WYKŁAD 3: METODA AKSJOMATYCZNA

Podobne dokumenty
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

III rok kognitywistyki UAM,

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

WYKŁAD 7: DEDUKCJA NATURALNA

Dowody założeniowe w KRZ

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metoda aksjomatyczna

WYKŁAD 2: PRELIMINARIA LOGICZNE

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Paradygmaty dowodzenia

III rok kognitywistyki UAM,

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Logika Matematyczna (10)

Logika Matematyczna (5-7)

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

LOGIKA Dedukcja Naturalna

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Definicja: alfabetem. słowem długością słowa

Logika Matematyczna (1)

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Logika Matematyczna (2,3)

Wstęp do logiki. Klasyczny Rachunek Zdań III

Drzewa Semantyczne w KRZ

Logika Matematyczna (1)

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Konsekwencja logiczna

Logika Radosna 2. Jerzy Pogonowski. KRZ: dowody założeniowe. Zakład Logiki Stosowanej UAM

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Imię i nazwisko:... OBROŃCY PRAWDY

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Zasady krytycznego myślenia (1)

Struktury formalne, czyli elementy Teorii Modeli

Logika Matematyczna (I JiIN UAM)

Wstęp do logiki. Klasyczny Rachunek Zdań II

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Podstawy Sztucznej Inteligencji (PSZT)

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Logika intuicjonistyczna

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Elementy logiki i teorii mnogości

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Schematy Piramid Logicznych

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

ZALICZENIE WYKŁADU: 30.I.2019

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

III rok kognitywistyki UAM,

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

Podstawowe Pojęcia. Semantyczne KRZ

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Lekcja 3: Elementy logiki - Rachunek zdań

System hilbertowski. Plan wykładu. hilbertowskiego. Definicja systemu hilbertowskiego. Podstawowe twierdzenie systemu. Podstawowe twierdzenie systemu

Logika Matematyczna 11 12

Logika Matematyczna 11 12

RACHUNEK PREDYKATÓW 7

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Rachunek logiczny. 1. Język rachunku logicznego.

PRZEWODNIK PO PRZEDMIOCIE

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Rekurencyjna przeliczalność

Zagadnienia podstawowe dotyczące metod formalnych w informatyce

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Adam Meissner.

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Programowanie deklaratywne i logika obliczeniowa

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Matematyka ETId Elementy logiki

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Informacje ogólne. Językoznawstwo i nauka o informacji

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

Transkrypt:

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń. 2. Udowodnimy twierdzenie o dedukcji (KRZ). 3. Udowodnimy twierdzenia o trafności oraz pełności metody aksjomatycznej (KRZ). Dla tęskniących za logiką pierwszego rzędu: chińskie przysłowie mówi, że cierpliwy dostaje wszystko na czas. 1 Metoda aksjomatyczna w KRZ 1.1 Uwagi historyczne Metoda aksjomatyczna w matematyce znana jest od czasów Elementów Euklidesa, gdzie była metodą uzyskiwania twierdzeń geometrii. Od XIX wieku metoda aksjomatyczna zaczyna być stosowana we wszystkich działach matematyki. W logice matematycznej najwcześniej stosowaną metodą dowodową była metoda aksjomatyczna. Stosunkowo wcześnie rozwijana były też takie metody, jak dedukcja naturalna oraz rachunki sekwentów. Do najbardziej popularnych metod dowodowych dołączyły: metoda rezolucji oraz metoda tablic analitycznych. Zaletą metody aksjomatycznej jest łatwość dowodów twierdzeń metalogicznych. Natomiast z praktycznego (ludzkiego oraz maszynowego) punktu widzenia metoda aksjomatyczna ustępuje innym metodom, takim jak dedukcja naturalna, rezolucja, rachunki sekwentów. Metody dowodowe rozwijane współcześnie mają wiele wspólnego z zagadnieniem automatyzacji rozumowań. Trwają intensywne badania nad możliwościami powierzenia programom komputerowym zadania przeprowadzania dowodów. Zadania te podlegają pewnym ograniczeniom, o czym powiemy więcej nieco później. Kilka faktów historycznych związanych z metodą aksjomatyczną: 1

