Wprowadzenie do logiki Klasyfikacja wnioskowań, cz. II



Podobne dokumenty
Filozofia z elementami logiki Klasyfikacja wnioskowań II część 1

Filozofia z elementami logiki Klasyfikacja wnioskowań II część 2

Wprowadzenie do logiki Klasyfikacja wnioskowań, cz. II

wypowiedzi inferencyjnych

Wprowadzenie do logiki Klasyfikacja wnioskowań, cz. I

RACHUNEK ZDAŃ 5. Układ przesłanek jest sprzeczny, gdy ich koniunkcja jest kontrtautologią.

Klasyfikacja rozumowań

Konspekt do wykładu z Logiki I

Filozofia z elementami logiki O czym to będzie?

Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,

Filozofia z elementami logiki Klasyfikacja wnioskowań I część 1

Kognitywistyka: tworzenie pojęć i rozumowanie Studium przypadku: rozumowania abdukcyjne

Powtórka 3. Katarzyna Paluszkiewicz Katarzyna Paluszkiewicz Powtórka / 11

Wstęp do logiki. Klasyczny Rachunek Zdań III

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Wprowadzenie do logiki O czym to będzie?

WNIOSKOWANIE 1 DEDUKCJA

Nazwy definicje podział logiczny wnioskowania

Wykład 4 Logika dla prawników. Dyskusja oraz rodzaje argumentów

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ

ćwiczenia 15 zaliczenie z oceną

Elementy logiki i teorii mnogości

Dowody założeniowe w KRZ

Kultura logiczna Wnioskowania dedukcyjne

Zależność cech (wersja 1.01)

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

Wprowadzenie do logiki Pojęcie wynikania

Wprowadzenie do logiki Podział logiczny

Wstęp do logiki. Klasyczny Rachunek Zdań IV

Konspekt do wykładu z Logiki I

Ogólna metodologia nauk

Logika dla socjologów

Rachunek zdań i predykatów

Logika cz. II wnioskowanie i metodologia nauk. Wykład dr K. A. Wojcieszek Pedagogium WSNS

WSTĘP ZAGADNIENIA WSTĘPNE

STUDIA PODYPLOMOWE BEZPIECZEŃSTWO I HIGIENA PRACY

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Systemy ekspertowe. Krzysztof Patan

Czyli o wnioskowaniach niededukcyjnych

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI

Wstęp do logiki. Argumentacja

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Podstawowe Pojęcia. Semantyczne KRZ

Filozofia przyrody, Wykład V - Filozofia Arystotelesa

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody badawcze. Metodologia Podstawowe rodzaje metod badawczych

WYKŁAD 8: ŚWIADOMOŚĆ. Psychologia poznawcza. dr Mateusz Hohol

Rodzaje argumentów za istnieniem Boga

Naukoznawstwo. Michał Lipnicki Zakład Logiki Stosowanej UAM Michał Lipnicki Naukoznawstwo 1

Podstawy logiki praktycznej

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.

Logika Stosowana. Wykład 8 - Wnioskowanie indukcyjne Część 1 Problem indukcji. Marcin Szczuka. Instytut Informatyki UW

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Standaryzacja i ocena wypowiedzi argumentacyjnych

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Wstęp do kognitywistyki. Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne

Uniwersytet Śląski w Katowicach str. 1 Wydział

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

1 Podstawowe oznaczenia

Katedra Teorii i Filozofii Prawa Poznań, dnia 27 września 2018 r.

