PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI
|
|
- Julian Czech
- 7 lat temu
- Przeglądów:
Transkrypt
1 PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI (niniejsze opracowanie jest nieznacznie skróconą wersją opracowania zawartego w książce Zygmunta Ziembińskiego Logika pragmatyczna. (wyd. XIX, s ). Polecam lekturę całej pracy Z. Ziembińskiego. l. Zdania stwierdzające relację Pewne wyrazy i wyrażenia wskazują na stosunki, czyli relacje, jakie zachodzą między różnymi przedmiotami. Do takich wyrazów należą np. wyrazy: nad", pod", za", przy", po", braterstwo", wyższość", władza" itp. Stosunki między przedmiotami opisujemy w takich zdaniach, jak np.: Jan jest bratem Piotra" (tzn. Jan pozostaje w stosunku braterstwa do Piotra); Poznań leży nad Wartą"; Paweł jest starszy od Adama", itp. Ograniczamy rozważania do stosunków dwuczłonowych opisywanych w zdaniach, w których mowa jest o dwóch elementach powiązanych daną relacją, jakkolwiek wyróżnia się często, np. przy analizowaniu stosunków prawnych, stosunki trójczłonowe i więcej niż trójczłonowe (np.... jest poręczycielem... wobec... co do..."). Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: przedmiot x pozostaje w stosunku R do przedmiotu y (R to skrót łacińskiego słowa relatio = stosunek). Wszystko to, o czym w opisie stosunku może być mowa na pierwszym miejscu (na miejscu x), nazywamy poprzednikiem stosunku (relacji), wszystko to, o czym w opisie stosunku może być mowa na drugim miejscu (na miejscu y), nazywamy n a s t ę p n i k i e m stosunku (relacji). Jeśli weźmiemy np. stosunek jest potomkiem" (stosunek pochodzenia od), to np. jakieś niemowlę może być poprzednikiem w opisie tego stosunku, bo można Powiedzieć: To niemowlę jest potomkiem tego a tego"; nie może być jednak następnikiem tej relacji, bo nie można o nikim powiedzieć, iż jest potomkiem jakiegoś niemowlęcia, które właśnie oglądamy. Jakiś pies może być następnikiem stosunku jest właścicielem", ale nie może być poprzednikiem tego stosunku. Ktoś może być właścicielem psa, ale pies nie może być właścicielem czegoś. Jeśli mowa o ustroju społecznym, który nie uznaje instytucji niewolnictwa, to człowiek może być tylko poprzednikiem stosunku jest właścicielem". Człowiek może być właścicielem czegoś, ale coś czy ktoś nie może być właścicielem człowieka. Natomiast w ustroju, gdzie istnieje niewolnictwo, człowiek może być i poprzednikiem, i następnikiem stosunku jest właścicielem". Widzimy więc, że stosunek wyznacza pewne klasy przedmiotów, przedmiotów, które mogą być członami tego stosunku: przedmioty, które aktualnie są poprzednikami danego stosunku, tworzą klasę zwaną dziedziną tego stosunku (relacji), a przedmioty, które są jego następnikami, tworzą klasę zwaną przeciwdziedziną tego stosunku. Stosunek pomiędzy pewnymi przedmiotami x oraz y może być opisywany dwojako: jako stosunek x do y albo jako stosunek y do x. Stosunek ten brany jako 1
