Matematyka ubezpieczeń majątkowych 6.04.2009 r.



Podobne dokumenty
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Matematyka ubezpieczeń majątkowych r.

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

01. dla x 0; 1 2 wynosi:

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

Matematyka ubezpieczeń majątkowych r.

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Matematyka ubezpieczeń majątkowych r.

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

Matematyka ubezpieczeń majątkowych r.

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Matematyka ubezpieczeń majątkowych r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Agata Boratyńska Statystyka aktuarialna... 1

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka ubezpieczeń majątkowych r.

Prawdopodobieństwo i statystyka r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

MUMIO Lab 6 (składki, kontrakt stop-loss)

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

Prawdopodobieństwo i statystyka r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń majątkowych r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

f(x)dx gdy a, b (0, 100), f(x) = exp( 1

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

1. Ubezpieczenia życiowe

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka ubezpieczeń życiowych r.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Przegląd ważniejszych rozkładów

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

Rok akademicki: 2013/2014 Kod: AMA MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

1 Funkcja użyteczności

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Transkrypt:

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba szkód które zostaną zgłoszone w ciągu następnego roku. Oczywiście zachodzi N = M + K. Wiadomo że zmienne M oraz K są warunkowo (przy ustalonej wartości parametru ryzyka Λ ) niezależne i mają rozkłady Poissona z parametrami odpowiednio: Λq - zmienna M Λp - zmienna K gdzie p = q to liczba z przedziału ( 0 ). O parametrze ryzyka Λ wiadomo że: α α ma on rozkład Gamma o wartości oczekiwanej i wariancji β β Oczekiwana liczba szkód zaszłych w ciągu roku pod warunkiem że do końca roku zgłoszono m szkód a więc: Ε N M = m wynosi: ( ) m m α + mp + β + q αp + mp + β + q αp + mp m + β q + q α + mp m + β q + q m α + m + β + q

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Rozważamy klasyczny proces nadwyżki ubezpieczyciela z zerową nadwyżką początkową U () t = ct S N () t gdzie: ct jest sumą składek zgromadzonych do momentu t N t jest procesem Poissona z parametrem intensywności λ () n S n = Y i jest sumą wartości n pierwszych szkód i= wartości szkód Y Y3... są i.i.d niezależne od procesu N t O rozkładzie wartości pojedynczej szkody wiemy tylko tyle że: Pr( Y [ 0] ) = E( Y ) = / 0. Wiemy też że c > λ / 0 Wobec tego wartość oczekiwana deficytu w momencie ruiny (pod warunkiem że do ruiny dojdzie) może przyjmować różne wartości. Przedział który zawiera wszystkie te wartości (i nic ponadto) jest postaci: Y ( ) 30 5 0 30 0 3 3

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 3. Wiadomo że w ubezpieczeniu odpowiedzialności cywilnej właścicieli motocykli szkodowość jest sezonowa. Z doświadczeń lat ubiegłych wiemy że oczekiwana wartość szkód z rocznej polisy wystawionej na jeden motocykl rozkłada się na kwartały kalendarzowe zgodnie ze współczynnikami udziałowymi podanymi w drugiej kolumnie poniższej tabeli. W trzeciej kolumnie tabeli podane są także kwoty składki przypisanej u pewnego ubezpieczyciela w roku 008. Kwartał roku kalendarzowego udział w oczekiwanej wartości szkód w roku Składka przypisana w roku 008 Q 0% 0 tys. zł Q 5% 80 tys. zł Q3 50% 60 tys. zł Q4 5% 40 tys. zł Przy założeniach że: Wszystkie umowy są roczne Umowy ubezpieczeniowe zawarte w danym kwartale zawierane są średnio w połowie tego kwartału Ryzyko w ciągu danego kwartału rozkłada się równomiernie Kwartały są równej długości Rezerwa składki na koniec roku 007 u tego ubezpieczyciela wyniosła 80 tys. zł. Wartość składki zarobionej w roku 008 wynosi: 88 tys. zł 9 tys. zł 96 tys. zł 00 tys. zł 04 tys. zł 3

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 4. Rozważamy klasyczny proces nadwyżki ubezpieczyciela a więc proces: U t = u + + θ ) λμ t gdzie: () ( Y S N ( t) () t N jest procesem Poissona z parametrem intensywności λ n S n = Y i (lub zero jeśli i= Y Y3 n = 0 ) Y... to niezależne zmienne losowe o tym samym rozkładzie danym na α αv półosi dodatniej gęstością: f Y ( y) = o wartości oczekiwanej μ α + Y ( v + y) Wiemy że parametry procesu wynoszą: α = θ = oraz u = 4μY 5 Prawdopodobieństwo iż do ruiny dojdzie i to dojdzie w pierwszym momencie w którym nadwyżka spadła poniżej poziomu wyjściowego u a więc że: T > 0 takie że: U ( T ) < 0 oraz t ( 0T ) U ( t) u wynosi: 4 5 6 0 9 4