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)


Pamięć operacyjna. Paulina Ziomkowska Kognitywistyka 3 rok

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Wnioskowanie bayesowskie

Elementy filozofii i metodologii INFORMATYKI

Filozofia, Historia, Wykład V - Filozofia Arystotelesa

Reprezentacje poznawcze

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Sylabus dla przedmiotu Logika i ogólna metodologia nauk

David Hume ( )

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Metoda Karnaugh. B A BC A

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki

LOGIKA Wprowadzenie. Robert Trypuz. Katedra Logiki KUL GG października 2013

5. Rozważania o pojęciu wiedzy. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Transkrypt:

Wprowadzenie do logiki Klasyfikacja wnioskowań, cz. II Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl

wnioskowania niezawodne uprawdopodabniające wnioskowania, w których mamy prawo uznać wniosek, jednak z mniejszym stopniem pewności, niż przesłanki logicznie bezwartościowe 2

( ) wnioskowania uprawdopodabniające to takie, w których wychodząc od prawdziwych przesłanek możemy dojść do fałszywego wniosku (nie jest to wykluczone), lecz spodziewamy się w sposób racjonalny, że wniosek będzie prawdziwy. [Zygmunt Ziembiński, Logika praktyczna] Zajmiemy się trzema rodzajami wnioskowań uprawdopodabniających: wnioskowaniami redukcyjnymi wnioskowaniami przez analogię wnioskowaniami statystycznymi 3

We wnioskowaniu REDUKCYJNYM wniosek nie wynika logicznie z przesłanek, natomiast: albo: (I) przesłanki wynikają logicznie z samego tylko wniosku, albo: (II) z wniosku i niektórych przesłanek wynikają logicznie przesłanki pozostałe. 4

(I) przesłanki wynikają logicznie z samego tylko wniosku Przykładem przypadku (I) jest tzw. wnioskowanie przez indukcję enumeracyjną niezupełną: Mój kot miauczy żałośliwie, gdy jest głodny. Kot sąsiada miauczy żałośliwie, gdy jest głodny. Kot Justyny też miauczy żałośliwie gdy jest głodny. Wszystkie głodne koty miauczą żałośliwie. We wnioskowaniu takim z przesłanek jednostkowych, stwierdzających, że pewne konkretne przedmioty określonego rodzaju (np. koty mój, sąsiada i Justyny) mają pewną cechę (miauczą żałośliwie, gdy są głodne), wyprowadza się wniosek ogólny że wszystkie przedmioty owego rodzaju (np. wszystkie koty) mają ową cechę. 5

Schemat wnioskowania przez indukcję enumeracyjną niezupełną wygląda więc następująco: S 1 jest P S 2 jest P S 3 jest P S n jest P SaP Łatwo zauważyć, że ze zdania ogólnego SaP przesłanki szczegółowe wynikają logicznie (czyli że takim wnioskowaniu wniosek jest racją, a przesłanki są następstwem). 6

Jednakże, nawet jeśli wszystkie przesłanki takiego wnioskowania są prawdziwe, to nie mamy gwarancji, że wniosek również jest prawdziwy: przesłanki uprawdopodabniają wniosek, ale nic poza tym. Im więcej przebadamy przedmiotów rodzaju, o którym chcemy wnioskować (np. kotów) czyli im większą liczbą przesłanek jednostkowych będziemy dysponować tym wniosek będzie lepiej uprawdopodobniony. Im bardziej różnorodne będą nasze jednostkowe przesłanki (np. zróżnicowane pod względem pochodzenia albo rasy kotów) tym wniosek będzie lepiej uprawdopodobniony. 7

Zawsze jednak może się zdarzyć, że trafimy na kota upośledzonego albo na twardego kota ekstremistę, albo na łagodnego kota-taoistę takiego, który nie będzie miauczał. Nb. ewentualne kontrprzykłady (a dokładniej: stopień ich nieprawdopodobieństwa), jakie potrafimy wymyślić dla naszego ogólnego wniosku, nie pozostają bez wpływu na jego uprawdopodobnienie. Ale o tym opowiemy przy następnej okazji. 8

(II) z wniosku i niektórych przesłanek wynikają logicznie przesłanki pozostałe. Przykładem takiego rozumowania jest tzw. wnioskowanie z uznanego następnika: p q q p wniosek nie wynika tu logicznie z przesłanek, ale z wniosku postaci p i przesłanki postaci p q wynika logicznie przesłanka q. 9

