera

NIE FAŁSZOWAĆ FIZYKI!

FIZYKA-egzamin opracowanie pozostałych pytań

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

gęstością prawdopodobieństwa

Ćwiczenia z mikroskopii optycznej

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Geometria analityczna

WYNIKI ANKIETY PRZEPROWADZONEJ WŚRÓD UCZESTNIKÓW WARSZTATÓW W DNIACH

Nowoczesna teoria atomistyczna

Rodzaje argumentów za istnieniem Boga

Spis treści. Przedmowa redaktora do wydania czwartego 11

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

1. Dyscypliny filozoficzne. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016

Stara i nowa teoria kwantowa

DYNAMIKA dr Mikolaj Szopa

TRANFORMACJA GALILEUSZA I LORENTZA

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Wstęp do Modelu Standardowego

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

domykanie relacji, relacja równoważności, rozkłady zbiorów

OPTYKA. Leszek Błaszkieiwcz

Na kilku przykładach pokazano, że stosowanie matematyki do zjawisk, których istota nie jest znana, może zaprowadzić fizykę w ślepy zaułek.

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Filozofia, ISE, Wykład V - Filozofia Eleatów.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

Pole elektromagnetyczne. Równania Maxwella

Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011

Podstawy fizyki sezon 1

Model Bohra budowy atomu wodoru - opis matematyczny

Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych

Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk

POJECIE BYTU I NICOŚCI W TEORII KWANTOWEJ A

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Wiesław M. Macek. Teologia nauki. według. księdza Michała Hellera. Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

Filozofia, Historia, Wykład VIII - Wprowadzenie do filozofii nowożytnej

INFORMATYKA a FILOZOFIA

ANDRZEJ ŁUKASIK OD GRECKIEJ FILOZOFII PRZYRODY DO NAUKI WSPÓŁCZESNEJ WYDAWNICTWO UNIWERSYTETU MARII CURIE-SKŁODOWSKIEJ

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I

Transkrypt:

Semina Nr 2 Scientiarum 2003 Spór o atom droga do mechaniki kwantowej. Wpływ filozofii antycznej na współczesną fizykę według Wernera Heisenberga Żeby zrozumieć późniejszych filozofów, trzeba się uczyć ewolucji, której podlegały znaczenia terminów. C. F. von Weizsäcker 1. Wstęp Jednym z najstarszych problemów filozofii, żywo rozważanym już przez antycznych myślicieli, było pytanie o arche, czyli próba określenia początku, pierwszej zasady, przyczyny wszystkiego. Szukając rozwiązania tego problemu, zaproponowali oni wiele ciekawych koncepcji budowy świata. Czy z tych pomysłów skorzystała współczesna fizyka? Niniejsza praca jest próbą ukazania, na przykładzie poglądów W. Heisenberga, że pomimo pozornie wspólnego pola zagadnień fizyki i filozofii, fizyka czasów Heisenberga bazuje na zupełnie innym aparacie pojęciowym. We współczesnej fizyce zmieniło się znaczenie wielu pojęć, które rozumiemy w ramach obecnego paradygmatu nauki. Przykładem takiej dewaluacji znaczenia jest pojęcie atomu. Miało ono niezwykle burzliwą historię. W starożytności (od Demokryta i Leukipposa) przez atom rozumiano najdrobniejszą, niepodzielną cząstkę materii. Obecnie wiemy, że atom może się dzielić, a tym samym rozpadać na jeszcze mniejsze cząstki. Starożytny atom znaczeniowo przypomina dziś bardziej pojęcie

