Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ



Podobne dokumenty
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

WYKŁAD 3: METODA AKSJOMATYCZNA

Logika Matematyczna (10)

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Definicja: alfabetem. słowem długością słowa

Elementy logiki i teorii mnogości

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

III rok kognitywistyki UAM,

Paradygmaty dowodzenia

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Wstęp do logiki. Klasyczny Rachunek Zdań II

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Kultura logiczna Klasyczny rachunek zdań 2/2

Konsekwencja logiczna

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Dowody założeniowe w KRZ

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Struktury formalne, czyli elementy Teorii Modeli

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Podstawy Sztucznej Inteligencji (PSZT)

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

LOGIKA Klasyczny Rachunek Zdań

Matematyka ETId Elementy logiki

Trzy razy o indukcji

Podstawowe Pojęcia. Semantyczne KRZ

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

LOGIKA Dedukcja Naturalna

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Logika Matematyczna (5-7)

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Logika pragmatyczna dla inżynierów

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

WYKŁAD 7: DEDUKCJA NATURALNA

Układy równań liniowych

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k [a n,b n ] kn =(a 1 b 1 a 1

Logika Matematyczna (I JiIN UAM)

Układy równań i nierówności liniowych

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

III rok kognitywistyki UAM,

O pewnych związkach teorii modeli z teorią reprezentacji

Schematy Piramid Logicznych

domykanie relacji, relacja równoważności, rozkłady zbiorów

Rachunek logiczny. 1. Język rachunku logicznego.

Topologia zbioru Cantora a obwody logiczne

Logika Matematyczna (2,3)

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Rozdzia l 10. Najważniejsze normalne logiki modalne

Zdarzenia losowe i prawdopodobieństwo

Elementy logiki matematycznej

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Metoda Tablic Semantycznych

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

1 Działania na zbiorach

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

4 Klasyczny rachunek zdań

ROZDZIAŁ 1. Rachunek funkcyjny

LOGIKA I TEORIA ZBIORÓW

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

Drzewa Semantyczne w KRZ

Transkrypt:

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1

Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony na wykładzie 7; mówiąc dalej o systemie aksjomatycznym KRZ, będę miał na myśli właśnie ten system (chociaż istnieją i inne). Podobnie mówiąc o aksjomatach KRZ, będę miał na myśli aksjomaty tego systemu. Przypomnijmy teraz pojęcie tezy KRZ. Formułę A nazywamy tezą KRZ wtw formuła A jest aksjomatem KRZ lub formuła A ma co najmniej jeden dowód w oparciu o aksjomaty KRZ. Dla spostrzegawczych: Ciąg jednowyrazowy <A>, gdzie A jest aksjomatem, ma wszelkie znamiona dowodu formuły A w oparciu o aksjomaty. Tak więc w definicji tezy wystarczyłoby sformułowanie ma co najmniej jeden dowód w oparciu o aksjomaty. Do zbioru wszystkich tez KRZ należą zatem aksjomaty KRZ oraz te formuły, które nie są co prawda aksjomatami, ale mają co najmniej jeden dowód w oparciu o aksjomaty. Mówiąc ogólnie, tezy KRZ to prawa KRZ rozumiane syntaktycznie. 2

Tautologie KRZ. Zagadnienie pełności systemu aksjomatycznego KRZ Przypomnijmy teraz pojęcie tautologii KRZ. Formuła A jest tautologią KRZ wtw dla każdego wartościowania v zachodzi v(a) = 1. Tautologie KRZ to prawa KRZ rozumiane semantycznie. Na wykładzie 7 udowodniliśmy: Twierdzenie 7.1. Każda teza KRZ jest tautologią KRZ. Powstaje jednak następujące pytanie: Czy każda tautologia KRZ jest tezą KRZ? Pytanie to wyraża zagadnienie pełności systemu aksjomatycznego KRZ. Odpowiedź na to pytanie jest twierdząca. Pokażemy dalej, że prawdziwe jest: 3

Twierdzenie o pełności Twierdzenie 10.1. (o pełności systemu aksjomatycznego KRZ): Każda tautologia KRZ jest tezą KRZ. Komentarz: Twierdzenie powyższe głosi w istocie, że każda tautologia KRZ jest aksjomatem lub ma dowód w oparciu o aksjomaty. Zauważmy, że orzeka ono o nieskończenie wielu formułach, albowiem tautologii KRZ jest (przeliczalnie) nieskończenie wiele. Jeśli tak, to twierdzenia o pełności nie można udowodnić konstruktywnie, poprzez podanie dowodów tych wszystkich tautologii, które nie są aksjomatami. 4

Dowód twierdzenia o pełności KRZ W dowodzie Twierdzenia 10.1 skorzystamy z: Twierdzenie 10.2. (syntaktyczne twierdzenie o odrywaniu): Jeżeli formuła postaci A B jest tezą KRZ oraz formuła A jest tezą KRZ, to formuła B jest tezą KRZ. Twierdzenie 10.3. (syntaktyczne twierdzenie o podstawianiu): Jeżeli formuła A jest tezą KRZ, to formuła o postaci A[p i / B] jest tezą KRZ. Lemat 10.1. Jeżeli C jest alternatywą elementarną, w której występują: zmienna p ij oraz jej negacja, p ij, to istnieje formuła o postaci: (i) (p ij p ij ) D taka, że formuła o postaci: (ii) (p ij p ij ) D C jest tezą KRZ. Ponadto w dowodzie Twierdzenia 10.1 skorzystamy z kilku dalszych uprzednio ustalonych faktów. 5

