Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis
Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia materiałów. 3. Statyczna próba rozciągania. 4. Odkształcenie sprężyste 4.1. Prawo Hooke a - moduły sprężystości 4.2. Właściwości sprężyste układu dwu atomów 4.3. 0dkształcenie sprężyste kryształów 4.4. Właściwości sprężyste materiałów wielofazowych 4.5. Właściwości sprężyste materiałów porowatych 4.6. Metody pomiaru modułów sprężystości 4.7 Niesprężystość
WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE O możliwości zastosowania danego materiału decydują jego właściwości użytkowe Zachowanie się danego materiału w środowisku pracy to zaplanowana przez użytkownika (założona) odpowiedź na działające na niego czynniki (bodźce) SCHEMAT ODDZIAŁYWANIA CZYNNIKÓW NA MATERIAŁ Czynnik (Czas) MATERIAŁ odzew (właściwości)
Stałe w danym modelu charakterystyczne dla danego materiału określane w ściśle zdefiniowanych warunkach noszą nazwę stałych materiałowych Nauka o materiałach WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE PODEJŚCIE INŻYNIERSKIE Materiał traktowany jest jak czarna skrzynka - nie interesuje nas jego charakterystyka jedynie istniejące zależności funkcyjne W wypadku parametrów ilościowych (mierzalnych) odzew = funkcja ( czynników) Sprowadza się tą zależność do możliwie najprostszych funkcji (modeli) matematycznych np.: zależność liniowa prawo Hooke a σ = Eε
WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE Podejście charakterystyczne dla nauki o materiałach Czynnik (Czas) MATERIAŁ: - budowa nano mikro makro odzew (właściwości) Materiał nie jest traktowany jako czarna skrzynka lecz w myśl nauki o materiałach posiada swoją budowę wynikającą ze sposobu jego otrzymywania. Stałe w modelach (materiałowe) charakterystyczne dla materiału będą zależeć od jego budowy (sposobu otrzymywania)
WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE
WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE Podstawowym czynnikiem weryfikującym materiały inżynierskie jest działanie sił (naprężeń). naprężenie MATERIAŁ odkształcenie dekohezja Naprężenia mogą zmienić wymiary (liniowe, kątowe) lub ciągłość materiału (dekohezja)
MODELE ODKSZTAŁCENIA Nauką opisującą nieniszczące odkształcanie się ciał pod wpływem działania sił jest reologia. Reologia opiera się na modelach makroskopowych ciał poddawanych działaniu sił ścinania. Modele te w sposób ogólny opisują zachowanie się ciał zarówno odkształcających się postaciowo (ciała sztywne i ciecze) jak i objętościowo (gazy) W klasyfikacji reologicznej (makroskopowej) jako najbardziej typowe można przyjąć trzy podstawowe modele zachowania się ciał: * odkształcenie sprężyste * odkształcenie plastyczne * odkształcenie lepkościowe
MODELE ODKSZTAŁCENIA Odkształcenie sprężyste (odwracalne) Ciało liniowo-sprężyste (Hooke a) σ = Eε Ciało o sprężystości opóźnionej (Kelvina) σ = Eε + ηdε/dt ε(t) = σ o /E (1 - exp (- t/τ)) τ - czas relaksacji
Ciało doskonale plastyczne τ = τ y τ y - granica plastyczności MODELE ODKSZTAŁCENIA Odkształcenie plastyczne (nieodwracalne)
MODELE ODKSZTAŁCENIA Odkształcenie lepkościowe Ciecz Newtona σ = ηε η - współczynnik lepkości
Zachowanie się materiałów pod wpływem naprężeń - statyczna próba rozciągania (ściskania, zginania,...)
Rzeczywiste zachowanie się materiałów łączy ze sobą elementy zachowania modelowego sprężystego, plastycznego i lepkościowego MATERIAŁY KRUCHE, PLASTYCZNE, LEPKOSPRĘŻYSTE
Dla materiałów sztywnych w pierwszym etapie przy rosnących naprężeniach materiały zachowują się sprężyście tj. odkształcają się nietrwale. W pewnym zakresie odkształcenie jest proporcjonalne do naprężenia. Prawo Hooke a σ = E ε τ = G γ p = - K E -moduł Younga G -moduł sztywności (ścinania) K -moduł ścisliwości (postaci) ν- liczba Poissona Moduły E, G, K i l. Poissona określają właściwości sprężyste materiałów.