22 molekuły lub cząstki elementarnej. Czy zatem odkrycie Demokryta było konieczne do współczesnego rozumienia najmniejszej drobiny świata? Korzystając z prac 1 W. Heisenberga postaram się odpowiedzieć na postawione pytanie. 2. Filozofia antyczna o atomie 2 Myśliciele greccy, poszukując arche (prasubstancji), wysuwali ciekawe hipotezy dotyczące materii, którą często rozumiano jako budulec świata. Pierwszy z nich Tales z Miletu za arche przyjął wodę. Swoją koncepcję prasubstancji oparł na obserwacji zjawisk meteorologicznych. Zauważył, że woda przybiera w świecie różne formy (np. para czy lód) i że bez niej niemożliwe jest życie. Na podstawie tych racjonalnych przesłanek przyjął, że istnienie wszystkich rzeczy sprowadza się do jednego, tj. wody. Przytoczone tu rozumowanie obrazuje sposób argumentacji ówczesnych filozofów. Kolejnymi, którzy rozwinęli różne koncepcje prasubstancji, byli: Anaksymander, który za arche uznał bezkres (, άπɛιρoν); Anaksymenes sprowadził wszystko do powietrza; Heraklit uznał, że prasubstancją świata musi być ogień. Wszyscy oni poszukiwali czegoś, co spajałoby wszystkie zjawiska obserwowalnego świata. Zrodziło to przekonanie, że musi istnieć jakiś jeden pierwiastek wspólny wszystkim rzeczom. Po Heraklicie pojawiły się nowe koncepcje zasady świata: Parmenides twierdził, że istnieje tylko jeden, wieczny, niepodzielny byt, który po prostu jest; Empedokles za podstawowe pierwiastki uznał: ziemię, wodę, powietrze i ogień; natomiast Anaksagoras sądził, że przyczyną wszelkich zmian jest mieszanie się i rozdzielanie nieskończenie małych zarodków 3. Po- 1 W artykule wykorzystam głównie IV rozdział książki Fizyka a filozofia W. Heisenberga, zatytułowany: Narodziny nauki o atomach a teoria kwantowa, Warszawa 1965. 2 Szczegółowej analizy zagadnień dotyczących atomu dokonał A. Łukasik w książce Atom od greckiej filozofii przyrody do nauki współczesnej, Wyd. UMCS, Lublin 2000. 3 Por. W. Heisenberg, dz. cyt., s. 47.

Spór o atom droga do mechaniki kwantowej... 23 glądy te bezpośrednio zmierzały do atomistycznej koncepcji bytu, którą sformułowali Leukippos i Demokryt. Wykorzystując intuicję Parmenidesa ( byt jest, a niebytu nie ma ) uznali, że budulcem świata są niepodzielne atomy najmniejsze cząstki materii, które poruszają się dzięki istnieniu próżni. W poglądach Demokryta przedstawiona została uporządkowana synteza dotychczasowych koncepcji. Dał on zarazem początek teorii atomistycznego materializmu, nad którym do dziś trwają spory interpretacyjne. Heisenberg sugeruje, że gdyby np. ogień Heraklita zastąpić współczesnym terminem energii, to jego twierdzenia będą niemal całkowicie pokrywały się z naszymi dzisiejszymi poglądami 4. Współcześnie uznajemy, że to energia jest tą substancją, z której utworzone są cząstki elementarne, a tym samym wszystkie rzeczy. Czy zatem antyczni filozofowie mieli już intuicję materii świata, ale nie potrafili jej dokładnie wyrazić? Może potrzeba było 2500 lat, aby wypracować bardziej precyzyjny aparat pojęciowy? A może różnica leży jedynie w metodzie badań, która dziś pozwala nam empirycznie potwierdzić intuicję Demokryta 5? 3. Od Platona do Newtona Późniejsza filozofia zmodyfikowała, a w przypadku Platona całkowicie odrzuciła, atomistyczną teorię budowy świata. Platon przeniósł atom z ziemi ku niebu. Za pitagorejczykami twierdził, że najbardziej podstawowym elementem świata są matematyczne formy, mające swoje odbicie w najmniejszych cząstkach, które Platon określił mianem pierwiastka. Wyróżnił on pięć pierwiastków, z których zbudowany jest cały Wszechświat. Każdemu z nich odpowiada geometryczna bryła, np. ziemia zbudowana jest z sześcianów, powietrze z ośmiościanów, itd. Bryły geometryczne przypominają atomy, które są niepodzielne. Każda z nich skonstruowana jest z trójkątów równobocznych i równoramiennych. 4 Tamże, s. 49. 5 Por. A. Łukasik, dz. cyt., ss. 15 25.

