Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Podobne dokumenty
Opis przedmiotu: Matematyka II

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

WYDZIAŁ ***** KARTA PRZEDMIOTU

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

KARTA PRZEDMIOTU CELE PRZEDMIOTU

Matematyka Mathematics. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOG-530I Analiza matematyczna II Calculus II

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Opis efektów kształcenia dla modułu zajęć

Opis przedmiotu: Matematyka I

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej

Opis efektów kształcenia dla modułu zajęć

AiRZ-0008 Matematyka Mathematics

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Opis efektów kształcenia dla modułu zajęć

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

Z-ID-202 Analiza matematyczna II Calculus II

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Opis efektów kształcenia dla modułu zajęć

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

Analiza matematyczna

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Opis efektów kształcenia dla modułu zajęć

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

Informatycznych i Mechatronicznych w Transporcie dr hab. inż. Włodzimierz Choromański, prof. nzw.,

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

ZAKRESY NATERIAŁU Z-1:

Opis efektów kształcenia dla modułu zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Z-ID-102 Analiza matematyczna I

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)

Z-LOG Calculus II

Z-LOGN1-014 Analiza matematyczna II Mathematical Analysis II. Przedmiot podstawowy Obowiązkowy polski Semestr II

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

AiRZ-0531 Analiza matematyczna Mathematical analysis

Opis przedmiotu: Probabilistyka I

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

2. Opis zajęć dydaktycznych i pracy studenta

Z-LOG-530I Analiza matematyczna II Mathematical Analysis II

WYDZIAŁ ***** KARTA PRZEDMIOTU

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

E-N-1112-s1 MATEMATYKA Mathematics. Energetyka. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Andrzej Lenarcik

AiRZ-0531 Analiza matematyczna Mathematical analysis

SYLABUS/KARTA PRZEDMIOTU

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz

KARTA MODUŁU KSZTAŁCENIA

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.

Z-0476z Analiza matematyczna I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

KARTA MODUŁU KSZTAŁCENIA

PRZEWODNIK PO PRZEDMIOCIE

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Politechniki Warszawskiej Zakład Logistyki i Systemów Transportowych B. Ogólna charakterystyka przedmiotu

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

S Y L A B U S P R Z E D M I O T U

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15

Opis przedmiotu. Karta przedmiotu - Grafika inżynierska II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Matematyka I i II - opis przedmiotu

ANALIZA SYLABUS. A. Informacje ogólne

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Równania różniczkowe Differential Equations

PRZEWODNIK PO PRZEDMIOCIE

PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

PRZEWODNIK PO PRZEDMIOCIE

Technologia pracy stacji kolejowych Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

Transkrypt:

Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne zaoczne Kierunek studiów Transport Profil studiów Profil ogólnoakademicki Specjalność - Jednostka prowadząca Wydział Transportu Jednostka realizująca Wydział Transportu PW Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Blok przedmiotów Kierunkowe i podstawowe Grupa przedmiotów Obowiązkowe Status przedmiotu Obowiązkowy Język prowadzenia zajęć polski Semestr nominalny 2 (r.a. 2015/2016) Usytuowanie realizacji w roku akademickim semestr letni Wymagania wstępne brak Limit liczby studentów wykład: brak, ćwiczenia: 30 osób C. Efekty kształcenia i sposób prowadzenia zajęć Cel przedmiotu Nabycie podstawowej wiedzy z zakresu równań różniczkowych zwyczajnych oraz analizy wielowymiarowej. Wykształcenie umiejętności rozwiązywania problemów technicznych przy zastosowaniu elementów matematyki wyższej, niezbędnych do wykształcenia każdego inżyniera. Efekty kształcenia Patrz tabela 1. Formy zajęć i ich wymiar Wykład 2 Ćwiczenia 2 Laboratorium 0 Projekt 0 Treści kształcenia Wykład: Ciągi funkcyjne, zbieżność jednostajna, kzeregi funkcyjne, kryterium zbieżności Weierstrassa, szeregi potęgowe, wyznaczanie promieni i przedziałów zbieżności szeregów potęgowych, badanie zbieżności szeregów na krańcach przedziałów zbieżności, wyznaczanie sum szeregów potęgowych z wykorzystaniem twierdzeń o całkowaniu i różniczkowaniu szeregów potęgowych (wykorzystanie szeregu geometrycznego), szereg Taylora i Maclaurina, przykłady rozwinięć funkcji w szereg Taylora i Maclaurina, równania różniczkowe pierwszego rzędu - rozwiązanie szczególne i rozwiązanie ogólne, istnienie i jednoznaczność rozwiązań równań pierwszego rzędu, równania o zmiennych rozdzielonych, równania różniczkowe sprowadzalne do równań o zmiennych rozdzielonych - równania typu y =f(ax+by+c), 1 / 5