1. Gottlob Frege: Begriffsschrift (1879) 2. Alfred N. Whitehead, Bertrand Russell: Principia Mathematica (1910 1913) 3. David Hilbert, Wilhelm Ackermann: Grundzüge der Theoretischen Logik (1928) 4. David Hilbert, Paul Bernays: Grundlagen der Mathematik (1934, 1939) 5. David Hilbert: Grundlagen der Geometrie (1899) 6. Polscy logicy (Stanisław Leśniewski, Adolf Lindenbaum, Jan Łukasiewicz, Alfred Tarski) 1.2 Metoda aksjomatyczna: pojęcie dowodu Przypomnimy, jak wygląda stosowanie metody aksjomatycznej w dowodzeniu twierdzeń logicznych. 1. W ustalonym języku wybieramy: (a) zestaw aksjomatów (przyjmowanych bez dowodu) (b) zestaw (pierwotnych) reguł wnioskowania. 2. Oba te zbiory muszą być podane w sposób efektywny. ϕ ϕ[p i /ψ] Dowodem w systemie aksjomatycznym A jest dowolny skończony ciąg formuł (ψ 1, ψ 2,..., ψ n ) taki, że każda formuła ψ i jest bądź aksjomatem, bądź wnioskiem reguły wnioskowania o przesłankach występujących wcześniej w tym ciągu. Wyprowadzeniem ze zbioru formuł S w systemie aksjomatycznym A jest dowolny skończony ciąg formuł (ψ 1, ψ 2,..., ψ n ) taki, że każda formuła ψ i jest bądź aksjomatem, bądź elementem zbioru S, bądź wnioskiem reguły wnioskowania o przesłankach występujących wcześniej w tym ciągu. Tezą systemu aksjomatycznego A jest każda formuła ψ, która jest ostatnim elementem jakiegoś dowodu. Piszemy wtedy: A ψ. Formuła ψ jest A-konsekwencją zbioru formuł S, gdy ψ jest ostatnim elementem jakiegoś wyprowadzenia z S. Piszemy wtedy: S A ψ. Za aksjomaty przyjmujemy formuły bądź schematy formuł. W pierwszym przypadku wśród reguł wnioskowania uwzględniamy regułę podstawiania RP: (formuły ψ za zmienną p i w formule ϕ). W razie potrzeby, korzysta się z reguły zastępowania definicyjnego. Aksjomaty charakteryzują znaczenie stałych logicznych. Wzbogacamy środki inferencyjne systemu poprzez pokazanie, że pewne reguły są w nim wyprowadzalne (wtórne). 2

1.3 Dla uciechy Kurs Logika I wykorzystywał zapewne aksjomatykę KRZ następującego rodzaju (aksjomatyka w stylu Hilberta-Bernaysa): Reguły wnioskowania: 1. MP ϕ ϕ ψ ψ, reguła odrywania, modus ponens 2. RP Aksjomaty: ϕ ϕ[p i /ψ], reguła podstawiania. 1. p 1 (p 2 p 1 ) 2. (p 1 (p 2 p 3 )) ((p 1 p 2 ) (p 1 p 3 )) 3. (p 1 p 2 ) ( p 2 p 1 ) 4. p 1 p 1 5. p 1 p 1 6. (p 1 p 2 ) p 1 7. (p 1 p 2 ) p 2 8. (p 1 p 2 ) ((p 1 p 3 ) (p 1 (p 2 p 3 ))) 9. p 1 (p 1 p 2 ) 10. p 2 (p 1 p 2 ) 11. (p 1 p 2 ) ((p 3 p 2 ) ((p 1 p 3 ) p 2 )) 12. (p 1 p 2 ) (p 1 p 2 ) 13. (p 1 p 2 ) (p 2 p 1 ) 14. (p 1 p 2 ) ((p 2 p 1 ) (p 1 p 2 )) Znanych jest bardzo wiele aksjomatyk dla klasycznego rachunku zdań. Przytoczymy jedynie dwa przykłady. Aksjomatyka Jana Łukasiewicza (implikacyjno-negacyjna) 1. (ϕ ψ) ((ψ χ) (ϕ χ)) 3

2. ( ϕ ϕ) ϕ 3. ϕ ( ϕ ψ) Reguła wnioskowania MP: ϕ ϕ ψ ψ Aksjomatyka Adama Wiegnera (pierwotne: oraz ) 1. p (p p) 2. (p q) p 3. (p q) (q p) 4. (p q) ((q r) (p r)) Reguły wnioskowania: MP, RP, zastępowanie definicyjne 2 Aksjomatyka KRZ w Fitting 1990 W zalecanej dla tego kursu monografii Fitting 1990 proponuje się aksjomatykę KRZ, wykorzystującą notację Smullyana. 2.1 Aksjomaty Schematy aksjomatów: 1. ϕ (ψ ϕ) 2. (ϕ (ψ χ)) ((ϕ ψ) (ϕ χ)) 3. ϕ 4. ϕ 5. ϕ ϕ 6. ϕ ( ϕ ψ) 7. α α 1 8. α α 2 9. (β 1 ϕ) ((β 2 ϕ) (β ϕ)) Reguła wnioskowania: ϕ ϕ ψ ψ (modus ponens, reguła odrywania, MP) 4