24 Cząstka materialna powstaje w wyniku połączenia tych trójkątów w regularną bryłę. To pozwala przekształcać się jednym pierwiastkom w drugie. Najmniejsze cząstki materii nie są bytami podstawowymi wbrew twierdzeniom Demokryta lecz formami matematycznymi 6. W taki sposób Platon zmienił dotychczasowe spojrzenie na atom. Wcześniej doszukiwano się jego początków w materii (ziemi świecie), natomiast wersja Platona pokazała, że najtrwalsze tworzywo świata znajduje się w ludzkim umyśle. Oczywiście ta konstrukcja jest spójna z całą platońską teorią poznania rzeczywistości (mit o jaskini). Weizsäcker nazywa takie ujęcie filozofii sceptyczną teologią paradygmatu matematyki. Matematyka jest wiedzą, w której, jeżeli się wie, to się wie, że się wie. Matematyka jest paradygmatem wzorcem wiedzy pewnej, jest miarą tego, co należy przyjąć za wiedzę rozumną 7. 4. Atom u Newtona 8 Zobaczmy, jak zmieniło się pojęcie atomu wraz z powstaniem nowożytnej nauki. Okres ten był szczególnie ważny nie tylko dla rozwoju pojęcia atomu, ale również dla nowego spojrzenia na całość przyrody. Stworzony przez Newtona mechanistyczny obraz świata był rozwinięciem atomistycznej koncepcji budowy materii. Newton wierzył w istnienie najmniejszych, niepodzielnych cząstek, choć przekonanie to było niezależne od stworzonej przez niego mechaniki. Nowością w stosunku do starożytnych wersji atomizmu było uznanie, że atomy (korpuskuły) odznaczają się bezwładnością. Po- 6 W. Heisenberg, dz. cyt., s. 54. 7 Por. C. F. von Weizsäcker, Filozofia grecka i fizyka współczesna, [w:] Filozofować w kontekście nauki, M. Heller, A. Michalik, J. Życiński (red.), PTT, Kraków 1987, s. 146. 8 Świadomie pomijam w pracy poglądy Arystotelesa oraz koncepcje wieków średnich, gdyż moim celem nie jest całościowa analiza historyczna pojęcia atomu, lecz uchwycenie tych momentów jego historii, które moim zdaniem bezpośrednio rzutowały na jego obecne rozumienie.

Spór o atom droga do mechaniki kwantowej... 25 zostają zatem w spoczynku lub ruchu jednostajnym, a do nadania im przyspieszenia potrzebna jest odpowiednia siła. Była to zasadnicza nowość zarówno wobec demokrytejskiej koncepcji atomu, jak i całej fizyki Arystotelesa. Newton sądził, że te siły można opisać za pomocą matematycznych wzorów. Sformułował w ten sposób trzy zasady dynamiki i prawo powszechnego ciążenia. Prawa Newtona mają charakter ogólny i w przypadku opisu konkretnego zjawiska zachodzi potrzeba określenia ich warunków początkowych. Możliwość dokładnego (w granicach błędu) wyznaczenia stanu początkowego i możliwość przewidywania każdego następnego stanu układu prowadzi do przekonania, że przyroda jest deterministyczna. Szczególnie to przekonanie Newtona znalazło wielu kontynuatorów zarówno na gruncie fizyki, jaki i filozofii. W mechanice kwantowej determinizm newtonowski został jednak podważony. Zasada nieoznaczoności Heisenberga pokazała, że niemożliwość jednoczesnego określenia pędu i położenia cząstki zaprzecza deterministycznej interpretacji zjawisk przyrody. Przedmiotem rozważań filozofów greckich były formy statyczne, natomiast punktem wyjścia nowożytnej nauki w XVI i XVII stuleciu były zagadnienia dynamiki. Cząstki powinny być rozwiązaniem jakiegoś równania, które wyraża wieczne prawo ruchu materii 9. Heisenberg sugeruje, że Newton słusznie przerzucił wagę problemu z poszukiwania najmniejszej drobiny świata na próbę znalezienia fundamentalnego prawa, które wiernie opisywałoby wszystkie zjawiska przyrody. Jednak intuicja Newtona została poprawnie sformułowana dopiero w nieliniowym równaniu falowym operatora pola 10. 9 W. Heisenberg, dz. cyt., s. 57. 10 Warto zwrócić uwagę na przypis 2 na s. 57 Fizyka a filozofia, pochodzący od redakcji wydania polskiego. Znajduje się w nim tłumaczenie zaktualizowanego fragmentu tekstu głównego. Pokazuje ono, jak żywy był ten temat w pracy Heisenberga.

