WYKŁAD 5 TEORIA ESTYMACJI II

Podobne dokumenty
LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Estymacja parametrów rozkładu cechy

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Wnioskowanie statystyczne. Statystyka w 5

Estymacja punktowa i przedziałowa

1 Podstawy rachunku prawdopodobieństwa

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

Estymacja parametro w 1

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna

1.1 Wstęp Literatura... 1

Zawartość. Zawartość

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Teoria Estymacji. Do Powyżej

Rozkłady statystyk z próby. Statystyka

Estymacja przedziałowa. Przedział ufności

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 ANALIZA REGRESJI

Statystyka matematyczna dla leśników

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

1 Estymacja przedziałowa

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Metody probabilistyczne

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Wykład 3 Hipotezy statystyczne

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Testowanie hipotez statystycznych

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

Estymatory i testy statystyczne - zadania na kolokwium

Testowanie hipotez statystycznych cd.

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Testowanie hipotez statystycznych.

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

Estymacja przedziałowa

Statystyka w analizie i planowaniu eksperymentu

Weryfikacja hipotez statystycznych

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

STATYSTYKA MATEMATYCZNA

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Pobieranie prób i rozkład z próby

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

Statystyka w analizie i planowaniu eksperymentu

Dokładne i graniczne rozkłady statystyk z próby

Statystyka w analizie i planowaniu eksperymentu

Testowanie hipotez statystycznych.

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

Oszacowanie i rozkład t

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

STATYSTYKA wykład 5-6

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Rozkłady statystyk z próby

Prawdopodobieństwo Odp. Odp. 6 Odp. 1/6 Odp. 1/3. Odp. 0, 75.

Metody Statystyczne. Metody Statystyczne.

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

Statystyka matematyczna i ekonometria

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. Strona 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

Zadania ze statystyki, cz.6

Metody probabilistyczne

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Analiza niepewności pomiarów

Spis treści 3 SPIS TREŚCI

ESTYMACJA. Przedział ufności dla średniej

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

Statystyka w przykładach

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

Hipotezy statystyczne

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Transkrypt:

WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów).

PRÓBA Próba powinna być reprezentacyjna tj. jak gdyby miniaturą populacji generalnej. Można ją uzyskać metodą losowania=> próba losowa. Istnieje kilka metod losowania: losowanie zależne lub niezależne ( bez lub z zwracaniem) nieograniczone lub warstwowe ( losowanie z całej lub z poszczeg. części populacji stosując np. liczby losowe) Losowanie indywidualne lub zespołowe (losowanie pojedynczych lub zespołów elementów) PRÓBA (n-liczba elementów) Mała n < 30 Duża n 30

ZMIENNA LOSOWA CIĄGŁA Populacja Generalna (PG) funkcja gęstości prawdopodobieństwa : f(x) - <x < Próba (P n ) 1) mała n<30 2) duża n 30 Parametry PG: Estymatory: Wartość oczekiwana (, EX) Średnia arytmetyczna (, x sr ) Wariancja ( 2, V(X) ) Wariancja z próby (kwadrat odchylenia standardowego)

Estymacja parametrów rozkładu w PG ESTYMACJA PUNKTOWA Parametry w PG przybliża się ich estymatorami. Np. PRZEDZIAŁOWA Dla wybranego poziomu ufności (1- ) określa się przedział ufności parametru z PG

Estymacja (przedziałowa) wartości oczekiwanej ( ) P.G. populacja generalna X- zmienna losowa; f(x) funkcja gęstości prawdopodobieństwa -wartość oczekiwana; - odchylenie standardowe P n - próba n-elementowa ; x sr N(, sr )

Estymacja wartości oczekiwanej ( ) Poziom ufności Przedział ufności P ( - z α/2 < z < z α/2 ) = 1 α

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ gdy znana jest wariancja σ 2 populacji Poziom ufności Przedział ufności 1-α : POZIOM (WSPÓŁCZYNNIK) UFNOŚCI