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 5. Liczba szkód w ciągu roku w pewnym ubezpieczeniu równa jest: N = M... + + M K gdzie: K M M... są niezależnymi zmiennymi losowymi M 3 K oznacza liczbę wypadków i ma rozkład Poissona o wartości oczekiwanej λ M M M 3... to liczby szkód z poszczególnych wypadków - mają one identyczny rozkład prawdopodobieństwa dany funkcją: k c Pr( M = k) = k = 3... z parametrem c = e ln( c) k Prawdopodobieństwo warunkowe iż w danym roku doszło do jednego wypadku pod warunkiem iż wystąpiły 4 szkody: Pr( K = N = 4) wynosi: 4 ( λ + )( λ + )( λ + 3)( λ + 4) 6 ( λ + )( λ + )( λ + 3) λ e ( λ + )( λ + ) λ 6e ( λ + )( λ + )( λ + 3) λ 4e ( λ + )( λ + )( λ + 3)( λ + 4) 5

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 6. W pewnym ubezpieczeniu liczba szkód które w ciągu t lat wygeneruje ubezpieczony charakteryzujący się wartością λ parametru ryzyka Λ ma rozkład warunkowy Poissona z wartością oczekiwaną λ t. Zakładamy że rozkład wartości parametru ryzyka Λ w populacji ubezpieczonych dany jest na półosi dodatniej gęstością: α β α f Λ ( λ) = λ exp( βλ). Γ( α) Wiemy że: prawdopodobieństwo p 0 iż losowo wybrany ubezpieczony w ciągu jednego roku nie zgłosi szkody równe jest 36/49; prawdopodobieństwo iż losowo wybrany ubezpieczony w ciągu dwóch p 00 kolejnych lat nie zgłosi szkody równe jest 9/6. Wobec tego wartości parametrów ( α β ) wynoszą: ( α β ) = ( 6) ( α β ) = ( 5) ( α β ) = ( 4) ( α β ) = ( 3) ( α β ) = ( 4) 6

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 7. N Y Y... to niezależne zmienne losowe N ma rozkład Poissona z wartością Y3 oczekiwaną równą 0 zaś Y Y Y3... mają identyczny rozkład Pareto o dystrybuancie określonej na półosi dodatniej wzorem: Niech Niech F ( y) Liczba = + y M = max{ Y Y... YN } przy czym jeśli N = 0 to przyjmujemy M = 0. oznacza taką liczbę że M m 0 = 0. m ( ) 95 0.95 m 0.95 Pr. 95 wynosi (z przybliżeniem do jednej dziesiątej): 4.0 3.0.9 0.8 9.7 7

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 8. X i X to dwa niezależne ryzyka o zbiorze możliwych wartości {0...}. Znamy wartości dystrybuant F( x) = Pr ( X x) oraz FS ( x) = Pr( X + X x) : Pr( X = ) wynosi: 0 0. 0. 0.3 0.4 x F ( x) FS ( x) 0 0.6 0.8 0.8 0.4 0.9 0.63 3 0.79 8

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 9. Niech: N oznacza liczbę roszczeń z jednego wypadku ubezpieczeniowego zaś: T T... T N oznacza czas jaki upływa od momentu zajścia wypadku do zgłoszenia roszczenia odpowiednio -go -go N-tego (numeracja roszczeń od -go do N- tego jest całkowicie przypadkowa nie wynika więc z chronologii ich zgłaszania) Załóżmy że: zmienne losowe N T T... są niezależne T3 T T3... zmienne losowe T mają identyczny rozkład wykładniczy o wartości oczekiwanej (jednostką pomiaru czasu jest miesiąc) zmienna losowa N ma rozkład logarytmiczny dany wzorem: k c Pr( N = k) = k = 3... z parametrem c ( 0). ln( c) k Niech A oznacza zdarzenie iż w ciągu pierwszych miesięcy od zajścia wypadku zgłoszono dokładnie jedno roszczenie a więc iż: dokładnie jedna liczba ze zbioru liczb { T T... T N } jest mniejsza lub równa. Wartość oczekiwana liczby roszczeń z tego wypadku a więc: Ε ( N A) wynosi: c e c e c ec e e + c c e e c e c c 9

Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie 0. W pewnym ubezpieczeniu mamy do czynienia z ciągłym liniowym wzrostem liczby ryzyk w portfelu co wyraża założenie iż zmienna T ( 0) wyrażająca moment zajścia losowo wybranej szkody z tego portfela w ciągu roku (o ile oczywiście do szkody dojdzie) ma rozkład dany gęstością: f 8 4 () t = + t. T 0 0 Niech D oznacza czas likwidacji szkody (odstęp w czasie od momentu zajścia szkody do jej likwidacji wyrażony w latach). Zmienna ta ma rozkład jednostajny na odcinku ( 0 ). Zakładamy że zmienne losowe T oraz D są niezależne. Oczekiwany czas likwidacji dla szkody do której doszło w ciągu roku i która pozostaje nie-zlikwidowana na koniec tego roku a więc: wynosi: Ε ( D T + D > ) 9/3 roku 9/6 roku 5/8 roku /3 roku TAK 3/4 roku 0

Matematyka ubezpieczeń majątkowych 6.04.009 r. Egzamin dla Aktuariuszy z 6 kwietnia 009 r. Matematyka ubezpieczeń majątkowych Arkusz odpowiedzi * Imię i nazwisko :... K L U C Z O D P O W I E D Z I... Pesel... Zadanie nr Odpowiedź Punktacja B C 3 A 4 C 5 B 6 A 7 B 8 C 9 D 0 D * Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełnia Komisja Egzaminacyjna.