C. S. Peirce wnioskowania tego typu nazwał abdukcyjnymi: Obserwujemy zaskakujące zjawisko C. Gdyby A było prawdziwe, zachodzenie C byłoby oczywiste. Zatem, mamy podstawy, by podejrzewać, że A jest prawdziwe. Siedzę przy stole zajęty bardzo ciekawą lekturą i nie zważam na to, co dzieje się dokoła mnie. W pewnym momencie [...] spostrzegam, że niebo jest pochmure, a ulica jest mokra, lecz deszcz nie pada. Spostrzeżenie to prowadzi mnie do wniosku, że widocznie, w czasie gdy czytałem książkę, padał deszcz. 10

W tym wnioskowaniu przesłanką było zdanie Ulica jest mokra, wnioskiem zdanie Padał deszcz. [...] Jasną jest rzeczą, że wniosek wysnuty z tej przesłanki nie wynika z niej wcale; może przecież ulica być mokra, choć deszcz nie padał, gdy np. ulica została skropiona przez beczkowóz. Zachodzi natomiast stosunek odwrotny [...] Wynikanie, jakie zachodzi między wnioskiem tego wnioskowania a przesłanką, jest mianowicie wynikaniem entymematycznym ze względu na [...] zdanie [...] Jeżeli padał deszcz, to ulica jest mokra. Znaczy to, że z samego wniosku Padał deszcz nie wynika jeszcze logicznie przesłanka Ulica jest mokra, ale z tego wniosku i ze zdania Jeżeli padał deszcz, to ulica jest mokra wynika już logicznie przesłanka tego rozumowania. [Kazimierz Ajdukiewicz, Logika pragmatyczna] 11

To jest interesujące? Naprawdę? machine scientific discovery programy diagno- i prognostyczne The Antibody Identification Assistant The Regional Crime Analysis Program A River Flooding Forecasting System programy planistyczne Scheduler for Air-Crew Assignment eksploatacja maksym konwersacyjnych empatia eksploracja nieznanego środowiska 12

A kłopotliwe? Niby dlaczego? 1. Produkt czy proces? a. Model produktu, model procesu; b. Hipoteza abdukcyjna a rozumowanie abdukcyjne; c. Magiczne pudełko. 2. Start i cel. a. Niespodzianka jako wyzwalacz : metafora? b. Hipotezy: zdania, reguły, teorie, reprezentacje niewerbalne? 3. Generowanie a ocena. a. Jedno czy oba? b. Razem czy osobno? 13

We wnioskowaniu PRZEZ ANALOGIĘ z faktu, że jakieś przedmioty są do siebie podobne pod pewnym względem wnioskujemy, że są do siebie podobne również pod innym: Mój kot miauczy żałośliwie, gdy jest głodny. Kot sąsiada miauczy żałośliwie, gdy jest głodny. Kot Justyny też miauczy żałośliwie gdy jest głodny. Kot Beaty zapewne również miauczy, gdy jest głodny. 14

Schemat wnioskowania przez analogię wygląda następująco: S 1 jest P S 2 jest P S 3 jest P S n jest P S n+1 jest P Od schematu indukcji enumeracyjnej niezupełnej różni się więc tym, że wniosek nie jest tu zdaniem ogólnym, mówiącym o wszystkich przedmiotach badanego rodzaju, ale zdaniem szczegółowym, mówiącym o następnym przedmiocie badanego rodzaju. 15

Wnioskowanie przez analogię może mieć również nieco inną strukturę: Przedmiot X ma własności A, B, C i D. Przedmiot Y ma własności A, B, C. Przedmiot Y ma własność D. Np.: Zenkowi, Jurkowi i Włodkowi nie udało się naprawić tej pralki. Zdzisiowi też się to nie uda. Nb: własności, z uwagi na które stwierdza się podobieństwo rozważanych obiektów, nie zawsze są określone explicite, jak choćby w powyższym przykładzie: co takiego może łączyć czterech panów, że fakt, iż trzech z nich nie dało rady pralce, uprawdopodabniałby wniosek, że czwartemu też się nie uda? 16