2 przebiegający w jednym kierunku może być w niektórych przypadkach nazywany inaczej niż stosunek brany jako przebiegający w drugim kierunku. Porównajmy np. takie stosunki, jak starszeństwo i bycie młodszym. Jeśli pierwszy z tych stosunków zachodzi między jakimś Janem i jakimś Piotrem, to drugi z nich także zachodzi między tymże Piotrem a tymże Janem. Podobnie jest ze stosunkami: mniejszość i większość (Adam jest mniejszy od Piotra to tyle, co: Piotr jest większy od Adama), jest przodkiem" i jest potomkiem", jest dłużnikiem i jest wierzycielem", jest obserwującym" i jest obserwowany". Taką właściwość zauważyliśmy też mówiąc o stosunku podrzędności i stosunku nadrzędności zakresów nazw. Jeżeli w każdym przypadku, gdy pewien stosunek R1 zachodzi między jakimś poprzednikiem x a jakimś następnikiem y, zachodzi odpowiednio odmienny stosunek R2 między tym y a tym x, to mówimy, że stosunek R2 jest stosunkiem odwrotnym względem stosunku R1 (czyli konwersem stosunku R1). Tak więc stosunek niższości będzie stosunkiem odwrotnym względem stosunku wyższości, mniejszości względem większości, dłużnictwa względem wierzycielstwa, bycia potomkiem względem bycia przodkiem, itp. 2. Stosunki symetryczne, asymetryczne i nonsymetryczne Niektóre stosunki mają taką właściwość, że jeśli zachodzą między pewnym poprzednikiem i następnikiem, to w każdym przypadku zachodzą też między tym właśnie następnikiem a poprzednikiem. Przykładem może być stosunek pokrewieństwa: Jeżeli Paweł jest krewnym Piotra, to na pewno Piotr jest krewnym Pawła. Taki stosunek, który w każdym przypadku jeśli zachodzi między pewnym poprzednikiem a następnikiem, to zachodzi też między tym następnikiem a poprzednikiem nazywamy stosunkiem symetrycznym. Symetryczny jest np. stosunek rówieśnictwa: bo o jakimkolwiek Janie i Piotrze mowa, wiadomo jest, że jeśli ów Jan jest rówieśnikiem Piotra, to Piotr jest rówieśnikiem Jana. Stwierdzić, że stosunek R jest stosunkiem symetrycznym, to tyle, co stwierdzić, że (w przypadku jakiegokolwiek x i jakiegokolwiek y) x pozostaje w stosunku R do y zawsze i tylko wtedy, y pozostaje w stosunku R do x. Np. stosunek wykluczania się zakresów dwóch nazw jest symetryczny: zakres dowolnej nazwy x wyklucza się z zakresem nazwy y zawsze i tylko wtedy, gdy zakres nazwy y wyklucza się z zakresem nazwy x. Porównajmy to z określeniem stosunku odwrotnego względem pewnego innego stosunku. Określony stosunek i stosunek względem niego odwrotny (np. bycie wyższym od, niższym od) wiązały te same przedmioty, ale w przeciwnym kierunku. Gdy napotykamy stosunek symetryczny, to zachodzi on między danymi przedmiotami i w jedną w drugą stronę, poprzednik tego stosunku jest zarazem następnikiem I następnik poprzednikiem. Stosunek jest małżonkiem" jest stosunkiem symetrycznym, bo Anna jest małżonkiem Adama zawsze i tylko wtedy, gdy Adam jest małżonkiem Anny. Natomiast stosunek ojcostwa ma taką właściwość, że jeśli np. Jan jest ojcem Piotra, to na pewno Piotr nie jest ojcem Jana. Jeśli pewien stosunek zachodzący między 2
3 jakimś x a jakimś y wyklucza to, by stosunek ten zachodził także między tymże y a tymże x, mówimy, że stosunek ten jest stosunkiem asymetrycznym. Np. jeśli Jan jest starszy od Romana, to nieprawda, że Roman jest starszy od Jana. Jeśli Paweł jest niższy od Piotra, to nieprawda, że Piotr jest niższy od Pawła. Starszeństwo, niższość to przykłady stosunku asymetrycznego. Stwierdzenie, że stosunek asymetryczny R zachodzi między x oraz y, nie jest jednak równoważne stwierdzeniu, iż nie zachodzi ten stosunek pomiędzy y a x. Z tego, że Jan jest przodkiem Piotra, wynika, iż nieprawda, że Piotr jest przodkiem Jana, ale z tego, że nieprawda, iż Piotr jest przodkiem Jana, bynajmniej nie wynika, że Jan jest przodkiem Piotra. Czy stosunek taki, jak x kocha y, np. Jan kocha Zofię", jest stosunkiem symetrycznym? Nie, bo