y =f(y/x), y =f((ax+by+c)/(mx+ny+p)), równania różniczkowe liniowe, niejednorodne pierwszego rzędu, wyznaczanie całek ogólnych metodą uzmiennienia stałych, całki ogólne dla równań liniowych o stałych współczynnikach - metoda przewidywania, równanie Bernoulliego, równania różniczkowe drugiego rzędu sprowadzalne do równań pierwszego rzędu - równania typu F(x,y,y )=0 i F(y,y,y )=0, równania liniowe, niejednorodne drugiego rzędu o stałych współczynnikach - równanie charakterystyczne, równania wyższych rzędów, funkcje dwóch zmiennych - dziedzina funkcji, warstwice, pochodne cząstkowe pierwszego rzędu funkcji dwóch zmiennych i interpretacja geometryczna, pochodne cząstkowe wyższych rzędów, twierdzenie Schwarza o pochodnych mieszanych, przyrosty i różniczki funkcji dwóch zmiennych, pochodna kierunkowa i gradient funkcji dwóch zmiennych, wyznaczanie przybliżonych wartości wyrażeń, ekstrema funkcji dwóch zmiennych, warunek konieczny i wystarczający ekstremum funkcji dwóch zmiennych, pochodne cząstkowe i różniczki funkcji trzech zmiennych, funkcje uwikłane jednej zmiennej, pierwsza i druga pochodna funkcji uwikłanej, ekstremum funkcji uwikłanej, ekstrema warunkowe funkcji dwóch zmiennych, opis obszarów na płaszczyźnie we współrzędnych kartezjańskich i biegunowych, określenie całki podwójnej i jej własności, obliczanie całki podwójnej po prostokątach i obszarach normalnych przy pomocy całki iterowanej, zamiana kolejności całkowania w całce podwójnej, całka podwójna w układzie biegunowym, całka podwójna w obszarach nieograniczonych, zastosowania całki podwójnej do wyznaczania pól obszarów na płaszczyźnie, pól płatów powierzchniowych i objętości brył, zastosowania całek podwójnych w fizyce, określenie całki potrójnej i jej własności, obliczanie całek potrójnych po prostopadłościanach i w obszarach normalnych za pomocą całki iterowanej, całka potrójna w układzie walcowym i sferycznym, zastosowania geometryczne całki potrójnej - objętości brył, środki ciężkości i momenty bezwładności, całki krzywoliniowe nieskierowanej i skierowane oraz ich własności, niezależność całki krzywoliniowej skierowanej od drogi całkowania, twierdzenie Greena. Ćwiczenia: badanie zbieżności szeregów liczbowych i funkcyjnych, wyznaczanie promienia zbieżności szeregów potęgowych, rozwijanie w szereg potęgowy funkcji gładkich, obliczanie 2 / 5