Wiarygodność wnioskowanie przez analogię zależy od tego, czy podobieństwo między rozpatrywanymi przedmiotami jest konsekwencją związku wewnętrznego między ich cechami, czy też jest czysto przypadkowe, jedynie zewnętrzne. [Krzysztof Szymanek, Sztuka argumentacji. Słownik terminologiczny] Stąd też wnioskowanie następujące specjalnie wiarygodne nie jest: Pierwszy świadek ma na imię Jan, jest łysy, garbaty i kłamie, a drugi również Jan też jest łysy i garbaty, więc pewnie ten drugi również kłamie. 17

We wnioskowaniu statystycznym na podstawie stwierdzonych cech niektórych elementów pewnego zbioru Z przedmiotów wnioskuje się o statystycznych własnościach całego zbioru Z. Zbiór Z nazywany jest populacją (wzgl. zbiorowością ogólną), natomiast zespół elementów o własnościach znanych nazywa się próbą (próbą losową). Wnioskowania statystyczne nie są wnioskowaniami niezawodnymi. Z reguły wynikiem takiego wnioskowania jest stwierdzenie, że populacja ma z określonym prawdopodobieństwem własność, będącą przedmiotem wnioskowania. [Krzysztof Szymanek, Sztuka argumentacji. Słownik terminologiczny] 18

Wróćmy do wnioskowania o kotach: Mój kot miauczy żałośliwie, gdy jest głodny. Kot sąsiada miauczy żałośliwie, gdy jest głodny. Kot Justyny też miauczy żałośliwie gdy jest głodny. Wszystkie głodne koty miauczą żałośliwie. Nawet jeśli przesłanki owego wnioskowania są prawdziwe, to nie mamy gwarancji, że wśród nieuwzględnionych przez nas przypadków kotów, których nie znamy nie ma takiego przypadku, który wnioskowi ogólnemu by przeczył; wniosek nie wynika tu więc logicznie z przesłanek. A gdybyśmy mieli taką gwarancję? 19

Rozważmy następujące wnioskowanie przez indukcję enumeracyjną niezupełną: Zdanie ogólnotwierdzące jest zdaniem podmiotowoorzecznikowym. Zdanie ogólnoprzeczące jest zdaniem podmiotowoorzecznikowym. Zdanie szczegółowotwierdzące jest zdaniem podmiotowoorzecznikowym. Zdanie szczegółowoprzeczące jest zdaniem podmiotowoorzecznikowym. Wszystkie klasyczne zdania kategoryczne są zdaniami podmiotowo-orzecznikowymi. 20

Ale wiemy coś jeszcze: Zdanie ogólnotwierdzące jest zdaniem podmiotowoorzecznikowym. Zdanie ogólnoprzeczące jest zdaniem podmiotowoorzecznikowym. Zdanie szczegółowotwierdzące jest zdaniem podmiotowoorzecznikowym. Zdanie szczegółowoprzeczące jest zdaniem podmiotowoorzecznikowym. Zdania wymienione powyżej to wszystkie klasyczne zdania kategoryczne. Wszystkie klasyczne zdania kategoryczne są zdaniami podmiotowo-orzecznikowymi. Taka indukcja jest w pewnym sensie zupełna: dokładamy przesłankę stwierdzającą, że w przesłankach jednostkowych wymienione są wszystkie przedmioty badanego rodzaju. 21

