DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ POLISACHARYDÓW ZAWARTYCH W SŁOMIE RZEPAKOWEJ 1

Podobne dokumenty
Magdalena Świątek, Małgorzata Lewandowska, Karolina Świątek, Włodzimierz Bednarski

Natalia Kordala, Małgorzata Lewandowska, Magdalena Świątek, Włodzimierz Bednarski

Publikacja jest dostępna w Internecie na stronach: Czasopismo jest indeksowane w bazie AGRO

Roman Marecik, Paweł Cyplik

NAUKI INŻYNIERSKIE I TECHNOLOGIE

Znaczenie doboru metody wstêpnej obróbki substratów lignocelulozowych z uwzglêdnieniem wydajnoœci produkcji bioetanolu*

Anna Grala, Marcin Zieliński, Marcin Dębowski, Magdalena Rokicka, Karolina Kupczyk

Doskonalenie procesów biotechnologicznych stosowanych w produkcji etanolu II generacji z surowców lignocelulozowych*

ACTA SCIENTIARUM POLONORUM. Biotechnologia. Biotechnologia. Biotechnology

Joanna Chmielewska, Ewelina Dziuba, Barbara Foszczyńska, Joanna Kawa-Rygielska, Witold Pietrzak, Józef Sowiński

Planowanie Projektów Odnawialnych Źródeł Energii Biomasa (odpady fermentowalne)

Słowa kluczowe: ligninoceluloza, słoma pszenna, łęty ziemniaczane, etanol, drożdże

DOSKONALENIE FERMENTACJI ETANOLOWEJ SŁOMY RZEPAKOWEJ

CHEMICZNA HYDROLIZA BIOMASY INNOWACYJNE TECHNOLOGIE DLA PROCESU FERMENTACJI METANOWEJ

Nauka Przyroda Technologie

BIOSYNTEZA ACYLAZY PENICYLINOWEJ. Ćwiczenia z Mikrobiologii Przemysłowej 2011

Wykorzystanie słomy kukurydzianej do produkcji bioetanolu II generacji

ŚLAZOWCA POZYSKANEJ W RÓŻNYCH TERMINACH JEJ ZBIORU. Purwin C., Pysera B., Fijałkowska M., Wyżlic I.

Zasady i cele stosowania dodatków kiszonkarskich

Wykorzystanie modelu fermentacji beztlenowej ADM1 do estymacji produkcji metanu w bigazowniach rolniczych

Przydatność Beta vulgaris L. jako substratu biogazowni rolniczej

BIOTECHNOLOGIA OGÓLNA

NAUKI INŻYNIERSKIE I TECHNOLOGIE

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

Potencjał metanowy wybranych substratów

Autorzy: Instytut Inżynierii Wody i Ścieków Wydział Inżynierii Środowiska i Energetyki Politechnika Śląska w Gliwicach

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

BIOETANOL Z BIOMASY KONOPNEJ JAKO POLSKI DODATEK DO PALIW PŁYNNYCH

12. PRZYGOTOWANIE BIOMASY DO PROCESU FERMENTACJI WODOROWEJ

BADANIA NAD DEGRADACJĄ β-glukanów PRZY UDZIALE POZAKOM ÓRKOW YCH HYDROLAZ GRZYBÓW TRICHODERMA

Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC ]

Nowa jakość w produkcji kiszonek

TECHNOLOGIE KONDYCJONOWANIA BIOMASY LIGNOCELULOZOWEJ PRZED PROCESEM FERMENTACJI METANOWEJ

... imię i nazwisko,nazwa szkoły, miasto

WYBRANE RODZAJE BIOMASY JAKO SUROWCE DO FERMENTACJI WODOROWEJ

Wpływ ph i temperatury na aktywność enzymów na przykładzie α-amylazy [EC ]

Niestandardowe wykorzystanie buraków cukrowych

Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną

(Akty o charakterze nieustawodawczym) ROZPORZĄDZENIA

Czy produkcja żywności to procesy fizyczne i reakcje chemiczne?

Kiszonka z sorga, czyli jaka pasza?

