Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Weryfikacja (testowanie) hipotez statystycznych sprawdzenie określonych przypuszczeń (założeń) wysuniętych w stosunku do parametrów lub rozkładu populacji generalnej na podstawie próby. Hipotezy możemy podzielić na dotyczące typu rozkładu populacji dotyczące parametrów rozkładu (który jest znany)
Test statystyczny reguła postępowania, która pozwala na przyjęcie (nieodrzucenie) bądź odrzucenie sprawdzanej hipotezy Procedura testowania hipotez polega na tym, że zakładamy pewną hipotezę zerową (H 0 ), którą uznajemy za możliwą. Następnie sprawdzamy, czy ona może być prawdziwa przy pomocy testu statystycznego. Jeśli podczas weryfikacji hipotezy odrzucimy hipotezę zerową to przyjmujemy przeciwną do niej hipotezę alternatywną (H 1 ). Możliwe do popełnienia błędy przy testowaniu hipotez: Błąd I rodzaju błąd odrzucenia, występuje, gdy odrzucamy hipotezę, natomiast jest ona prawdziwa Błąd II rodzaju błąd przyjęcia, występuje gdy przyjmujemy hipotezę, natomiast jest ona fałszywa Prawdopodobieństwo popełnienia błędu I rodzaju nazywamy poziomem istotności (α) (przyjmujemy najczęściej α=0,05)
Test t do porównania średnich dwóch populacji Hipoteza zerowa H 0 : μ 1 = μ Hipoteza alternatywna H : μ μ 1 1 założenia: zmienne mają rozkład normalny σ 1 = σ (jeśli to założenie nie jest spełnione stosujemy zmodyfikowaną wersję testu t uwzględniająca nierówność wariancji) Przykłady zastosowań: Porównanie plonów dwóch odmian roślin uprawnych (badana zmienna: plon) Porównanie skuteczności dwóch leków obniżających ciśnienie krwi (zmienna: ciśnienie krwi) Porównanie dwóch produktów np. dwóch rodzajów konserw mięsnych pod względem zawartości tłuszczu (zmienna: zawartość tłuszczu) Porównanie wyników z egzaminu dla dwóch grup studentów (kontrolnej i poddanej nowemu sposobowi nauczania) Zmienna: liczba pkt uzyskana z egzaminu
Funkcja testowa: x y t emp S r błąd różnicy średnich = x S r y Średnia dla pierwszej populacji Średnia dla drugiej populacji gdzie wspólna wariancja: var X = n i = 1 (xi x ) S r = S 1 1 e + n1 n var X + vary S e = (n ) + (n 1) 1 1 jest sumą kwadratów odchyleń od średniej
Wartość t emp. porównujemy z wartością t kryt. i na tej podstawie stwierdzamy, czy średnie mogą być równie, czy też nie. Wartość krytyczna t α,ν, dla rozkładu t-studenta, gdzie α jest przyjętym poziomem istotności (najczęściej 0,05), a ν liczbą stopni swobody, czyli liczebność prób pomniejszona o (n 1 +n -) Jeżeli t emp > t α,ν to hipotezę H 0 odrzucamy i przyjmujemy hipotezę alternatywną H 1 : μ 1 μ a więc stwierdzamy że średnie różnią się istotnie W programach statystycznych (również w programie Statistica) zamiast wartości krytycznej podawana jest wartość p (p-value). Decyzję o tym, czy hipotezę zerową odrzucamy, czy też nie podejmujemy na podstawie wartości p. Jeżeli p<α to hipotezę zerową odrzucamy i przyjmujemy hipotezę alternatywną, a jeśli p>α to hipotezy zerowej nie odrzucamy. Przyjęło się, że wartość α ustalamy równą 0,05.