2.2 Przykład dowodu Prawo tożsamości: p p 1. (p ((p p) p)) ((p (p p)) (p p)) Ax.2 2. p ((p p) p) Ax.1 3. (p (p p)) (p p) MP: 1,2 4. p (p p) Ax. 1 5. p p MP: 3,4 Słuchacze mogą spróbować przedstawić ten dowód w postaci drzewa (zob. pierwszy wykład). 1. W dowodzie korzystano tylko z dwóch pierwszych aksjomatów. 2. Tak samo dowodzimy schematu prawa tożsamości: ψ ψ. 3. Ten prosty dowód ukazuje dwie trudności metody aksjomatycznej: (a) Jak zacząć dowód aksjomatyczny? (b) W dowodzie występują formuły bardziej złożone od dowodzonej tezy. Rozważmy jeszcze jeden przykład: ( ϕ ϕ) ϕ (consequentia mirabilis, prawo Claviusa). 1. Za β-formułę w schemacie aksjomatów 9 weźmy formułę: ϕ ϕ. 2. Wtedy β 1 jest formułą ϕ, a β 2 formułą ϕ. Otrzymujemy więc: 3. ( ϕ ϕ) ((ϕ ϕ) (( ϕ ϕ) ϕ)). 4. ϕ ϕ podpada pod schemat aksjomatów 5. 5. ϕ ϕ jest tezą (jak już pokazaliśmy), czyli dołączyć można w tym miejscu kroki dowodu ϕ ϕ. 6. Dwukrotne zastosowanie reguły odrywania daje ( ϕ ϕ) ϕ. Oczywiście powyższą argumentację można przekształcić do postaci formalnego dowodu. 5

3 Twierdzenie o dedukcji Budowanie dowodów aksjomatycznych ułatwia następujący fakt, dotyczący metody aksjomatycznej. 3.1 Twierdzenie Oznaczenia: niech ph będzie relacją konsekwencji wyznaczoną przez podany wyżej zestaw aksjomatów i regułę odrywania. TWIERDZENIE O DEDUKCJI. S {ϕ} ph ψ wtedy i tylko wtedy, gdy S ph (ϕ ψ). UWAGI. 1. Implikacja odwrotna wynika z monotoniczności ph (Fitting pisze: jest trywialna). 2. W dowodzie implikacji prostej wykorzystamy pierwsze dwa aksjomaty systemu (oraz regułę odrywania). 3. Twierdzenie o dedukcji udowodnili (niezależnie od siebie) Herbrand i Tarski. 3.2 Dowód twierdzenia o dedukcji 1. Załóżmy, że S {ϕ} ph ψ. 2. Niech χ 1, χ 2,..., χ n będzie wyprowadzeniem ψ z S {ϕ}. 3. Wtedy χ n jest identyczna z ψ. 4. Każdy element ciągu (χ 1, χ 2,..., χ n ) jest bądź aksjomatem, bądź elementem S, bądź wnioskiem reguły odrywania o przesłankach będących wcześniejszymi elementami tego ciągu. 5. Tworzymy ciąg formuł ( ): (ϕ χ 1, ϕ χ 2,..., ϕ χ n ). 6. Ostatnim jego elementem jest zatem ϕ ψ. 7. Ciąg ten nie musi być wyprowadzeniem, ale: 8. Rozszerzymy ten ciąg do ciągu, który będzie wyprowadzeniem ϕ ψ z S, co zakończy dowód twierdzenia o dedukcji. (a) χ i jest aksjomatem lub elementem S. Wtedy przed formułą ϕ χ i wstawiamy do ciągu ( ) formuły: χ i oraz χ i (ϕ χ i ). 6

