Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Podobne dokumenty
Opis przedmiotu: Matematyka I

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Matematyka I i II - opis przedmiotu

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Opis przedmiotu: Matematyka II

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

S Y L A B U S P R Z E D M I O T U

AiRZ-0531 Analiza matematyczna Mathematical analysis

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Algebra liniowa Linear algebra

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Algebra liniowa Linear algebra

AiRZ-0531 Analiza matematyczna Mathematical analysis

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

Z-0085z Algebra Liniowa Linear Algebra. Stacjonarne wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Obowiązkowy Polski Semestr pierwszy

Algebra liniowa. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-EKO-085 Algebra liniowa Linear Algebra. Ekonomia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Z-ID-102 Analiza matematyczna I

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

Opis efektów kształcenia dla modułu zajęć

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

PRZEWODNIK PO PRZEDMIOCIE

E-N-1112-s1 MATEMATYKA Mathematics

Algebra Liniowa Linear Algebra. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

WYDZIAŁ ***** KARTA PRZEDMIOTU

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Z-ID-103 Algebra liniowa Linear Algebra

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Algebra Liniowa. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Spis treści. Przedmowa do wydania piątego

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU

PRZEWODNIK PO PRZEDMIOCIE

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

Opis efektów kształcenia dla modułu zajęć

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA MODUŁU KSZTAŁCENIA

Z-0476z Analiza matematyczna I

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

WYDZIAŁ ***** KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)

AiRZ-0008 Matematyka Mathematics

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

PRZEWODNIK PO PRZEDMIOCIE

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Opis efektów kształcenia dla modułu zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

KARTA MODUŁU KSZTAŁCENIA

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Opis przedmiotu: Probabilistyka I

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr I Semestr zimowy (semestr zimowy / letni)

Z-ZIP-0530 Analiza Matematyczna II Calculus II

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

PRZEWODNIK PO PRZEDMIOCIE

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania drugiego 19

Transkrypt:

Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne Kierunek studiów Transport Profil studiów Profil ogólnoakademicki Specjalność - Jednostka prowadząca Wydział Transportu Jednostka realizująca Wydział Matematyki i Nauk Informacyjnych PW Koordynator przedmiotu dr Jarosław Sobczyk, st. wykł., Wydział Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Blok przedmiotów Kierunkowe i podstawowe Grupa przedmiotów Obowiązkowe Status przedmiotu Obowiązkowy Język prowadzenia zajęć polski Semestr nominalny 1 (r.a. 2015/2016) Usytuowanie realizacji w roku akademickim semestr zimowy Wymagania wstępne brak Limit liczby studentów wykład: brak, ćwiczenia: 30 osób C. Efekty kształcenia i sposób prowadzenia zajęć Cel przedmiotu Nabycie podstawowej wiedzy z zakresu algebry, geometrii i analizy matematycznej niezbędnej w dalszym toku studiów. Wykształcenie umiejętności formułowania i rozwiązywania problemów matematycznych z zakresu wiedzy inżynierskiej. Efekty kształcenia Patrz tabela 1. Formy zajęć i ich wymiar Wykład 4 Ćwiczenia 4 Laboratorium 0 Projekt 0 Treści kształcenia Wykład: elementy logiki matematycznej, podstawowe działania logiczne, tautologie, funkcje zdaniowe, kwantyfikatory, elementy teorii mnogości, pojęcie zbioru, działania na zbiorach, zbiory otwarte i domknięte, iloczyn kartezjański zbiorów, relacje i funkcje, relacje równoważności i klasy abstrakcji, działania nieskończone, indukcja matematyczna, ciało liczb zespolonych, definicja liczby zespolonej i działań, sprzężenie, moduł i postać trygonometryczna liczby zespolonej, interpretacja geometryczna liczby zespolonej, wyznaczanie pierwiastka kwadratowego z liczby zespolonej, wzory Moivrea na wyznaczanie potęgi i pierwiastka liczby zespolonej, wielomiany i równania algebraiczne na ciele liczb zespolonych, zasadnicze twierdzenie algebry, pierwiastki równań algebraicznych o współczynnikach 1 / 5