test F - porównanie wariancji populacji pod względem zmienności (wartości wariancji) Hipoteza zerowa H 0 : σ 1 = σ Hipoteza alternatywna H 1 : σ 1 σ Założenie: zmienne mają rozkład normalny s1 Funkcja testowa F emp = Gdzie wartość s s 1 >s Wartość krytyczna F α,ν,u dla rozkładu F-Fishera, gdzie α jest przyjętym poziomem istotności (najczęściej 0,05), a ν i u liczbami stopni swobody, czyli liczebnością próby pierwszej (n 1-1) i drugiej (n -1)
test U Manna-Whitneya - porównanie średnich populacji o dowolnych rozkładach Test U Manna-Whitneya (nazywany również testem rang Wilcoxona) służy do porównania zgodności dwóch rozkładów. Wykorzystywany jest natomiast najczęściej do porównania median. Jeśli rozkłady są symetryczne i ich wariancje są równe lub bliskie to uzasadnione jest stosowanie tego testu jako alternatywy dla testu t przy braku założenia normalności rozkładów. Dlatego też ten test stosuje się często do porównania średnich dla dwóch populacji o innych rozkładach niż normalne. Statystyka testową jest wartość U. Hipoteza zerowa jest taka sama jak w przypadku testu t, czyli w hipotezie zerowej przyjmujemy, że średnie nie różnią się. Jeśli ją odrzucimy to przyjmujemy hipotezę alternatywną, czyli stwierdzamy, że występuje różnica między średnimi. Przykład zastosowania: Porównanie wyników z odpowiedzi z ankiety między kobietami a mężczyznami Zmienna: odpowiedź w skali od 1-5
Jednoczynnikowa analiza wariancji i porównania wielokrotne (układ całkowicie losowy)
Celem analizy wariancji (ANOVA) jest porównanie średnich w wielu populacjach o rozkładzie normalnym Założenia: zmienne mają rozkład normalny X i ~N(m,σ ) wariancje (a tym samym odchylenia standardowe) dla badanych populacji są równe σ 1 = σ = σ 3 =... = σ i Hipoteza zerowa H 0 : m 1 = m = m 3 =...= m i (średnie nie różnią się) Hipoteza alternatywna H 1 : m i m i (co najmniej dwie średnie różnią się) Przykłady: Porównanie kilku ras zwierząt pod względem przyrostów dziennych Porównanie wielkości kolb kilku odmian kukurydzy
Wyniki analizy wariancji przedstawiane są najczęściej w formie następującej tabeli źródła zmienności sumy kwadratów (SS) stopnie swobody (df) średnie kwadraty (MS) F p czynnik (między grupami) SS A a-1 MS A MS A /MS E błąd (wewnątrz grup) SS E N-a MS E całkowita SS T N-1 a liczba poziomów czynnika N łączna liczebność prób Jeżeli p<α to hipotezę zerowa odrzucamy i przyjmujemy hipotezę alternatywną, czyli stwierdzamy, że co najmniej dwie średnie różnią się istotnie i przechodzimy do porównań wielokrotnych, czyli porównań wszystkich możliwych par średnich.
Porównania wielokrotne (szczegółowe) jest to metoda pozwalająca określić, które średnie różnią się istotnie a które się nie róznią. Wydzielamy grupy jednorodne, czyli podzbiory średnich, które można uznać za takie same (nie różniące się istotnie). Procedury porównań wielokrotnych: Tukeya, Scheff ego, Bonfferroniego, Duncana, Newmana Kuelsa i inne. Wybór procedury jest często dość dowolny (zależy od badacza). Najczęściej wynikiem analiz jest wartość NIR ( najmniejsza istotna różnica). Jeżeli X i X j NIR to uznajemy, że średnie różnią się (różnica istotna statystycznie). Uwaga! W programie Statistica zamiast wartości NIR podawane jest od razu podział na grupy jednorodne oraz wartości p dla porównań wszystkich możliwych par średnich (podobnie tak jak w testowaniu innych hipotez, jeśli p<α to odrzucamy hipotezę o równości średnich czyli stwierdzamy że różnią się one istotnie)