Schemat indukcji enumeracyjnej zupełnej wygląda więc następująco: S 1 jest P S 2 jest P S 3 jest P S n jest P Nie ma innych przedmiotów rodzaju S poza S 1, S 2, S 3,, S n. SaP Takie rozumowanie jest wnioskowaniem dedukcyjnym: z przesłanek jednostkowych i przesłanki gwarantującej kompletność listy badanych przedmiotów wniosek ogólny wynika logicznie. 22

indukcja enumeracyjna niezupełna Indukcję, w której z kilku pojedynczych szczegółów wyprowadza się regułę ogólną Arystoteles nazywał dialektyczną i twierdził, że jej prawomocność jest ważna tak długo, jak długo nasz przeciwnik w dyskusji nie znajdzie faktu, który by tej regułę zaprzeczył, co byłoby równoznaczne z jej obaleniem. Jej wniosek jest więc tylko prawdopodobny. zupełna Indukcję, w której sąd ogólny wyprowadza się ze wszystkich szczegółów, Arystoteles nazywał apodyktyczną. W tym przypadku jesteśmy pewni, że przypadku przeciwnego nie ma i być nie może, gdyż znamy wszystkie fakty podległe regule ogólnej. Wniosek uzyskany na tej drodze jest więc niezawodny. 23

Dnia (...) w swojej posiadłości w (...) zastrzelona zastała Maria Gibson, żona amerykańskiego polityka i milionera, J. Neila Gibsona. Ciało znaleziono nad ranem w pobliżu mostu nad strumieniem, niedaleko pałacu (...). Rewolwer kalibru odpowiadającego broni, z której strzelano do ofiary, znaleziony został na podłodze w garderobie zmarłej. 24

Kto zabił Marię Gibson? 25

We wnioskowaniu przez INDUKCJĘ ELIMINACYJNĄ na podstawie uznania pewnej alternatywy oraz odrzucenia niektórych spośród jej członów, dochodzi się do uznania pozostałych członów alternatywy: p 1 p 2 p n-1 p n p 1 p 2 p n-1 p n Najprostsza postać takiego wnioskowania to tzw. sylogizm dysjunkcyjny: p q p q 26

Jeśli rozważymy wszystkie hipotezy i odrzucimy to, co niemożliwe, to co pozostanie, jakkolwiek nieprawdopodobne, musi być prawdą. Sherlock Holmes Arthur Conan Doyle, Studium w szkarłacie 27

KILKA UWAG O KARIERZE POJĘCIA Jeżeli jakaś choroba atakuje naraz i jednocześnie licznych ludzi, młodych i starych, mężczyzn i kobiety, pijących wodę i pijących wino, odżywiających się jęczmieniem i odżywiających się pszenicą, pracujących ciężko i pracujących niewiele, wówczas przyczyną tej choroby nie może być poszczególny sposób życia którejkolwiek z tych istot ludzkich, lecz jakiś element wspólny im wszystkim ( ) [Tadeusz Kotarbiński, Wykłady z dziejów logiki, cytując zbiór greckich rozpraw lekarskich z V w. p.n.e.] Nb. podobne rozumowania znajdziemy w sokratycznych dialogach Platona i Ksenofonta oraz w pismach epikurejczyków. 28

Franciszek Bacon (1561 1626) [Celem nauki jest] by przez nią życie ludzkie obdarzone zostało nowymi wynalazkami i bogactwami Nowa Atlantyda Ludzka wiedza i ludzka potęga są jednym i tym samym. Żeby kierować Naturą, trzeba być jej posłusznym. Nowy Organon 29

Umysłowi ludzkiemu nie skrzydeł trzeba, lecz ołowiu. Nowy Organon Właściwa metoda naukowa zdaniem Bacona opierać się powinna na dwóch filarach: eksperymencie i indukcji: [w ujęciu Bacona] praca naukowa nie ma być samym zbieraniem, jak praca mrówek, ani samym snuciem własnej nici, jak praca pająków, lecz ma być podobna do pracy pszczół: ma zbierać, i to, co zebrała, przerabiać. [Władysław Tatarkiewicz, Historia filozofii] Jednakże nie na indukcji enumeracyjnej, którą Bacon nazywał dziecinną. 30