Pytania: od czego zależą moduły sprężystości materiałów? * jak je można określić? * jak je można zmieniać?
Odkształcenie sprężyste w układzie dwu atomów
ε δ δ σ ε δ δ σ ε ε δ δ σ σ ε σ d r F r d r F r d r dr d r r dr r F r d r F r F a F r o r o ro r o o o r o r o o = = = = = = = = = 1 ) ( 1 ) ( 1 ~ 0 0 2 2 W modelu rozważamy zależność naprężenia od odkształcenia dla dwu atomów odchylanych od położenia równowago przez siłę zewnętrzną. Działania sił zewnętrznych wywołuje wewnętrzną przeciwnie skierowaną reakcję układu Zakładamy układ izolowany w którym atomy są odchylany od położenia równowagi (r o ) na niewielką odległość
σ = 1 r o δ δ F r r = r o ε σ = C ε C - stała sprężystości ~ modułu sprężystości Im większa siła wiązania i im krótsze wiązanie tym większy moduł sprężystości materiału.
Pełna macierz - 36 stałych sprężystości Wyższa symetria - redukcja stałych * Materiał izotropowy - 3 stałe : S 11, S 12, S 44 ε 1 = S 11 σ 1 + S 12 σ 2 + S 12 σ 3 ε 2 = S 12 σ 1 + S 11 σ 2 + S1 2 σ 3 ε 11 = S 11 σ 1 + S 12 σ 2 + S 11 σ 3 ε 4 = S 44 σ 4 Przy czym E = 1/ S 11 G = 1/S 44 ν = - S 12 /S 11 δσ i E =... i δε j δσ i G =... i δε j δε i ν = δε j Zależność między stałymi materiałowymi: σiσ k = = j j = 1,2,3 = 4,5,6 E=2G (1+ν)
Porównanie wielkości E dla różnych materiałów
Porównanie wielkości E dla różnych materiałów
Energia odkształceń sprężystych Energia równa się polu pod krzywą Gęstość energii( ilość na jednostkę objętości) w [J/m 2 ] ε E ε 2 σ 2 W = 0 σ ε i i d ε i = 2 = 2E
Właściwości sprężyste materiałów wielofazowych Model równoległy E = V 1 E 1 + V 2 E 2 prawo mieszanin Modele równoległy i szeregowy (uproszczone) E moduł Younga V udział objętościowy fazy Model szeregowy 1/E = V 1 /E 1 + V 2 /E 2
Moduł Younga kompozytów
Właściwości sprężyste materiałów porowatych Fazę gazową w materiale można traktować jak fazę o E=0 stąd Z prawa mieszanin gdzie: E = E o (1- V p ) V p -udział objętościowy porów E o -moduł Younga materiału gęstego
W rzeczywistych materiałach następuje tzw. koncentracja naprężeń czyli naprężenie wewnątrz materiału jest większe niż przyłożone na zewnątrz c σ = σ 1 + 2 ρ z 2 σ z c ρ
Ogólnie σ ρ = k σ z k współczynnik koncentracji naprężeń stąd E = E o (1- k V p ) Na przykład dla porów eliptycznych wzór Rossi ego k = (5/4)(a/c) + 3/4
METODY POMIARU MODUŁÓW SPRĘŻYSTOŚCI STATYCZNE DYNAMICZNE moduł zrelaksowany moduł niezrelaksowany statyczne próby odkształcenie pomiar szybkości fali mechanicznej próbek materiałów penetrującej przez materiał (rozciąganie) (m. ultradźwiękowe) (ściskanie) (m. rezonansowe) (zginanie)
Zjawisko niesprężystości Zjawisko zależności odkształcenia sprężystego od czasu nosi nazwę niesprężystości (sprężystości opóźnionej) σ o =const ε = ε o +(ε U - ε R )exp(-t/θ) gdzie: ε R odkształcenie zrelaksowane ε U odkształcenie niezrelaksowane Θ - czas relaksacji
Jeżeli czas pomiaru właściwości sprężystych jest większy niż czas niezbędny dla zajścia danego procesu relaksacyjnego to proces ten nie będzie miał wpływu na pomiar Procesy relaksacyjne odkształcenia sprężystego w materiałach
E niezrelaksowany E zrelaksowany R o U o R o U o R o E t b E t a t E E E σ ε θ σ ε θ θ σ σ σ ε + =... ) 0... ) exp
Nauka o Materiałach Dziękuję do zobaczenia za tydzień