26 5. Mechanika kwantowa 11 W 1925 roku Heisenberg przedstawił swoją postać zasad mechaniki kwantowej, którą nazwał mechaniką macierzową. Prawie równocześnie (1926 r.) Schrödinger opublikował własną wersję, którą nazwano mechaniką falową 12. W tym samym roku udowodnił, że obie te teorie są równoważnymi ujęciami mechaniki kwantowej. Mechanika falowa Schrödingera wyrażała się w słynnym równaniu Schrödingera. Rozwiązania własne tego równania są niejako formami cząstek elementarnych. Zastępują w ten sposób pitagorejsko platońskie formy geometryczne. Zwornikiem, który spaja pitagorejsko platońskie formy geometrii ze współczesnymi rozwiązaniami własnymi równania jest symetria. Aczkolwiek samo równanie ma postać bardzo prostą, mamy w nim do czynienia z wielką ilością różnych własności symetrii, które zdają się być całkowicie zgodne z tym, co nam mówi wielka ilość danych doświadczalnych dotyczących przemian cząstek elementarnych 13. Czym zatem, w tym nowym świetle, jest cząstka elementarna? Okazuje się, że odpowiedź na to pytanie jest trudna, podobnie jak cała dotychczasowa analiza demokrytejskiego, platońskiego czy newtonowskiego pojęcia atomu. W fizyce posługujemy się różnymi określeniami na oznaczenie poszczególnych cząstek atomu (proton, neutron, elektron). Od czasu powstania mechaniki kwantowej cząstkę możemy również opisać za pomocą równania falowego. Dlatego o ile myślimy o cząstce jako pewnej korpuskule (ciele) przypomina ona atom Demokryta, ale chcąc opisać cząstkę jako falę, możemy określić ją jedynie z pewnym prawdopodobieństwem (mechanika kwantowa). Atom demokrytejski miał wyrazić prawdę istnienia, zbudowany był z substancji jednakowej dla wszyst- 11 W pracy pomijam szczegółowy opis poszczególnych nowożytnych koncepcji atomu: Thomsona, Rutherforda, Bohra czy Schrödingera. Szerzej patrz: A. Łukasik, dz. cyt., ss. 95 153. 12 Kolejność odkryć podaję za: M. Heller, Zagadnienia filozoficzne współczesnej nauki, Warszawa 1997, s. 263. 13 W. Heisenberg, dz. cyt., s. 59.

Spór o atom droga do mechaniki kwantowej... 27 kich atomów. Natomiast współczesna cząstka elementarna, zdaniem Heisenberga, posiada jedynie możliwość istnienia, a jej substancję możemy określić jako masę. Przyjmując, zgodnie z teorią względności Eisteina, że masa i energia w istocie są tym samym, można uznać energię za prasubstancję. Powoduje ona ruch, dlatego jest praprzyczyną wszelkich zmian, może się przekształcać w materię, ciepło lub światło. Widoczna tu zależność pomiędzy demokrytejskim atomem a współczesnym rozumieniem cząstki elementarnej jest tylko pozorna. Fizyka odrzuciła tezę atomistycznego materializmu. Cząstki elementarne zbudowane z energii mogą się przekształcać i ginąć (podczas zderzeń o wielkich energiach), a przez to nie są wieczne i niezniszczalne. Taki opis cząstki bardziej przypomina pitagorejsko platońskie stanowisko, które ujmuje cząstkę jako matematyczną formę. 6. Fizyka a filozofia 14 W tym historyczno krytycznym przeglądzie pojawia się kluczowe pytanie: jakie znaczenie dla fizyki ma filozofia? Ogólnie rzecz biorąc, fizyk ma za zadanie odpowiedzieć na te empiryczne pytania, na które aktualnie jest w stanie odpowiedzieć. Nie wolno stawiać mu pytań za trudnych 15. Weizsäcker zauważa, że Heisenberg wcześniej niż Kuhn, wyróżnił krokowy rozwój nauki. Okresy pomiędzy wielkimi rewolucjami stanowią tzw. zamknięte teorie (np. mechanika klasyczna), których granice wyznaczają nowe teorie. Teorie zamknięte przez dłuższy czas pozostają w stanie stabilnym i są dla nauki kanonami wiedzy. Komentując ten postulat Heisenberga należy sądzić, że w zamkniętych okresach nauki fizykom nie wolno stawiać pytań typu: co to jest atom? Jest to pytanie zbyt ogólne i nie daje możliwości empirycznego potwier- 14 Tytuł tego podrozdziału zaczerpnąłem z artykułu Weizsäckera Filozofia grecka i fizyka współczesna [w:] Filozofować w kontekście nauki, ss. 140 142. Autor przedstawia w nim relację fizyki do filozofii. 15 C. F. von Weizsäcker, dz. cyt., s. 141.