Nauka odkrywać ma istoty (formy) zjawisk a zatem bada stałe i odwracalne współwystępowanie natur (cech) i form. Przykład Bacona z Nowego Organonu: Aby znaleźć odpowiedź na pytanie Czym jest ciepło? poszukiwać powinniśmy tego, co stale i odwracalnie towarzyszy zjawisku ciepła. W tym celu winniśmy skonstruować trzy tabele: obecności, nieobecności i stopni. 31

Tabela obecności (zawiera opisy zjawisk, w których stwierdza się obecność ciepła): a 1 promienie słoneczne grzeją a 2 a 3 ogień jest gorący ciepłe są wnętrzności zwierząt Tabela nieobecności (zawiera opisy zjawisk, w których nie stwierdza się obecność ciepła, mimo że są one podobne do odnotowanych w tabeli obecności): b 1 promienie księżyca nie grzeją b 2 nie są gorące błędne ogniki na bagnach b 3 nie są ciepłe wewnętrzne części roślin 32

Tabela stopni (zawiera opisy zjawisk, w których zmienia się natężenie zjawiska badanego): c 1 c 2 c 3 ciała zwierząt rozgrzewają się w miarę ruchu wzmaga się żar ogniska w miarę nadmuchiwania powietrza kowadło rozgrzewa się od uderzeń młota Porównując ze sobą zapisy z poszczególnych tabel i eliminując nietrafne domysły dojść możemy do wniosków na temat istoty zjawiska badanego, która, jak powiada Bacon, po wyparowaniu wszystkich obcych cech zostaje nam niczym osad na dnie tygla. [por. Tadeusz Kotarbiński, Wykłady z dziejów logiki] 33

John Stuart Mill (1806 1873) Mill zaproponował metodę podobną do baconowskiej tzw. kanony indukcji eliminacyjnej (A System of Logic, Ratiocinative and Inductive, 1843) Ponieważ od czasów Bacona do czasów Milla zmieniły się nieco poglądy na naturę rzeczywistości, w ujęciu Milla indukcja eliminacyjna służy już nie odkrywaniu istot zjawisk, ale związków przyczynowych między zjawiskami. [por. T. Kotarbiński, Wykłady z dziejów logiki tenże, Elementy teorii poznania, logiki formalnej i metodologii nauk] 34

Kanony są schematami rozumowań, w których interpretujemy wyniki wygenerowanych przez nas eksperymentów. Ponieważ kanony służyć mają do odkrywania związków przyczynowych, w każdym przypadku mamy do czynienia z dwiema grupami zjawisk: poprzednikami i następnikami czasowymi czasowymi ABC αβγ 35

A liczbą kanonów indukcji eliminacyjnej jest pięć: kanon jedynej różnicy kanon jedynej zgodności połączony kanon jedynej różnicy i jedynej zgodności kanon reszt kanon zmian towarzyszących 36

Poprzedzanie pozytywne Poprzedzanie pozytywne (torowanie) polega na prezentowaniu bodźca poprzedzającego (prymy), który ułatwia przetwarzania bodźca właściwego. Zwykle obserwuje się skrócenie czasu potrzebnego na przetworzenie bodźca właściwego, poprzedzonego odpowiednio dobraną prymą, w porównaniu do bodźca niczym nie poprzedzonego lub poprzedzonego prymą neutralną. [por.: Nęcka i in., Psychologia poznawcza, s. 225-226] 37

kanon jedynej różnicy ABC αβγ BC βγ A jest przyczyną α Gdy przypadek, w którym badane zjawisko zachodzi, i przypadek, w którym ono nie zachodzi, mają wszystkie okoliczności wspólne z wyjątkiem jednej, obecnej tylko w pierwszym przypadku, w takim razie okoliczność, którą się różnią oba te przypadki, jest skutkiem lub przyczyną lub niezbędną częścią przyczyny owego zjawiska. 38

kanon jedynej zgodności ABC ADE AKL αβγ αδε ακλ A jest przyczyną α Gdy dwa lub więcej przypadków badanego zjawiska mają wspólną tylko jedną okoliczność, to okoliczność, w której jedynie zgadzają się wszystkie przypadki, jest skutkiem lub przyczyną lub niezbędną częścią przyczyny owego zjawiska. 39

