VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa log + log 0 B. log 6 + log C. log 6 log D. log 0 log 6 Zadanie. ( pkt) Liczba 0 to p% liczb 80, zatem p < 0 B. p = 0 C. p =,5 D. p >,5 Zadanie 5. ( pkt) % liczb jest równe 6, zatem = 50 B. < 50 C. = 0 D. > 0 Zadanie 6. ( pkt) Liczba to 0% liczb. Wnika stąd, że = + 0, B. = + 0, C. = 0, D. = 0, Zadanie 7. ( pkt) Rozwiązaniem równania = jest liczba B. C. 8 D. 8 75
Zadanie 8. ( pkt) Mniejszą z dwóch liczb spełniającch równanie + 5+ 6= 0 jest 6 B. C. D. Zadanie 9. ( pkt) Liczba jest miejscem zerowm funkcji liniowej f ( ) = ( m) +. Wnika stąd, że m = 0 B. m = C. m = D. m = Zadanie 0. ( pkt) + dla < Funkcja f jest określona wzorem f( ) =. Ile miejsc zerowch ma ta funkcja? dla 0 B. C. D. Zadanie. ( pkt) Rsunek przedstawia wkres funkcji f ( ) =. = f ( ) 0 Wskaż rsunek, na którm jest przedstawion wkres funkcji = f ( +) B.. 0 0 C. D. 0 0 76
Zadanie. ( pkt) Któr z zaznaczonch przedziałów jest zbiorem rozwiązań nierówności? B. C. 5 0 0 0 5 D. 0 5 Zadanie. ( pkt) Wskaż równanie osi smetrii paraboli określonej równaniem = +. = B. = C. = D. = Zadanie. ( pkt) Wskaż funkcję kwadratową, której zbiorem wartości jest przedział (,. f ( ) ( ) = + B. f ( ) ( ) = + C. f ( ) ( ) = + D. f ( ) ( ) = Zadanie 5. ( pkt) Zbiorem rozwiązań nierówności ( 5) ( 5, + ) 5 jest, B. ( 5 5, + ), C. 5,+ ) D. 5,+ ) Zadanie 6. ( pkt) Wkres funkcji kwadratowej f ( ) o równaniu ( ) = + nie ma punktów wspólnch z prostą = B. = C. = D. = 5 77
Zadanie 7. ( pkt) Prosta o równaniu = a ma dokładnie jeden punkt wspóln z wkresem funkcji kwadratowej f( ) = + 6 0. Wnika stąd, że a = B. a = 0 C. a = D. a = Zadanie 8. ( pkt) Jaka jest najmniejsza wartość funkcji kwadratowej f ( ) = + w przedziale 0,? 7 B. C. D. Zadanie 9. ( pkt) Dane są wielomian równ W( ) =, V( ) = +. Stopień wielomianu W( ) V( ) jest 6 B. 5 C. D. Zadanie 0. ( pkt) Ile rozwiązań rzeczwistch ma równanie 5 = 0? B. C. D. Zadanie. ( pkt) Wskaż liczbę rozwiązań równania = 0. 0 B. C. D. Zadanie. ( pkt) Wskaż równanie prostej równoległej do prostej o równaniu = 7. = + 7 B. = + 5 C. = + D. = Zadanie. ( pkt) Które z równań opisuje prostą prostopadłą do prostej o równaniu = + 5? = + B. = + C. = + D. = + Zadanie. ( pkt) Punkt A = (,) i C = ( 7,9) są przeciwległmi wierzchołkami prostokąta ABCD. Promień okręgu opisanego na tm prostokącie jest równ 0 B. 6 C. 5 D. 78
Zadanie 5. ( pkt) Liczba punktów wspólnch okręgu o równaniu ( ) ( ) + + = z osiami układu współrzędnch jest równa 0 B. C. D. Zadanie 6. ( pkt) Środek S okręgu o równaniu + + 6 = 0 ma współrzędne S = (,) B. S = (, ) C. S = (,6) D. S = (, 6) Zadanie 7. ( pkt) Dane są długości boków BC = 5 i AC = trójkąta prostokątnego ABC o kącie ostrm β (zobacz rsunek). Wted B β C. A sin β = B. 5 sin β = C. 5 sin β = D. 5 sin β = Zadanie 8. ( pkt) Kąt α jest ostr i sinα =. Wówczas cosα < B. cosα = C. cosα = D. cosα > Zadanie 9. ( pkt) Kąt α jest kątem ostrm i α < 0 tgα =. Jaki warunek spełnia kąt α? B. α = 0 C. α = 60 D. α > 60 79