z tego, że Jan kocha Zofię, nie wynika, że Zofia kocha Jana. Czy jest to stosunek asymetryczny? Też nie, bo nie wynika z tego, iż Zofia nie kocha Jana. Taki stosunek, który nie jest ani stosunkiem symetrycznym, ani asymetrycznym, nazywamy stosunkiem nonsymetrycznym (niesymetrycznym). Stosunek szacunku jest stosunkiem nonsymetrycznym: z tego bowiem, że Adam szanuje Pawła, ani nie wynika to, że Paweł szanuje Adama, ani to, że Paweł nie szanuje Adama; może być i tak, że szanuje, i tak, że nie szanuje trzeba byłoby to dopiero zbadać. Ważną sprawą jest to, do jakiego z tych trzech rodzajów stosunków zaliczyć stosunek wynikania. Stosunek wynikania łączący dwa zdania jest stosunkiem nonsymetrycznym, bo jeśli ze zdania p wynika zdanie q, to wcale nie wiadomo stąd, czy ze zdania q wynika zdanie p, czy nie wynika. Ze zdania Przepaliły się bezpieczniki" wynika zdanie Zgasło światło", ale z tego, że zgasło światło, nie wynika, że przepaliły się bezpieczniki: może przepaliły się bezpieczniki, a może żarówka. Ze zdania,,jeśli pada deszcz, to jest mokro w danym miejscu" nie możemy wnosić, iż prawdziwe jest zdanie Jeśli w danym miejscu jest mokro, pada tam deszcz", ani też nie mamy podstaw do tego, by orzec, że to zdanie jest fałszywe. Często wprawdzie w taki sposób wnioskujemy, ale takie wnioskowanie może okazać się zawodne. Natomiast stosunek równoważności dwóch zdań, stosunek, jaki stwierdzamy wypowiadając równoważność, np.: p zawsze i tylko wtedy, gdy q", jest stosunkiem symetrycznym, bo w każdym przypadku, w którym zdanie p jest równoważne zdaniu q, również zdanie q jest równoważne zdaniu p. 3. Stosunek przechodni Ważnym dla prawnika pojęciem jest również pojęcie stosunku przechodniego czyli tranzytywnego. Stosunkiem przechodnim, czyli tranzytywnym, nazywamy stosunek, który ma taką własność, iż w każdym przypadku, jeśli zachodzi między jakimś x a jakimś y oraz między tymże y a jakimś z, to zachodzi też między owym x a owym z, niezależnie od tego, jakie trzy przedmioty x, y i z wzięto pod uwagę. Np. przechodni jest stosunek starszeństwa, bo o kimkolwiek mowa, jeśli Paweł jest 3
4 starszy od Jana, a Jan jest starszy od Gawła, to wiadomo, że Paweł jest starszy od Gawła. Nie jest przechodni stosunek ojcostwa, bo jeśli Adam jest ojcem Bolesława, a Bolesław ojcem Czesława, to na pewno nieprawda, że Adam jest ojcem Czesława. Jest to stosunek atranzytywny, taki, iż w każdym przypadku jeśli xry oraz yrz, to nieprawda, że xrz. Natomiast przechodni jest stosunek bycia potomkiem, bo jeśli Czesław jest potomkiem Bolesława, a Bolesław potomkiem Adama, to na pewno Czesław jest potomkiem Adama. Nie jest przechodni stosunek pokrewieństwa, bo z tego. że x jest krewnym y oraz że y jest krewnym z, nie wynika, że x jest krewnym z (ani też nie wynika w tym przypadku, że x nie jest krewnym z). Np. ojciec jest krewnym dziecka, dziecko jest krewnym matki, ale normalnie ojciec nie jest krewnym matki. Gdyby zaś chodziło o dziadka, ojca i jego dziecko, dziadek byłby też krewnym dziecka. Pokrewieństwo jest więc stosunkiem nontranzytywnym. to znaczy takim, który nie jest ani tranzytywny, ani atranzytywny. Nontranzytywny jest stosunek przyjaźni itp. Ważną sprawą jest to, że stosunek wynikania oraz stosunek równoważności są stosunkami przechodnimi. Jeżeli ze zdania p wynika zdanie q, a ze zdania q wynika zdanie r, to łatwo zauważyć, że ze zdania