Dowód twierdzenia o pełności KRZ Dowód (twierdzenia o pełności systemu aksjomatycznego KRZ): Niech A będzie dowolną ale ustaloną tautologią KRZ. Ponieważ zachodzi: Twierdzenie 9.7. Każda tautologia KRZ jest inferencyjnie równoważna pewnej formule o koniunkcyjnej postaci normalnej, takiej, że w każdej wchodzącej w jej skład alternatywie elementarnej co najmniej jedna zmienna zdaniowa występuje zarówno ze znakiem negacji, jak i bez tego znaku. zatem istnieje formuła B taka, że: (i) A jest inferencyjnie równoważna formule B, tj. formuła o postaci A B jest tezą KRZ; (ii) B ma postać: (*) C 1 C 2... C n, gdzie C 1, C 2,..., C n (n 1) są alternatywami elementarnymi, przy czym dla każdego C k (1 k n) istnieje zmienna, p ik, taka, że p ik oraz p ik występują w C k. 6

Dowód twierdzenia o pełności KRZ Pokażemy teraz, że formuła B jest tezą KRZ. Rozważmy alternatywę elementarną C k, gdzie 1 k n. Na mocy Lematu 10.1. istnieje formuła o postaci (gdzie p ik oraz p i k występują w C k ): (1) (p ik p ik ) D k C k która jest tezą KRZ. Jednocześnie wiemy, że tezą KRZ jest: (2) p p, Stosując RP do tezy (2) i podstawiając p ik za p otrzymujemy: (3) p ik p ik. Tezą KRZ jest również: (4) p p q. Poprzez podstawienia: p / p ik p ik, q / D k otrzymujemy: (5) p ik p ik (p ik p ik ) D k. 7

Dowód twierdzenia o pełności KRZ Na mocy syntaktycznego twierdzenia o postawianiu formuły (3) i (5) są tezami KRZ. Stosując RO do (5) i (3) dostajemy: (6) (p ik p ik ) D k. Na mocy syntaktycznego twierdzenia o odrywaniu formuła (6) jest tezą KRZ. Z kolei formułę C k możemy otrzymać przez odrywanie z formuł: (1) (p ik p ik ) D k C k (6) (p ik p ik ) D k będących tezami KRZ. Tak więc znów na mocy syntaktycznego twierdzenia o odrywaniu również formuła C k jest tezą KRZ. Skoro jednak 1 k n, to każda z formuł C 1, C 2,..., C n jest tezą KRZ. 8

Tezą KRZ jest: (7) p (q p q) Dowód twierdzenia o pełności KRZ Podstawiając w (7): p / C 1, q / C 2 i dwukrotnie odrywając (jako że C 1 i C 2 są tezami KRZ), dostaniemy: (8) C 1 C 2. Podstawiając w (7): p / C 1 C 2, q / C 3 oraz dwukrotnie odrywając, dostaniemy: (9) C 1 C 2 C 3. Postępując analogicznie, w skończonej liczbie kroków dojdziemy do: (*) C 1 C 2... C n. Na mocy syntaktycznych twierdzeń o podstawianiu i odrywaniu formuła (*) jest tezą KRZ. Z drugiej strony, formuła (*) to nic innego jak formuła B, której na mocy warunku (i) (zob. s. 6) jest inferencyjnie równoważna wyjściowa formuła A. 9

Dowód twierdzenia o pełności KRZ Skoro formuła A jest inferencyjnie równoważna formule B, to tezą KRZ jest: (10) A B. Jednocześnie tezą KRZ jest: (11) (p q) (q p). Podstawiając w (11): p / A, q / B, dostaniemy formułę o postaci: (12) (A B) (B A). Na mocy syntaktycznego twierdzenia o podstawianiu formuła postaci (12) jest tezą KRZ. Z kolei, na mocy syntaktycznego twierdzenia o odrywaniu, formuła postaci: (13) B A jest również tezą KRZ. Wykazaliśmy jednak wcześniej, że formuła B jest tezą KRZ. Zatem, znów na mocy syntaktycznego twierdzenia o odrywaniu, także wyjściowa formuła/ tautologia A jest tezą KRZ. 10

Tezy a tautologie Bezpośrednią konsekwencją twierdzeń 7.1 i 10.1 jest: Twierdzenie 10.4. Formuła jest tautologią KRZ wtw formuła ta jest tezą KRZ. Twierdzenie 10.4. implikuje, że zbiór wszystkich tautologii KRZ jest identyczny ze zbiorem wszystkich tez KRZ. Innymi słowy, semantyczne i syntaktyczne pojęcia prawa KRZ mają ten sam zakres (chociaż oczywiście różną treść). Udowodnimy na koniec: Twierdzenie 10.5. (o niesprzeczności systemu aksjomatycznego KRZ). Nie istnieje taka formuła A, że zarówno A, jak i A są tezami KRZ. Dowód: Przyjmijmy, że taka formuła A istnieje. Na mocy Twierdzenia 10.1 zarówno A, jak i A są wówczas tautologiami KRZ. Skoro A jest tautologią, to dla jakiegoś (dowolnego ale ustalonego) wartościowania v mamy v(a) = 1. Zatem v( A) = 0, czyli A nie jest tautologią. Otrzymujemy sprzeczność. 11

Literatura: Podany tutaj dowód twierdzenia o pełności systemy aksjomatycznego KRZ jest wariantem dowodu przedstawionego w podręczniku: Tadeusz Batóg, Podstawy logiki, Poznań 1996. 12