(b) χ i jest formułą ϕ. Wtedy przed formułą ϕ χ i wstawiamy do ciągu ( ) formuły tworzące dowód formuły ϕ ϕ. (c) χ i jest wnioskiem reguły odrywania o przesłankach będących wcześniejszymi elementami tego ciągu, czyli istnieją χ j, χ k takie, że j, k < i oraz χ k jest formułą χ j χ i (czyli ϕ χ k jest formułą ϕ (χ j χ i )). Wtedy przed formułą ϕ χ i wstawiamy do ciągu ( ) formuły: (ϕ (χ j χ i )) ((ϕ χ j ) (ϕ χ i )) (aksjomat) oraz (ϕ χ j ) (ϕ χ i ). Widać, że wtedy ϕ χ i jest wnioskiem reguły odrywania o przesłankach występujących wcześniej w tak rozszerzonym ciągu. 3.3 Wykorzystanie twierdzenia o dedukcji Zauważmy, że dowód twierdzenia o dedukcji był konstruktywny: podano przepis, jak wyprowadzenie ψ z {ϕ} przekształcić na dowód ϕ ψ. Korzystanie z twierdzenia o dedukcji bardzo ułatwia dowodzenie w systemach aksjomatycznych. Wykorzystując twierdzenie o dedukcji, można np. pokazać (konwersatorium), że: 1. ph (ϕ (ψ χ)) (ψ (ϕ χ)) prawo komutacji 2. ph (ϕ (ψ χ)) ((ϕ ψ) χ) prawo importacji 3. ph (ϕ ψ) ((ψ χ) (ϕ χ)) sylogizm hipotetyczny 3.4 Oktawa twierdzeń o dedukcji Studenci poznali wcześniej następujące twierdzenia o dedukcji w KRZ ( = krz to relacja wynikania logicznego w KRZ, krz to konsekwencja aksjomatyczna w KRZ, której używano): 1. Semantyczne twierdzenie o dedukcji wprost: S {ϕ} = krz ψ wtedy i tylko wtedy, gdy S = krz (ϕ ψ). 2. Syntaktyczne twierdzenie o dedukcji wprost: S {ϕ} krz ψ wtedy i tylko wtedy, gdy S krz (ϕ ψ). 3. Semantyczne twierdzenie o dedukcji nie wprost: S { ϕ} = krz wtedy i tylko wtedy, gdy S = krz ϕ. 4. Syntaktyczne twierdzenie o dedukcji nie wprost: S krz ϕ wtedy i tylko wtedy, gdy S {ϕ} krz. 7

Powyżej udowodniliśmy drugie z nich dla krz = ph. W przypadku klasycznego rachunku predykatów KRP potrzebne jest dodatkowe założenie (że ϕ jest zdaniem) w syntaktycznych twierdzeniach o dedukcji. 4 Trafność metody aksjomatycznej TWIERDZENIE O TRAFNOŚCI. Jeśli S ph ϕ, to S = krz ϕ. 1. Każdy aksjomat jest tautologią KRZ. Ćwiczenie: sprawdź. 2. Jeśli ϕ oraz ϕ ψ są tautologiami KRZ, to ψ jest tautologią KRZ. Ćwiczenie: sprawdź. Pamiętasz semantyczne twierdzenie o odrywaniu w KRZ? 3. Tak więc, każdy wiersz (w szczególności: ostatni wiersz) dowolnego dowodu jest tautologią w KRZ. 4. A zatem, jeśli ϕ jest tezą rozważanego sytemu, to jest tautologią KRZ. 5. Fitting pisze (Fitting 1990, 74): This argument extends easily to derivations as well; we do not give details, co przetłumaczymy tak: Przez indukcję po długości wyprowadzenia ϕ z S łatwo pokazać, że każdy jego krok wynika logicznie z S. 5 Pełność metody aksjomatycznej TWIERDZENIE O PEŁNOŚCI. Jeśli S = krz ϕ, to S ph ϕ. W dowodzie wykorzystamy: pewną zdaniową własność niesprzeczności oraz Twierdzenie o Istnieniu Modelu. Niech ϕ będzie dowolną formułą. Zbiór S nazwiemy Hilbertowsko ϕ-sprzecznym, gdy S ph ϕ. Zbiory, które nie są Hilbertowsko ϕ-sprzeczne nazywamy Hilbertowsko ϕ-niesprzecznymi. LEMAT. Dla dowolnej formuły ϕ, rodzina wszystkich zbiorów Hilbertowsko ϕ- niesprzecznych jest zdaniowa własnościa niesprzeczności. DOWÓD. Niech S będzie zbiorem Hilbertowsko ϕ-niesprzecznym. Oznacza to, że nie zachodzi S ph ϕ. Trzeba pokazać, że S spełnia wszystkie warunki nakładane na elementy zdaniowej własności niesprzeczności. Proponujemy dowód nie wprost (dla każdego warunku): 1. Gdyby S, to mielibyśmy S ph. Aksjomatem jest ϕ, a zatem mielibyśmy S ph ϕ, w sprzeczności z założeniem o Hilbertowskiej ϕ- niesprzeczności S. Tak więc, / S. 8