p wynika zdanie r; skoro bowiem przy prawdziwości zdania p zdanie q nie może być fałszywe, a przy prawdziwości zdania q nie może być fałszywe zdanie r, to rzecz jasna, że przy prawdziwości zdania p zdanie r nie może być fałszywe. Podobnie przy równoważności, jeśli zdanie p jest równoważne zdaniu q, a zdanie q równoważne zdaniu r, to zdanie p musi być tej samej wartości logicznej, co zdanie r. 4. Stosunek porządkujący i stosunek równościowy w danej klasie przedmiotów Aby wyjaśnić pojęcie stosunku porządkującego w danej klasie przedmiotów, musimy uprzednio wprowadzić pomocniczo pojęcie stosunku spójnego w danej klasie przedmiotów. Stosunkiem spójnym w danej klasie przedmiotów nazywamy taki stosunek, który zachodzi w jednym lub w drugim kierunku między każdymi dowolnie wybranymi elementami tej klasy. A więc jeśli stosunek R jest spójny w pewnej klasie, to dla każdych dwóch różnych, dowolnie dobranych elementów x i y z tej klasy prawdą jest, że xry, lub że yrx. Jeśli weźmiemy jako przykład dla rozważań klasę złożoną z kilkudziesięciu osób, wśród których nie ma osób urodzonych tego samego dnia, to w tej klasie osób stosunek starszeństwa będzie stosunkiem spójnym; jakiekolwiek bowiem weźmiemy dwie osoby z tej klasy, zawsze znajdziemy, że pierwsza jest starsza od drugiej, albo że druga jest starsza od pierwszej. Jeśli dobrano kompanię żołnierzy równego wzrostu, to stosunek równości wzrostem będzie stosunkiem spójnym w klasie tych żołnierzy, każdy z nich bowiem będzie równy wzrostem dowolnemu innemu. Dlatego właśnie taki stosunek nazywa się spójnym, że w pewnej klasie spaja on, wiąże w jedną lub drugą stronę, każdy element tej klasy z każdym innym elementem. Wystarczy jednak, że w danej klasie jakiś element nie jest związany rozważanym stosunkiem z pewnym innym 4
5 elementem tej klasy, by już stosunek ten nie był spójny w danej klasie. Wystarczy, że w pewnym kręgu osób wzajemnie względem siebie życzliwych znajdziemy taką parę osób, z których ani pierwsza nie jest życzliwa drugiej, ani też druga pierwszej, by już stosunek życzliwości nie był stosunkiem spójnym w kręgu tych osób. W grupie rodzinnej (rodzice, dzieci) stosunek pokrewieństwa nie jest zazwyczaj spójny, gdyż ojciec nie jest zazwyczaj krewnym matki (nie mają wspólnych przodków), a więc nie każde dwa elementy rozważanej klasy osób są związane pokrewieństwem. Stosunkiem porządkującym w danej klasie przedmiotów nazywamy taki stosunek, który pozwala ustawić (przynajmniej w myśli) wszystkie przedmioty należące do danej klasy w jeden szereg, w którym każdy przedmiot będzie zajmować określone, to, a nie inne, miejsce. Aby jakiś stosunek był stosunkiem porządkującym w pewnej klasie przedmiotów, musi on być zarazem: l) stosunkiem asymetrycznym, 2) stosunkiem przechodnim i 3) stosunkiem spójnym w danej klasie przedmiotów. Jeśli więc stosunek wyższości wzrostem jest spójny w kompanii żołnierzy, tzn. Jeśli nie ma w tej kompanii dwóch ludzi tego samego wzrostu, i jeśli zważyć, że jest to stosunek przechodni (jeśli A jest wyższy od B i B jest wyższy od C, to A jest wyższy od C), a przy tym asymetryczny (jeśli A jest wyższy od B, to nieprawda, że B jest wyższy od A), to możemy ustawić żołnierzy z tej kompanii w jeden szereg, w którym każdy będzie miał określone, to, a nie inne, miejsce wedle stosunku wyższości wzrostem. 5
Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.
Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,
Bardziej szczegółowoRACHUNEK ZBIORÓW 5 RELACJE
RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o
Bardziej szczegółowoIVa. Relacje - abstrakcyjne własności
IVa. Relacje - abstrakcyjne własności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny wiva. Krakowie) Relacje - abstrakcyjne własności 1 / 22 1 Zwrotność
Bardziej szczegółowoWstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Bardziej szczegółowoLOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Bardziej szczegółowodomykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bardziej szczegółowoRozdział 7 Relacje równoważności
Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony
Bardziej szczegółowoPrzykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Bardziej szczegółowoLogika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
Bardziej szczegółowoRelacje. Relacje / strona 1 z 18
Relacje Relacje / strona 1 z 18 Relacje (para uporządkowana, iloczyn kartezjański) Definicja R.1. Parą uporządkowaną (x,y) nazywamy zbiór {{x},{x,y}}. Uwaga: (Ala, Ola) (Ola, Ala) Definicja R.2. (n-tka
Bardziej szczegółowoLogika. Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie.
Logika Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie. i) Wprowadźmy oznaczenie F (p, q) ((p q) = ( p q)). Funkcja zdaniowa F nie
Bardziej szczegółowo1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:
1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów
Bardziej szczegółowoKonspekt do wykładu z Logiki I
Andrzej Pietruszczak Konspekt do wykładu z Logiki I (z dnia 24.11.2006) Poprawność rozumowania. Wynikanie Na wykładzie, na którym omawialiśmy przedmiot logiki, powiedzieliśmy, że pojęcie logiki wiąże się
Bardziej szczegółowoLogika dla archeologów Część 5: Zaprzeczenie i negacja
Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoTautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
Bardziej szczegółowoRELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
Bardziej szczegółowoZbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Bardziej szczegółowoElementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Bardziej szczegółowoInternet Semantyczny. Wstęp do OWL 2
Internet Semantyczny Wstęp do OWL 2 RDFS Podstawowymi elementami które określamy w RDFS są klasy (ang. class) zasobów i właściwości (ang. property) zasobów charakterystyczne dla interesującego nas fragmentu
Bardziej szczegółowoLogika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
Bardziej szczegółowoWstęp do logiki. Semiotyka cd.
Wstęp do logiki Semiotyka cd. Gramatyka kategorialna jest teorią formy logicznej wyrażeń. Wyznacza ją zadanie sporządzenia teoretycznego opisu związków logicznych takich jak wynikanie, równoważność, wzajemna
Bardziej szczegółowoPodstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
Bardziej szczegółowoRachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Bardziej szczegółowoNp. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Bardziej szczegółowoDrzewa Semantyczne w KRZ
Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00
Bardziej szczegółowoElementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Bardziej szczegółowoLogika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM
Logika Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Logika Matematyczna Własności relacji 1 / 46 Wprowadzenie
Bardziej szczegółowoPodstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7
Bardziej szczegółowoPodstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Bardziej szczegółowoI. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Bardziej szczegółowoPostępowanie kwalifikacyjne w służbie cywilnej
Postępowanie kwalifikacyjne w służbie cywilnej 9. Wskaż wniosek wynikający z przesłanek: żaden gubernator stanu nie jest urzędnikiem federalnym, żaden urzędnik federalny nie jest urzędnikiem stanowym.