przybliżonych wartości wyrażeń, znajdowanie rozwiązań ogólnych i szczególnych równań różniczkowych zwyczajnych, zastosowanie metody uzmienniania stałej i metody przewidywań do rozwiązywania liniowych równań różniczkowych, wyznaczanie ekstremów oraz wartości najmniejszej i największej w obszarze funkcji dwu zmiennych, wyznaczanie ekstremów jednowymiarowej funkcji uwikłanej, obliczanie całek podwójnych i potrójnych, zamiana całki wielokrotnej na całkę iterowaną, zastosowanie współrzędnych biegunowych, walcowych i sferycznych do obliczania całek podwójnych i potrójnych, zastosowania całek wielokrotnych do rozwiązywania problemów z zakresu geometrii i mechaniki, obliczanie całek krzywoliniowych skierowanych i niekierowanych oraz ich zastosowania, wyznaczanie całek krzywoliniowych za pomocą twierdzenia Grena, wyznaczanie pól figur płaskich przy zastosowaniu wzoru Grena. Metody oceny Wykład: egzamin pisemny, 4 zadania rachunkowe, wymagane jest poprawne rozwiązanie 2 z tych zadań; Ćwiczenia: 2 kolokwia po 4 zadania otwarte, wymagane jest uzyskanie ponad 50% punktów. Metody sprawdzania efektów kształcenia Patrz tabela 1. Egzamin Literatura tak 1) Leitner R., Zarys matematyki wyższej, część I i II, WNT, Warszawa; 2) Fichtenholz G.M., Rachunek różniczkowy i całkowy, części I, II, III, PWN, Warszawa; 3) Leitner R., Matuszewski W., Rojek Z., Zadania z matematyki wyższej, część I i II, WNT, Warszawa (podstawowy zbiór zadań); 4) Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, część I i II, PWN, Warszawa; 5) Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych, część I, PWN, Warszawa. Witryna www przedmiotu www.wt.pw.edu.pl D. Nakład pracy studenta Liczba punktów ECTS 5 Liczba godzin pracy studenta związanych z 132 godziny, w tym: praca na wykładach: 18 osiągnięciem efektów kształcenia godz., praca na ćwiczeniach: 18 godz., studiowanie literatury przedmiotu: 32 godz., samodzielne rozwiązywanie zadań: 32 godz., konsultacje: 5 godz., przygotowanie do kolokwiów: 10 godz., przygotowanie do egzaminu: 15 godz., udział w egzaminie: 2 godz. Liczba punktów ECTS na zajęciach wymagających 1,5 pkt. ECTS (43 godzin, w tym: praca na bezpośredniego udziału nauczycieli akademickich: wykładach: 18 godz., praca na ćwiczeniach: 18 godz., konsultacje: 5 godz., udział w egzaminie: 2 godz.) Liczba punktów ECTS, którą student uzyskuje w 0 3 / 5

ramach zajęć o charakterze praktycznym E. Informacje dodatkowe Uwagi Data ostatniej aktualizacji 2015-04-21 15:23:53 O ile nie powoduje to zmian w zakresie powiązań danego modułu zajęć z kierunkowymi efektami kształcenia w treściach kształcenia mogą być wprowadzane na bieżąco zmiany związane z uwzględnieniem najnowszych osiągnięć naukowych. Tabela 1. Efekty przedmiotowe Profil ogólnoakademicki - wiedza Posiada wiedzę na temat równań różniczkowych zwyczajnych W01 Posiada wiedzę na temat szeregów liczbowych W02 Posiada wiedzę na temat rachunku różnoczkowego funkcji wielu zmiennych W03 Posiada wiedzę na temat rachunku całkowego funkcji wielu zmiennych W04 Profil ogólnoakademicki - umiejętności Potrafi rozwiązać równania różniczkowe zwyczajne dowolnego rzędu U01 4 / 5

Powered by TCPDF (www.tcpdf.org) Tabela 1. Efekty przedmiotowe Potrafi zbadać zbieżność szeregu liczbowego o wyrazach dodatnich oraz szeregów naprzemiennych. Potrafi określić przedziały zbieżności dla szeregów potęgowych U02 Potrafi liczyć pochodne cząstkowe funkcji wielu zmiennych oraz zna ich zastosowania U03 Potrafi liczyć całki wielokrotne oraz zna ich zastosowania U04 5 / 5