Neuroobrazowanie poziomów przetwarzania Otten i Rugg (2001) używając techniki funkcjonalnego rezonansu magnetycznego przeprowadzili eksperyment, w którym osoby badane miały zdecydować, czy prezentowane im słowo oznacza obiekt ożywiony, czy nie (głębszy poziom przetwarzania), albo czy słowo posiada parzystą czy nieparzystą liczbę liter (poziom płytki). Jedynie warunek głębokiego przetwarzania angażował korę przedczołową lewej półkuli oraz jej obszar przyśrodkowy. ( ) Obszary [te] związane są z przetwarzaniem znaczenia stymulacji oraz zaangażowaniem reprezentacji werbalnych. [Nęcka i in., Psychologia poznawcza, s. 339] 40

połączony kanon jedynej zgodności i różnicy Gdy dwa lub więcej przypadków, w których występuje dane zjawisko, mają tylko jedną okoliczność wspólną, gdy dwa lub więcej przypadków, w których ono nie występuje, nie mają nic wspólnego prócz nieobecności tej okoliczności; w takim razie ta okoliczność, którą wyłącznie różnią się oba szeregi przypadków, jest skutkiem lub przyczyną lub niezbędną częścią przyczyny owego zjawiska. 41

kanon reszt AB jest przyczyną αβ B jest przyczyną β A jest przyczyną α Odejmijmy od danego zjawiska tę jego część, którą znamy dzięki wcześniejszym indukcjom jako skutek określonych poprzedników, a reszta zjawiska będzie to skutek pozostałych poprzedników. 42

Procedura badania pamięci krótkotrwałej Browna- Petersonów ( ) eksponowano zestawy trzech bezsensownych spółgłosek, np. XLR, oraz trzycyfrową liczbę, np. 123. Zadanie osoby badanej polegało na zapamiętaniu zestawu liter, a następnie na głośnym odliczaniu trójkami wstecz, poczynając od zaprezentowanej liczby. Po upływie pewnego czasu należało przerwać odliczanie i odpamiętać zestaw spółgłosek. Manipulacji eksperymentalnej podlegał interwał czasu pomiędzy ekspozycją zestawu spółgłosek (i liczby), a poleceniem jego odtworzenia. Wynosił on 3, 6, 9, 12, 15 albo 18 s. ( ) Okazało się, że poziom odpamiętania sylab bardzo szybo spada w funkcji czasu, i nawet dla najkrótszego interwału nie osiągnął 100%. [Nęcka i in., Psychologia poznawcza, s. 343-344] 43

kanon zmian towarzyszących A 1 B C A 2 B C α 1 β γ α 2 β γ A jest przyczyną α Każde zjawisko, zmieniające się w jakiś sposób, ilekroć inne zjawisko zmienia się w sposób określony, jest skutkiem lub przyczyną lub niezbędną częścią przyczyny owego zjawiska. 44

Kłopoty z kanonami Milla: założenia dotyczące przyczynowości o zasada powszechnej przyczynowości o zasada jedyności przyczyny problem praktycznej stosowalności kanonów o zasada caeteris paribus 45

Klasyfikacja wnioskowań, cz. II Pozostanie: wnioskowania uprawdopodabniające redukcyjne przez analogię statystyczne indukcja enumeracyjna: zupełna i niezupełna indukcja eliminacyjna tabele Bacona kanony Milla 46