Niezawodność i diagnostyka projekt Jacek Jarnicki
Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór tematów, organizacja zajęć 5. Wymagania szczegółowe
Cel zajęć projektowych 1. Poznanie metod komputerowego modelowania losowości i napisanie oprogramowania umożliwiającego symulację pracy wybranych systemów naprawialnych (środowisko Matlab). 2. Opracowanie prostego oprogramowania, umożliwiającego statystyczną analizę danych o niezawodności, uzyskanych z badania symulacyjnego wykonanego przy pomocy symulatora opracowanego w punkcie 1 (proponowane środowisko - Matlab lub SAS).
Etapy realizacji projektu 1. Zbudowanie modelu symulacyjnego i symulatora zadanego systemu zawierającego losowość, 2. Wykonanie eksperymentu symulacyjnego i rejestracja jego wyników, 3. Statystyczna analiza wyników eksperymentu, 4. Opracowanie wniosków i sprawozdania końcowego.
Model systemu - przykład Element naprawialny: Dane rozkład czasu sprawności i rozkład czasu naprawy Rozkłady wykładnicze, T spr = 1000, T napr = 100 1.2 Realizacja procesu zmian stanu elementu naprawialnego 1 0.8 stan 0.6 0.4 0.2 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 czas
Model systemu przykład symulatora function [s] = element_napr(lambda, mi, t) czas = 0.0; % inicjalizacja zmiennej bieżącego czasu stan= 0; % inicjalizacja stanu początkowego (element sprawny) while czas < t s= stan; % stan aktualny if stan == 0 % element sprawny - wystąpi uszkodzenie czas = czas + exprnd(lambda); % losowanie chwili uszkodzenia stan = 1; % zmiana stanu na 1 (element uszkodzony) else czas = czas + exprnd(mi); % losowanie chwili zakończenia naprawy stan = 0; end end
Eksperyment symulacyjny Realizacja procesu zmian stanu elementu naprawialnego 1 stan 0.5 0 0 1 2 3 4 5 6 7 8 9 10 czas x 10 4 Realizacja procesu zmian stanu elementu naprawialnego 1 stan 0.5 0 0 2 4 6 8 10 czas x 10 4
Analiza wyników eksperymentu W etapie tym należy wyznaczyć, na podstawie danych z eksperymentu symulacyjnego, dwie grupy charakterystyk opisujących system, dla przykładu: 1. Charakterystyki punktowe (np. gotowość systemu w ciągu roku, spodziewany roczny koszt napraw i przestojów); 2. Poziom ryzyka przekroczenia przez zadaną charakterystykę systemu założonej wartości krytycznej, np. ryzyko (czyli prawdopodobieństwo) uzyskania gotowości rocznej poniżej 95%, lub ryzyko zaistnienia przerw w pracy systemu dłuższych niż 12 godzin.
Analiza wyników eksperymentu Analizę (szczególnie drugą część) należy przeprowadzić z wykorzystaniem systemu Matlab lub SAS. Należy estymować rozkład obserwowanej charakterystyki systemu (na podstawie danych z eksperymentu symulacyjnego), a następnie odczytać z wykresu rozkładu interesujące miary ryzyka. Rozkłady obserwowanych parametrów badanego systemu, należy wyznaczyć poprzez: Wstępne określenie typu estymowanego rozkładu na przykład na podstawie analizy histogramu, Estymację parametrów rozkładu np. metodą największej wiarogodności, Weryfikację hipotezy o typie rozkładu przy pomocy testu statystycznego np. testu lambda Smirnowa-Kołmogorowa,
Analiza wyników eksperymentu Przebieg takiej analizy może być następujący. Dla badanej zmiennej losowej (tzn. wartości obserwowanego parametru uzyskanych z eksperymentu symulacyjnego) należy wyznaczyć: Statystyki punktowe (średnia (+ przedział ufności dla średniej), wariancja, min, max, rozrzut), Histogram i dystrybuantę empiryczną, Znaleźć rozkład (na przykład spośród następujących: wykładniczy, gamma, logarytmonormalny, normalny, i Weibulla), który najlepiej przybliża obserwowaną dystrybuantę empiryczną.
Narzędzia do wykorzystania System Matlab System SAS wer. 9.1, (moduły Base SAS, SAS/QC, SAS/STAT) Oprogramowanie jest zainstalowane w laboratorium 229/C3, lub dostępne w wersji instalacyjnej dla studentów do użytku w domu (niestety wyłącznie SAS).
Tematy zadań projektowych 1. System szeregowo-równoległy o n elementach i k konserwatorach 2. System progowy (k z n) z m konserwatorami 3. System szeregowy n elementach i k konserwatorach z wymianami profilaktycznymi 4. System kas sklepowych 5. System szeregowy z magazynem części zapasowych 6. Model dla optymalizacji działania sklepu internetowego 7. Prosty model systemu ubezpieczeniowego
Podział na grupy, organizacja zajęć 1. Grupy trzyosobowe 2. Tematy nie mogą się powtarzać 3. Konsultacje dla grupy co 2 tygodnie (obecność obowiązkowa) 4. Projekt kończy się sprawozdaniem pisemnym i prezentacją wyników pracy 5. Ostateczny termin oddania projektu 22 tydzień roku (26.05-30.05) 6. Oddanie projektu dokumentacja projektu + prezentacja wyników
Dokumentacja projektu Dokumentacja projektu powinna zawierać: 1. Stronę tytułową z nazwiskami autorów pracy 2. Spis treści 3. Cel i założenia projektu 4. Zwięzły opis każdego etapu projektu 5. Przykładowe wyniki eksperymentu 6. Analizę wyników 7. Uwagi i wnioski dotyczące realizacji projektu 8. Źródła opracowanych w projekcie programów ( na płycie CD).
Prezentacja wyników Proponowany układ prezentacji wyników projektu: 1. Stronę tytułowa z nazwiskami autorów 2. Spis treści prezentacji 3. Omówienie modelu matematycznego analizowanego systemu 4. Charakterystyka zadania analitycznego 5. Omówienie symulacji i analiza osiągniętych wyników. 6. Charakterystyka udziału poszczególnych wykonawców projektu (punkt obligatoryjny)
Kryteria oceny projektu Wpływ na ocenę mają w szczególności: Terminowość oddania projektu Zakres i stopień poprawności działania programu Sposób prezentacji programu Zawartość merytoryczna dokumentacji Strona edytorska dokumentacji Znajomość zagadnień bezpośrednio związanych z tematyką projektu.