rzeczywistych, wzory Eulera, macierze i wyznaczniki, macierz jako operator liniowy, pojęcie wyznacznika i jego własności, rozwinięcie Laplace'a, zastosowanie operacji niezmienniczych dla wyznacznika do obliczania wyznaczników, działania na macierzach, pojecie macierzy odwrotnej i jej wyznaczanie, algebra macierzy, twierdzenie Cauchyego dla macierzy i jego zastosowania, pojęcie rzędu macierzy i jego wyznaczanie, układy równań liniowych, twierdzenie Cramera i wyznaczanie rozwiązania układu równań poprzez odwracanie macierzy, metoda eliminacji Gaussa,, rozwiązanie układów równań jednorodnych, twierdzenie Kroneckera- Capelliego, rozwiązywanie układów równań liniowych z parametrem, przestrzenie metryczne, definicja i przykłady, pojęcie grupy i pierścienia, przestrzenie wektorowe, definicja i przykłady, liniowa niezależność wektorów, baza i wymiar przestrzeni, podprzestrzeń liniowa p,w, związek wymiaru podprzestrzeni liniowej p,w, z rzędem macierzy, przestrzeń euklidesowa n-wymiarowa, wektory związane i wektory swobodne, iloczyn skalarny, wektory prostopadłe i równoległe, kąt pomiędzy wektorami, rzut wektora na zadany kierunek, definicja i wyznaczanie iloczynu wektorowego, jego zastosowania w geometrii, iloczyn mieszany, pojęcie hiperpłaszczyzny, wektor, prosta i płaszczyzna w przestrzeni euklidesowej 2 i 3-wymiarowej, podstawowe własności, wyznaczenie kątów i odległości, krzywe stożkowe, definicja i własności, zastosowania w mechanice i optyce, powierzchnie stopnia drugiego, definicje i własności, analiza jednowymiarowa, ciągi i funkcje w przestrzeniach metrycznych, pojęcie granicy ciągu i funkcji, podstawowe metody wyznaczania granic, granica lewo i prawostronna funkcji, ciągłość funkcji, zbieżność jednostajna funkcji, przestrzeń funkcji ciągłych, pochodna funkcji definicja i własności, wyznaczanie pochodnej z definicji, pochodna iloczynu, ilorazu oraz złożenia funkcji, granice niewłaściwe funkcji, wyrażenia nieoznaczone i reguła de L'hospitala, ekstrema i monotoniczność funkcji, twierdzenie Rollea i Lagrange'a oraz ich zastosowania, warunki konieczny i dostateczny istnienia ekstremum, wypukłość funkcji oraz punkty przegięcia wykresu funkcji, warunki konieczny i dostateczny istnienia punktu przegięcia, badanie przebiegu zmienności funkcji, rachunek całkowy funkcji rzeczywistej jednej zmiennej, pojęcie funkcji pierwotnej i całki nieoznaczonej, podstawowe własności, wzory na 2 / 5

całki podstawowych funkcji rzeczywistych, twierdzenia o całkowaniu przez części i całkowaniu przez podstawianie, zastosowania i przykłady, całkowanie funkcji wymiernych, rozkład funkcji wymiernej na ułamki proste, całki prostych funkcji wymiernych, całki iterowane, całkowanie funkcji trygonometrycznych oraz złożeń funkcji wymiernych i trygonometrycznych, całkowanie funkcji niewymiernych, całkowanie funkcji logarytmiczno-wykładniczych, całka oznaczona funkcji rzeczywistej jednej zmiennej, definicja, interpretacja geometryczna i własności, zastosowania geometryczne; obliczanie pól figur, długości łuków oraz objętości i pola powierzchni brył obrotowych, zastosowania całki oznaczonej w mechanice, całka oznaczona niewłaściwa, definicja i przykłady, szeregi liczbowe, definicja szeregu liczbowego, pojęcie zbieżności szeregu i sumy szeregu, badanie zbieżności szeregu poprzez wyznaczanie jego sumy, warunek konieczny zbieżności szeregu, kryterium porównawcze, badanie zbieżności szeregu liczbowego; kryterium Dalamberta, kryterium Cauchyego, zbieżność bezwzględna, kryterium Leibniza, kryterium całkowe. Ćwiczenia: dowodzenie podstawowych twierdzeń logiki i algebry zbiorów, wykorzystanie kwantyfikatorów do formułowania twierdzeń matematycznych, dowodzenie twierdzeń metodą indukcji matematycznej, obliczanie wyrażeń arytmetycznych w dziedzinie zespolonej, wyznaczanie postaci trygonometrycznej, potęgi naturalnej i pierwiastków liczby zespolonej, wyznaczanie pierwiastków równań algebraicznych w dziedzinie zespolonej, obliczanie wyznaczników dowolnego stopnia, wykonywanie działań na macierzach, wyznaczanie macierzy odwrotnej oraz rzędu macierzy, rozwiązywanie układów równań liniowych oraz równań liniowych z parametrami, zastosowanie wiedzy z dziedziny przestrzeni wektorowych do rozwiązywania zadań z geometrii analitycznej, wyznaczanie wzajemnego położenia prostych i płaszczyzn w przestrzeni euklidesowej, opis prostych i płaszczyzn w przestrzeni 2 i 3 wymiarowych, zastosowanie wiedzy o krzywych stożkowych do rozwiązywania zadań z planimetrii, wyznaczanie granic ciągów i funkcji, badanie ciągłości funkcji oraz obliczanie pochodnej z definicji, zastosowanie twierdzeń dotyczących pochodnych do ich wyznaczania, badanie przebiegu zmienności funkcji, wyznaczanie wartości najmniejszej i największej funkcji na przedziale, obliczanie całek nieoznaczonych przy 3 / 5