BIOPALIWA DRUGIEJ GENERACJI

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

SUITABILITY OF VARIOUS TYPES OF BIOMASS FOR FERMENTATIVE HYDROGEN PRODUCTION

Wykorzystanie biowęgla w procesie fermentacji metanowej

BIOSYNTEZA ENZYMÓW KSYLANOLITYCZNYCH W HODOWLI GRZYBA BIAŁEGO ROZKŁADU Phanerochaete chrysosporium

Ingredients Research Concepts Consultancy Production for the dairy industry. Milase Premium. Marta Misiuwianiec-Królikiewicz

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

Dekstran i dekstranaza w przerobie buraków zdegradowanych

TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN

BADANIA PORÓWNAWCZE PAROPRZEPUSZCZALNOŚCI POWŁOK POLIMEROWYCH W RAMACH DOSTOSOWANIA METOD BADAŃ DO WYMAGAŃ NORM EN

CHARAKTERYSTYKA SKŁADU CHEMICZNEGO KŁACZKÓW IZOLOWANYCH Z ZAKWASZONYCH ROZTWORÓW CUKRU. dr inż. Ilona Błaszczyk dr inż.

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

Elżbieta Gąsiorek, Ewa Walaszczyk, Waldemar Podgórski Uniwersytet Ekonomiczny we Wrocławiu

Innowacyjne metody produkcji biopaliw

Przemiana materii i energii - Biologia.net.pl

Politechnika Łódzka Specjalistyczne Laboratorium Analityki Cukrowniczej

Nauka Przyroda Technologie

Wyznaczanie krzywej progresji reakcji i obliczenie szybkości początkowej reakcji katalizowanej przez β-fruktofuranozydazy

Żwacz centrum dowodzenia krowy

Dekstran i mannitol jako wskaźniki degradacji buraków cukrowych

KONWERSJA BIOMASY W PROCESIE DWUSTOPNIOWEJ FERMENTACJI WODOROWEJ

SPIS TREŚCI OD AUTORÓW... 5

Czy dodatki umożliwią standaryzacje podłoża

Biowęgiel jako materiał pomocniczny w procesie kompostowania i wermikompstowania

Wpływ dodatku biowęgla na emisje w procesie kompostowania odpadów organicznych

Standardyzacja ocen substratów oraz zasady doboru składu mieszanin dla biogazowni rolniczych z uwzględnieniem oddziaływao inhibicyjnych.

4. Rzutowy wzór Fischera rybozy przedstawia rysunek. Podaj wzory pierścieniowe α i β rybozy.

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

Pozyskiwanie biomasy z odpadów komunalnych

WPŁYW CECH FIZYCZNYCH SUROWCÓW ROŚLINNYCH NA JAKOŚĆ I ENERGOCHŁONNOŚĆ WYTWORZONYCH BRYKIETÓW

Kierunki badań nad wykorzystaniem biomasy do otrzymywania wodoru Directions of studies on the use of biomass for production of hydrogen

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

PL B1. ECOFUEL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Jelenia Góra, PL BUP 09/14

WPŁYW DODATKU SUROWCÓW POCHODZENIA NATURALNEGO NA WYDAJNOŚĆ BIOSYNTEZY KWASU CYTRYNOWEGO METODĄ HODOWLI W PODŁOŻU STAŁYM

Spis treści. Wykaz ważniejszych skrótów i symboli... XIII VII

WPŁYW DODATKU BIOETANOLU NA WŁASCIWOŚCI ELASTYCZNYCH POWŁOK SKROBIOWYCH

Jak przebiega trawienie w żwaczu?

WPŁYW ENZYMÓW WSPOMAGAJĄCYCH NA SKŁAD CHEMICZNY I LEPKOŚĆ ZACIERÓW Z PSZENŻYTA Ewelina Sapińska, Maria Balcerek

BIOPOLIMERY. Rodzaj zajęć: Grupa: WIMiC I-III r. Termin: poniedziałek Sala: Prowadzący: KONSULTACJE. POK. 106a A3. seminarium 105 A3/A4

L 271/12 Dziennik Urzędowy Unii Europejskiej

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

2 Chmiel Polski S.A., ul. Diamentowa 27, Lublin

(21) Numer zgłoszenia: (54) Sposób wytwarzania preparatu barwników czerwonych buraka ćwikłowego