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ gdy znana jest wariancja σ 2 populacji Przykład: Oszacować żywotność ( w godzinach świecenia) wyprodukowanej, partii świetlówek. Wiadomo, że czas świecenia świetlówek ma rozkład normalny z odchyleniem standardowym σ=120 godz. Wylosowano niezależnie n=25 świetlówek, których czas świecenia wynosił: x i ([godz]= 2630; 2820; 2900;.; 3060; 2850 obliczona średnia x sr = 2800 godz. Przyjmując współczynnik ufności 1-α=0,99 oszacować średni czas świecenia wyprodukowanych świetlówek α=0,01 stąd α/2=0,005 F(-z α ) = α/2 (EXCEL: ROZKŁAD.NORMALNY.S.ODW) z α =2,576 2800-2,576*120/5 < μ < 2800 +2,576*120/5 2738 < μ < 2862 Lub: µ = (2800±62) godz; lub µ = 2800 godz ±2,21% (2,21%=62*100/2800)

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ dla próby dużej (nieznana jest wariancja σ 2 populacji)

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ dla próby dużej (nieznana jest wariancja σ 2 populacji) Przykład: W eksperymencie chemicznym bada się czas zakończenia pewnej reakcji. Dokonano n=60 niezależnych doświadczeń i otrzymano średnią: =46 s oraz s=13 s. Przyjmując współczynnik ufności 0,99 oszacować metodą przedziałową średni czas zakończenia reakcji. Rozwiązanie: 1- =0,99, więc /2=0,005, Z EXCELA, ROZKŁAD.NORMALNY.S.ODW mamy dla prawdopodobieństwa : 0,005 wartość -2,57583; stąd: Stąd: 46-4,3 < µ <46+4,3 ostatecznie: Lub: 41,7 < µ < 50,3 lub

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ dla próby małej (nieznana jest wariancja σ 2 populacji)

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ dla próby małej (nieznana jest wariancja σ 2 populacji) Przykład: Dokonano n=7 pomiarów ciśnienia w komorze spalania silnika rakietowego i otrzymano wyniki (w MPa) : 3,185; 3,136; 3,032; 3,090; 3,170; 3,240; 3,160. Zakładając, że ciśnienie ma rozkład normalny. Oszacować średnie ciśnienie w komorze spalania, przyjmując współczynnik ufności 0,99. p_sr= 3,144714 s_p= 0,067515 alfa/2= 0,005 t_alfa, 6 = 4,316827 EXCEL delta= 0,110158 3,145-4,317*0,0675/7^0,5 < µ < 3,145+ 4,317*0,0675/7^0,5 3,145-0,110 < µ < 3,145+ 0,110 3,035 MPa < µ < 3,255 MPa Lub: µ =(3,145±0,110) MPa; lub µ =3,145 MPa±3,50%

PRZEDZIAŁ UFNOŚCI DLA WARTOŚCI OCZEKIWANEJ µ dla próby małej (nieznana jest wariancja σ 2 populacji) k= n-1 t α z rozkładu t-studenta ROZKŁAD.T.ODW (prawdopodobieństwo: α, stopnie swobody: k=n-1 t α

PRÓBA P (m) (m-elementowa) Obliczenie: x sr ; s bez wyników wątpliwych TEORIA ESTYMACJI I (ESTYMACJA PUNKTOWA) 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH Odrzucenie wyników z poza przedziału: x sr 3s PRÓBA LOSOWA P (n) (n-elementowa) 2. ESTYMACJA PUNKTOWA DLA x s( x ) sr sr x sr s n Jeśli nie odrzucono wszystkich wątpliwych z próby P (m) to należy dla P (n) wyznaczyć (ponownie) x sr ; s Zapis z błędem bezwzględnym x sr s( x x sr sr ) *100% x sr x sr s n *100% Zapis z błędem względnym