zastosowaniu twierdzenia o całkowaniu przez części i całkowaniu przez podstawianie, obliczanie całek dla funkcji wymiernych, trygonometrycznych, niewymiernych i logarytmiczno-wykładniczych, obliczanie całek oznaczonych i zastosowanie tych całek do zagadnień w geometrii, optyce i mechanice, wyznaczanie całek niewłaściwych. Metody oceny Wykład: egzamin pisemny, 5 zadań otwartych, wymagane jest ; Ćwiczenia: 3 kolokwia pisemne po 4 zadania otwarte, wymagane jest uzyskanie ponad 50% punktów. Metody sprawdzania efektów kształcenia Patrz tabela 1. Egzamin Literatura Witryna www przedmiotu www.wt.pw.edu.pl D. Nakład pracy studenta Liczba punktów ECTS 10 Liczba godzin pracy studenta związanych z osiągnięciem efektów kształcenia tak 1) Leitner R., Zarys matematyki wyższej, część I i II, WNT, Warszawa; 2) Fichtenholz G.M., Rachunek różniczkowy i całkowy, części I, II, III, PWN, Warszawa; 3) Leitner R., Matuszewski W., Rojek Z., Zadania z matematyki wyższej, część I i II, WNT, Warszawa (podstawowy zbiór zadań); 4) Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, część I i II, PWN, Warszawa; 5) Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych, część I, PWN, Warszawa. 262 godziny, w tym: praca na wykładach 60 godz., praca na ćwiczeniach 60 godz., studiowanie literatury przedmiotu 30 godz., samodzielne rozwiązywanie zadań 50 godz., konsultacje 10 godz., przygotowanie się do kolokwiów 20 godz., przygotowanie się do egzaminu 30 godz., udział w egzaminie 2 godz. Liczba punktów ECTS na zajęciach wymagających 5,0 pkt. ECTS (132 godziny, w tym: praca na bezpośredniego udziału nauczycieli akademickich: wykładach 60 godz., praca na ćwiczeniach 60 godz., konsultacje 10 godz., udział w egzaminie 2 godz.) Liczba punktów ECTS, którą student uzyskuje w 0 ramach zajęć o charakterze praktycznym E. Informacje dodatkowe Uwagi Data ostatniej aktualizacji 2015-04-21 15:04:58 Tabela 1. Efekty przedmiotowe O ile nie powoduje to zmian w zakresie powiązań danego modułu zajęć z kierunkowymi efektami kształcenia w treściach kształcenia mogą być wprowadzane na bieżąco zmiany związane z uwzględnieniem najnowszych osiągnięć naukowych. 4 / 5

Powered by TCPDF (www.tcpdf.org) Karta przedmiotu - Matematyka I Profil ogólnoakademicki - wiedza Profil ogólnoakademicki - umiejętności Posiada wiedzę w zakresie algebry, w szczególności: algebry liniowej, elementów logiki i algebry abstrakcyjnej, ciała liczb zespolonych, rachunku macierzowego, układów równań liniowych W01 4 zadania na pierwszym kolokwium, wymagane jest Posiada wiedzę w zakresie geometrii analitycznej, w szczególności: przestrzeni wektorowych, podprzestrzeni liniowych i hiperpłaszczyzn, krzywych i powierzchni stopnia drugiego W02 4 zadania na drugim kolokwium, wymagane jest Posiada wiedzę w zakresie analizy matematycznej, a w szczególności rachunku różniczkowego i całkowego oraz jego zastosowań W03 4 zadania na trzecim kolokwium, wymagane jest Potrafi wykonać działania na liczbach zespolonych i macierzach, rozwiązywać równania w dziedzinie zespolonej oraz rozwiązywać układy równań z wykorzystaniem macierzy U01 Potrafi liczyć pochodną funkcji jednej zmiennej oraz zna zastosowania pochodnej U02 Potrafi liczyć całkę z funkcji jednej zmiennej oraz zna zastosowania całek U03 5 / 5