28 dzenia proponowanej odpowiedzi. Pomimo tak znacznego postępu w rozwoju nauki o atomie (mechanika kwantowa, fizyka cząstek elementarnych) pytanie o najmniejszą cząstkę Wszechświata wciąż pozostaje otwarte. Dziś wiadomo na pewno, że nie jest nią atom. Fizyk powinien uciekać od ogólnych pytań filozoficznych. Odstępstwem od tej reguły mogą być momenty, gdy nauka wchodzi w okresy wielkich rewolucji. Przełamanie dotychczasowego paradygmatu powoduje dynamiczne przejście ku nowym teoriom. Historia nauki pokazuje, że właśnie w tych momentach wielcy fizycy, tacy jak Newton, Galileusz, Einstein, Planck, Bohr, Heisenberg i inni, okazywali się najpierw wielkimi filozofami. Z ich twórczych myśli, czysto teoretycznych idei rodziły się wielkie odkrycia. W XX wieku rewolucyjny charakter miały: teoria względności i mechanika kwantowa. Zmieniły one bieg dotychczasowego rozwoju fizyki i zaczęły rozwiązywać liczne zagadki (np. dlaczego elektron nie spada na jądro atomu?). W tej perspektywie warto się zastanowić, w jakim okresie znajduje się obecna nauka. Czy nadal tkwi w obszarze dwudziestowiecznych odkryć, czy też zbliża się już do granicy obecnego stanu wiedzy? Zgodnie z przytoczoną powyżej koncepcją Heisenberga jest to bardzo ważne pytanie dla fizyka. Musi on bowiem rozeznać, czy szukać prawdy w dotychczasowych teoriach, czy też ogłosić nurtujące go nowe intuicje naukowe. Przykładem może być intuicja Plancka, z której zwierzył się on swojemu synowi. Przeczuwał, że dokonał odkrycia, które da się porównać jedynie z odkryciami Newtona. Musiał on już wówczas zdawać sobie sprawę, że jego wzór dotyczy podstaw naszego sposobu opisywania przyrody i że pewnego dnia podstawy te ulegną modyfikacji i przybiorą nową, dotychczas nie znaną postać 16. 7. Wnioski Barwna historia antycznej filozofii, poszukującej ostatecznej zasady (cegiełki) świata, prowadzi współczesnego człowieka w nie- 16 W. Heisenberg, dz. cyt., s. 12.

Spór o atom droga do mechaniki kwantowej... 29 zgłębiony obszar nauki (fizyki), która pozornie kontynuuje poszukiwania starożytnych. Aż 2500 lat badań nad atomem nie wystarczyło, aby odsłonić jego tajemnicę. Z powyższych rozważań można wysnuć następujące wnioski: Antyczni filozofowie, poszukując arche wszystkiego, zbudowali ciekawe koncepcje, które współcześnie nie mają statutu naukowego, a jedynie mogą być twórczą inspiracją w obecnych badaniach fizyków. Wielkim przełomem w rozumieniu atomu okazała się nauka Newtona. Rzuciła ona nowe światło nie tyle na sam atom jako cząstkę materii, ile na jego dynamiczne oddziaływanie w świecie fizycznym. Dotychczas atom traktowano jako statyczny budulec świata, natomiast mechanika klasyczna zwróciła większą uwagę na jego ruch. Ta pozornie nic nie znacząca różnica stała się jednak źródłem inspiracji dla późniejszych, bardziej dojrzałych koncepcji atomu. Mechanika Newtona według Heisenberga stała się pierwszym zamkniętym systemem pojęć, który próbował objąć całość zjawisk przyrody. Eksperymenty oraz skomplikowane modele matematyczne współczesnej fizyki (np. Heisenberga) ukazały, że atom nie jest najmniejszą cząstką Wszechświata. Zgodnie z zasadą nieoznaczoności wiemy, że nie da się jednocześnie określić składowej pędu i odpowiadającej jej składowej położenia cząstki elementarnej. Prowadzi to do niemożliwości empirycznego obejrzenia cząstki. Zatem współczesna cząstka ma jedynie charakter wyobrażeniowego modelu i w rozumieniu antycznych filozofów nie posiada własności fizycznych.