2. Gdyby S, to mielibyśmy S ph. Pod schemat aksjomatu 4 podpada, a zatem S ph. Pod schemat aksjomatu 6 podpada ( ϕ), a zatem S ph ϕ, w sprzeczności z założeniem o Hilbertowskiej ϕ-niesprzeczności S. Tak więc, / S. 3. Przypuśćmy, że S {ψ} jest Hilbertowsko ϕ-sprzeczny, czyli S {ψ} ph ϕ. Pokażemy, że wtedy S { ψ} jest Hilbertowsko ϕ-sprzeczny. Aksjomat 5 daje: ψ ψ, a twierdzenie o dedukcji i poczynione przypuszczenie dają: S ph (ψ ϕ). Na mocy prawa sylogizmu hipotetycznego: S ph ( ψ ϕ). Na mocy twierdzenia o dedukcji: S { ψ} ph ϕ, czyli S { ψ} jest Hilbertowsko ϕ-sprzeczny. 4. Przypuśćmy, że S {α 1, α 2 } jest Hilbertowsko ϕ-sprzeczny, czyli: S {α 1, α 2 } ph ϕ. Pokażemy, że wtedy S {α} jest Hilbertowsko ϕ-sprzeczny, czyli że: S {α} ph ϕ. 5. Skoro S {α 1, α 2 } ph ϕ, to (twierdzenie o dedukcji!): S {α 1 } ph (α 2 ϕ) oraz S ph (α 1 (α 2 ϕ)). 6. Na mocy prawa importacji (zob. ćwiczenie) oraz MP, (α 1 (α 2 ϕ)) ((α 1 α 2 ) ϕ) mamy S ph ((α 1 α 2 ) ϕ) 7. Na mocy aksjomatów α α 1 oraz α α 2, prawa mnożenia następników (α α 1 ) ((α α 2 ) (α (α 1 α 2 ))) oraz MP mamy S ph (α (α 1 α 2 )) 8. Na mocy prawa sylogizmu hipotetycznego: S ph (α ϕ). 9. Twierdzenie o dedukcji daje: S {α} ph ϕ. 10. Przypuśćmy, że S {β 1 } oraz S {β 2 } są Hilbertowsko ϕ-sprzeczne. Oznacza to, że: S {β 1 } ph ϕ oraz S {β 2 } ph ϕ. Pokażemy, że wtedy S {β} jest Hilbertowsko ϕ-sprzeczny. 11. Skoro S {β 1 } ph ϕ, to (twierdzenie o dedukcji!) S ph (β 1 ϕ). 12. Skoro S {β 2 } ph ϕ, to (twierdzenie o dedukcji!) S ph (β 2 ϕ). 13. Przypomnijmy schemat aksjomatów 9: (β 1 ϕ) ((β 2 ϕ) (β ϕ)) 14. Dwukrotne zastosowanie reguły odrywania daje: S ph (β ϕ). 9

15. Na mocy twierdzenia o dedukcji: S {β} ph ϕ, czyli S {β} jest Hilbertowsko ϕ-sprzeczny. To kończy dowód lematu. Dowód twierdzenia o pełności: 1. Załóżmy, że S = krz ϕ i przypuśćmy (dla dowodu nie wprost), że nie zachodzi S ph ϕ. 2. Oznacza to, że S jest Hilbertowsko ϕ-niesprzeczny. 3. Wynika z tego, że także S { ϕ} jest Hilbertowsko ϕ-niesprzeczny. Gdyby bowiem tak nie było, to mielibyśmy S { ϕ} ph ϕ, a zatem także (twierdzenie o dedukcji!) S ph ( ϕ ϕ). Ponieważ (jak wcześniej pokazano) tezą jest ( ϕ ϕ) ϕ, to wynikałoby z tego, że S ph ϕ, co przeczy Hilbertowskiej ϕ-niesprzeczności S. 4. Na mocy udowodnionego przed chwilą lematu oraz Twierdzenia o Istnieniu Modelu S { ϕ} jest spełnialny. 5. W konsekwencji, nie zachodzi S = krz ϕ, co kończy dowód twierdzenia o pełności. JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl 10