Zadanie 0. ( pkt) Kąt międz cięciwą AB a stczną do okręgu w punkcie A (zobacz rsunek) ma miarę α = 6. Wówczas B S β α A β =8 B. β = C. β =8 D. β =5 Zadanie. ( pkt) Kąt środkow i kąt wpisan są oparte na tm samm łuku. Suma ich miar jest równa80. Jaka jest miara kąta środkowego? 60 B. 90 C. 0 D. 5 Zadanie. ( pkt) Różnica miar kątów wewnętrznch prz ramieniu trapezu równoramiennego, któr nie jest równoległobokiem, jest równa 0. Miara kąta prz krótszej podstawie tego trapezu jest równa 0 B. 0 C. 80 D. 70 Zadanie. ( pkt) Odcinki BC i DE są równoległe. Długości odcinków AC, CE i BC są podane na rsunku. Długość odcinka DE jest równa D B A C 6 E 6 B. 8 C. 0 D. 80
Zadanie. ( pkt) Pole kwadratu wpisanego w okrąg o promieniu cm jest równe 6 cm B. cm C. 6 cm D. 8 cm Zadanie 5. ( pkt) Ciąg ( ) n n a jest określon wzorem n ( ) ( ) a = 9 n dla n. Wnika stąd, że a = 8 B. a = 7 C. a = 0 D. a > 0 Zadanie 6. ( pkt) Liczb, i 8 (w podanej kolejności) są pierwszm, drugim i trzecim wrazem ciągu artmetcznego. Wówczas liczba jest równa B. C. D. 7 Zadanie 7. ( pkt) Liczb 8, i + (w podanej kolejności) są pierwszm, drugim i trzecim wrazem ciągu geometrcznego. Wówczas liczba jest równa B., 5 C. D. 5 Zadanie 8. ( pkt) Wszstkich liczb naturalnch dwucfrowch, które są podzielne przez 6 lub przez 0, jest 5 B. C. D. 0 Zadanie 9. ( pkt) Wszstkich liczb naturalnch dwucfrowch, którch obie cfr są mniejsze od 5 jest 6 B. 0 C. 5 D. 0 Zadanie 0. ( pkt) Liczba sposobów, na jakie Ala i Bartek mogą usiąść na dwóch spośród pięciu miejsc w kinie, jest równa 5 B. 0 C. 5 D. Zadanie. ( pkt) Mediana danch: 0,,,,, jest równa B.,5 C. D.,5 Zadanie. ( pkt) Mediana danch przedstawionch w tabeli liczebności jest równa wartość 0 liczebność 5 0 B. 0,5 C. D. 5 8
Zadanie. ( pkt) Średnia artmetczna danch przedstawionch na diagramie częstości jest równa częstość w % 0 0 0 0 0 0 wartość B., C.,5 D.,8 Zadanie. ( pkt) Ze zbioru liczb {,,,,5,6,7,8} wbieram losowo jedną liczbę. Liczba p oznacza prawdopodobieństwo otrzmania liczb podzielnej przez. Wted p < 0, 5 B. p = 0, 5 C. p = D. p > Zadanie 5. ( pkt) O zdarzeniach losowch A i B są zawartch w Ω wiadomo, że i PB ( ) = 0,. Wted B A, PA ( ) = 0,7 PA ( B) = B. PA ( B) = 0,7 C. PA ( B) = 0, D. PA ( B) = 0, Zadanie 6. ( pkt) Przekątna sześcianu ma długość. Pole powierzchni całkowitej tego sześcianu jest równe 5 B. 6 C. 8 D. Zadanie 7. ( pkt) Pole powierzchni całkowitej sześcianu jest równe cm. Objętość tego sześcianu jest równa 8 cm B. 6 cm C. 7 cm D. 6 cm 8
Zadanie 8. ( pkt) Przekątna prostopadłościanu o wmiarach 5 ma długość 5 B. 9 C. D. 8 Zadanie 9. ( pkt) Przekrój osiow walca jest kwadratem o boku długości 6. Objętość tego walca jest równa 6 8 π B. 5 π C. 08 π D. 6 π Zadanie 50. ( pkt) Przekrój osiow stożka jest trójkątem równobocznm o boku długości 6. Pole powierzchni bocznej tego stożka jest równe 6 π B. 8 π C. 7 π D. 6 π 8