Bardziej szczegółowoElementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Bardziej szczegółowoLOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Bardziej szczegółowo5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
Bardziej szczegółowo23. PODSTAWY SYMBOLIZACJI W LOGICE RELACJI
23. PODSTAWY SYMBOLIZACJI W LOGICE RELACJI Logika relacji jest pewnym poszerzeniem logiki predykatów. Również w logice relacji musimy opanować pewne podstawowe chwyty, które pozwolą nam dokonywać symbolizacji.
Bardziej szczegółowoZbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Bardziej szczegółowo0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Bardziej szczegółowoWykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje
Wykład 4 Logika dla prawników Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Nazwy Nazwą jest taka częśd zdania, która w zdaniu może pełnid funkcję podmiotu lub orzecznika. Nazwami mogą
Bardziej szczegółowoRelacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Bardziej szczegółowoParadoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania
Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl
Bardziej szczegółowoLogika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje
Bardziej szczegółowoFUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Bardziej szczegółowoPytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Bardziej szczegółowoLogarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Bardziej szczegółowoBOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoWstęp do logiki. Klasyczny Rachunek Zdań III
Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoCZYLI ABC WNIOSKOWAŃ.
CZYLI ABC WNIOSKOWAŃ Witam serdecznie na Międzynarodowej Konferencji Śledczej! W dniu dzisiejszym zajmiemy się analizą wnioskowao w kilku spektakularnych sprawach ostatnich lat. Większośd z nich ma związek
Bardziej szczegółowoWstęp do logiki. Pytania i odpowiedzi
Wstęp do logiki Pytania i odpowiedzi 1 Pojęcie pytania i odpowiedzi DEF. 1. Pytanie to wyrażenie, które wskazuje na pewien brak w wiedzy subiektywnej lub obiektywnej i wskazuje na dążenie do uzupełnienia
Bardziej szczegółowo2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoFilozofia z elementami logiki Klasyfikacja wnioskowań II część 1
Filozofia z elementami logiki Klasyfikacja wnioskowań II część 1 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan: wnioskowania uprawdopodabniające indukcja eliminacyjna 2 Plan:
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoO teorii relacji. 27 Relacje, ich dziedziny i przeciwdziedziny; relacje i funkcje zdaniowe z dwiema zmiennymi wolnymi
V O teorii relacji 27 Relacje, ich dziedziny i przeciwdziedziny; relacje i funkcje zdaniowe z dwiema zmiennymi wolnymi Już w poprzednich rozdziałach była mowa o kilku relacjach między przedmiotami. Przykładami
Bardziej szczegółowoFunkcja wykładnicza kilka dopowiedzeń
Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja
Bardziej szczegółowo1 Ojcostwo na co dzień. Czyli czego dziecko potrzebuje od ojca Krzysztof Pilch
1 2 Spis treści Wstęp......6 Rozdział I: Co wpływa na to, jakim jesteś ojcem?...... 8 Twoje korzenie......8 Stereotypy.... 10 1. Dziecku do prawidłowego rozwoju wystarczy matka.... 11 2. Wychowanie to
Bardziej szczegółowoZiemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Bardziej szczegółowoKultura logiczna Wnioskowania dedukcyjne
Kultura logiczna Wnioskowania dedukcyjne Bartosz Gostkowski bgostkowski@gmail.com Kraków 25 IV 2010 Plan wykładu: Intuicje dotyczące poprawności wnioskowania Wnioskowanie dedukcyjne Reguły niezawodne a
Bardziej szczegółowoPiotr Łukowski, Wykład dla studentów prawa WYKŁAD 9. klasyczny rachunek nazw relacje
WYKŁAD 9 klasyczny rachunek nazw relacje 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok.13 tel. 635-61-34 dyŝur:
Bardziej szczegółowoTeoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument
Bardziej szczegółowoLogika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Bardziej szczegółowomgr Anna Dziuba Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa mgr Anna Dziuba
Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa POJĘCIE NAZWY NAZWĄ jest wyrażenie, które w zdaniu podmiotowo orzecznikowym nadaje się na podmiot lub orzecznik S (podmiot) jest P (orzecznik) Kasia
Bardziej szczegółowoWprowadzenie do logiki Klasyfikacja wnioskowań, cz. I
Wprowadzenie do logiki Klasyfikacja wnioskowań, cz. I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan: definicja pojęcia wnioskowania wypowiedzi inferencyjne i wypowiedzi argumentacyjne
Bardziej szczegółowoMichał Lipnicki (UAM) Logika 11 stycznia / 20
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates
Bardziej szczegółowoEgzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Bardziej szczegółowoPODSTAWY SZTUCZNEJ INTELIGENCJI
Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia
Bardziej szczegółowoWykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
Bardziej szczegółowoLista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
Bardziej szczegółowoLogika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Bardziej szczegółowoDEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
Bardziej szczegółowoZależność cech (wersja 1.01)
KRZYSZTOF SZYMANEK Zależność cech (wersja 1.01) 1. Wprowadzenie Często na podstawie wiedzy, że jakiś przedmiot posiada określoną cechę A możemy wnioskować, że z całą pewnością posiada on też pewną inną
Bardziej szczegółowoWstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Bardziej szczegółowoLogika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałPrawa, Administracji i Stosunków Miedzynarodowych Kierunek
Bardziej szczegółowoPodstawy logiki praktycznej
Podstawy logiki praktycznej Wykład 2: Język i części języka Dr Maciej Pichlak Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa maciej.pichlak@uwr.edu.pl Semiotyka Nauka o znakach język jako system
Bardziej szczegółowoMyślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
Bardziej szczegółowoZdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń).
Tautologia to schemat zdań wyłącznie prawdziwych. Kontrtautologia to schemat zdań wyłącznie fałszywych. Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych
Bardziej szczegółowoFunkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Bardziej szczegółowoAndrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
Bardziej szczegółowoIndukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Bardziej szczegółowo7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Bardziej szczegółowoSchematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Bardziej szczegółowoLista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Bardziej szczegółowoOtrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Bardziej szczegółowoWprowadzenie do logiki Pojęcie wynikania
Wprowadzenie do logiki Pojęcie wynikania Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Gry plan: jak używamy terminu wynikanie w potocznych kontekstach? racja, następstwo i związki
Bardziej szczegółowoKURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Bardziej szczegółowoPodstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Bardziej szczegółowoFunkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Bardziej szczegółowoEGZAMIN Z ANALIZY MATEMATYCZNEJ (CZEŚĆ 1)
WROCŁAW, 12 GRUDNIA 2014 EGZAMIN Z ANALIZY MATEMATYCZNEJ (CZEŚĆ 1) ZA KAŻDE ZADANIE MOŻNA DOSTAĆ OD 0 DO 5 PUNKTÓW. PIERWSZA CZEŚĆ SKŁADA SIE Z 5 ZADAŃ TESTOWYCH I TRWA 80 MINUT OD 10:00 DO 11:20, PO NIEJ
Bardziej szczegółowoUwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
Bardziej szczegółowoPodstawy teoretyczne na egzamin z MMFiA II.
Podstawy teoretyczne na egzamin z MMFiA II. Bartłomiej Dębski 14 lutego 2010 Streszczenie Oddaję w ręce Czytelników krótki przegląd zagadnień omawianych w ramach egzaminu z MMFiA II. Znajdują się tutaj
Bardziej szczegółowoJEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz
Bardziej szczegółowoAndrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
Bardziej szczegółowoTeoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Bardziej szczegółowoJest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Bardziej szczegółowo