TEORIA ESTYMACJI II ESTYMACJA PRZEDZIAŁOWA dla μ: μ=x sr ±Δμ Dane: próba losowa: P (n), poziom ufności: 1-α 3. ESTYMACJA PRZEDZIAŁOWA : PRÓBA LOSOWA P (n) (n-elementowa) Można skorzystać z funkcji: EXCEL statystyczne UFNOŚĆ Gdy: σ znane (jest to słuszne też dla małej próby) Gdy: σ nieznane TYLKO dla dużej próby Mała (n <30) z α z N(0,1) : ROZKLAD.N.S.ODW t α z rozkładu t-studenta ROZKŁAD.T.ODW (prawdopodobieństwo: α, stopnie swobody: k=n-1

Z α (Rys.1); t α (Rys.2) Rys.1 Rys. 2 k=n-1

ESTYMACJA PUNKTOWA vs. PRZEDZIAŁOWA Estymacja punktowa: x s( x ) sr sr x sr s n Pokrywa się z estymacją przedziałową, tylko wówczas gdy spełnione są założenia: 1. 1-α= 0.68 (68%) 2. σ= s Istnieje możliwość jej uogólnienia dla innych wartości poziomu ufności 1-α wprowadzając czynnik i : Lub: i 1 1,5 1,75 2,0 2,5 3,0 1-α 0,68 0,87 0,92 0,954 0,988 0,997

WYZNACZANIE NIEZBĘDNEJ LICZBY POMIARÓW DO PRÓBY PROBLEM: Szacujemy w oparciu o próbę n-elementową parametr populacji generalnej: µ-wartość oczekiwaną lub wskaźnik struktury p. Żądamy, aby przy zadanym poziomie ufności 1-α, błąd szacunku (tj. połowa przedziału ufności) nie przekroczył danej z góry wartości d. Jak wielka ma być próba? ( ile ma wynieść n?). Przypadek 1. Populacja generalna ma rozkład normalny N(µ,σ ) lub zbliżony do normalnego. Wariancja populacji: σ 2 jest znana, wówczas: Gdzie z α wyznacza się z dwuśladowego N(0,1). Przypadek 2. Populacja generalna ma rozkład normalny N(µ,σ ). Wariancja populacji: σ 2 jest nieznana, ale znamy s 2 z małej (wstępnej próby) o liczebności n o : Gdzie t α jest parametrem z dwuśladowego rozkładu t-studenta o k= n o -1 stopniach swobody. Jeśli n>n o to należy dolosować n-n o elementów do próby, w przeciwnym przypadku O.K.

WYZNACZANIE NIEZBĘDNEJ LICZBY POMIARÓW DO PRÓBY (c.d) Pr óba d (połowa szerokości przedziału ufności) n 1 d 1 n 2 d 2

WYZNACZANIE NIEZBĘDNEJ LICZBY POMIARÓW DO PRÓBY Przykład 1: Ile niezależnych pomiarów należy wykonać by oszacować czas zakończenia reakcji chemicznej z błędem maksymalnym 20 s, przy współczynniku ufności 0,95. Wiadomo, że czas zakończenia reakcji jest zmienną losową o rozkładzie N(µ, 40). Z rozkładu normalnego N(0,1) dla 1-α=0,95 mamy z α =1,96 ; stąd: n = (1,96* 40) 2 / 20 2 =15,36 16

WYZNACZANIE NIEZBĘDNEJ LICZBY POMIARÓW DO PRÓBY Przykład 2. Należy oszacować średnią wartość masy produktu reakcji. Ile niezależnych doświadczeń należy przeprowadzić, aby przy współ. ufności 0,95 oszacowana średnia masa była z błędem maksymalnym 0,01 g, jeśli wstępna próba 5 doświadczeń dała wyniki: 2,10; 2,12; 2,12; 2,16; 2,10 g Dla wstępnej próby mamy: s 2 = 0,0006 g 2, z rozkładu t-studenta dla α=0,05, k=4 mamy: t α, k = 2,776 Więc: n=(2,776/0,01) 2 *0,0006 = 46,38 47. Należy dorobić 47-5= 42 wyników

PRZEDZIAŁ UFNOŚCI DLA WSKAŹNIKA STRUKTURY (PROCENTU) Populacja generalna ma rozkład dwupunktowy tj. elementy populacji mają jedną z dwu cech ( np. dobry, zły ). Frakcja elementów wyróżnionych (np. dobrych) wynosi p, przy czym p>0,05. Z populacji wylosowano niezależnie n elementów, przy czym n> 100. Wtedy przedział ufności dla wskaźnika struktury p populacji:

PRZEDZIAŁ UFNOŚCI DLA WSKAŹNIKA STRUKTURY (PROCENTU) Przykład: Aby oszacować procent pracowników w Krakowie, którzy jadają obiady w stołówkach pracowniczych wylosowano n=900 osób i znaleziono, m=300 osób, które jedzą w stołówkach. Przyjmując współczynnik ufności 1-α=0,95 zbudować przedział ufności dla procentu pracowników Krakowa korzystających z obiadów w stołówkach. m/n= 300/900=1/3; {1/3(1-1/3)/900} 1/2 =0,016 Z rozkładu normalnego Z EXCELA, ROZKŁAD.NORMALNY.S.ODW dla z α =2,96 (α/2=0,025), stąd: 0,333-1,96*0,016 < p < 0,333+ 1,96*0,016 Czyli: 0,302< p < 0,364 Lub: 30,2 % < p < 36,4 %

WYZNACZANIE NIEZBĘDNEJ LICZBY POMIARÓW DO PRÓBY Przypadek 3. Populacja generalna ma rozkład dwupunktowy z parametrem p. a) Jeżeli znamy orientacyjną wartość p, to: b) Jeśli nie znamy rzędu wielkości p to: Przykład 3: Ile należy wylosować niezależnie studentów AGH do próby, by oszacować procent studentów AGH palących papierosy z błędem maksymalnym 5%, przy współczynniku ufności 0,90, jeśli : a) przypuszcza się, że ten procent jest rzędu 70 % b) nie znany jest rząd wielkości szacowanego procentu Z rozkładu N(0,1) mamy dla α=0,10 z α =1,64 Ad a): n=(1,64/0,05) 2 *0,7*0,3=225,96 226 Ad b) n==(1,64/0,05) 2 /4 =269

PRZEDZIAŁ UFNOŚCI DLA WARIANCJI Populacja generalna ma rozkład normalny N(µ,σ) o nieznanych parametrach µ i σ. Z populacji tej wylosowano n-elementową próbę. Z próby tej wyliczono s 2. Przedział ufności dla wariancji σ 2 : Gdzie c 1 i c 2 patrz Rys. F(c 1 )= F(χ 2 1)= α/2 F(c 2 )= F(χ 2 2)= 1- α/2 k=n-1 Rozkład χ 2

PRZEDZIAŁ UFNOŚCI DLA WARIANCJI Przykład: Badano wytrzymałość mechaniczną urządzenia dokonując n=4 niezależnych pomiarów wytrzymałości i otrzymano następujące wyniki ( w kg/cm 2 ) : 120; 102; 135; 115. Przyjmując współczynnik ufności 1-α=0,96 zbudować przedział ufności dla wariancji σ 2. Z danych mamy: (n-1)s 2 =558; z rozkładu χ 2 EXCEL, ROZKŁAD.CHI.ODW Dla 1-α/2, k=3 oraz dla α/2, k=3 mamy c 1 =0,185 oraz c 2 =9,837 stąd: 558/9,837 < σ 2 < 558/ 0,185 Lub: 56,7 < σ 2 < 3016 (kg/cm 2 ) 2