Dezintegracja osadów planowane wdrożenia i oczekiwane efekty

Zawartość składników pokarmowych w roślinach

WPŁYW OBRÓBKI TERMICZNEJ NA SIŁĘ CIĘCIA I SIŁĘ ŚCISKANIA ZIEMNIAKÓW

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

Spis treści. Wykaz ważniejszych skrótów i symboli

ANNA KANCELISTA BIODEGRADACJA ODPADÓW LIGNINOCELULOZOWYCH Z UDZIAŁEM GRZYBÓW STRZĘPKOWYCH PROF. DR HAB. DANUTY WITKOWSKIEJ

Nowe preparaty biobójcze o dużej skuteczności wobec bakterii z rodzaju Leuconostoc jako alternatywa dla coraz bardziej kontrowersyjnej formaliny.

OCZYSZCZANIE ŚCIEKÓW PRZEMYSŁOWYCH O DUŻEJ ZAWARTOŚCI OLEJÓW NA ZŁOŻU BIOLOGICZNYM

EKOFIZJOLOGIA MIKROORGANIZMÓW WODNYCH

Pomorski Biogaz, Gdańsk

BADANIA PODATNOŚCI ŚCIEKÓW Z ZAKŁADU CUKIERNICZEGO NA OCZYSZCZANIE METODĄ OSADU CZYNNEGO

Transkrypt:

ZESZYTY PROBLEMOWE POSTĘPÓW NAUK ROLNICZYCH 2012 z. 570: 107 116 DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ POLISACHARYDÓW ZAWARTYCH W SŁOMIE RZEPAKOWEJ 1 Karolina Świątek, Małgorzata Lewandowska, Magdalena Świątek, Włodzimierz Bednarski Katedra Biotechnologii Żywności Uniwersytet Warmińsko-Mazurski w Olsztynie Wstęp Jednym z głównych problemów technologicznych podczas fermentacji surowców lignocelulozowych jest złożoność ich budowy, co powoduje, że niezbędne jest ich przygotowanie, które decyduje o efektywności procesu. Destabilizacja struktury surowca powinna zapewnić wysoki poziom dostępu do celulozy i hemicelulozy, jak również brak lub minimalne pozostałości ligniny oraz inhibitorów, które zakłócają proces hydrolizy polisacharydów. Wyróżnia się cztery główne grupy metod wstępnej obróbki surowców lignocelulozowych: fizyczne, fizykochemiczne, chemiczne i biologiczne. W zależności od zastosowanej metody zachodzą różne przemiany w obrębie kompleksu lignocelulozowego. Z uwagi na dużą różnorodność surowców lignocelulozowych oraz różnice w ich właściwościach fizycznych i chemicznych niezbędne jest opracowanie takich sposobów postępowania, które gwarantowałyby uzyskanie pożądanych rezultatów przy minimalnych nakładach finansowych [DA COSTA SOUSA i in. 2009; KRISTENSEN 2009]. Ostatnio przeprowadzono wiele badań dotyczących oceny możliwości stosowania enzymów w procesach biokonwersji lignocelulozy. Enzymatyczna hydroliza wstępnie przygotowanych materiałów lignocelulozowych obejmuje reakcje mające na celu przekształcenie celulozy do glukozy oraz hemicelulozy do pentoz (ksylozy i arabinozy) i heksoz (glukozy, galaktozy i mannozy). Konwersja celulozy i hemicelulozy katalizowana jest odpowiednio przez celulazy i hemicelulazy. Celulazy odgrywają tu znaczącą rolę, ponieważ katalizują proces rozkładu celulozy do cukrów fermentujących. Enzymami biorącymi udział w hydrolizie celulozy są: endoglukanazy, egzoglukanazy oraz β-glukozydazy. Endoglukanazy katalizują losowo rozkład wewnętrznych wiązań łańcucha celulozy, natomiast egzoglukanazy atakują końce łańcucha, uwalniając cząsteczki celobiozy [KUMAR i in. 2008]. Degradacja 1 Praca naukowa finansowana ze środków na naukę w latach 2010 2013 jako projekt badawczy.

108 K. Świątek i inni celulozy jest utrudniona ze względu na występowanie wewnętrznych i zewnętrznych wiązań wodorowych, które stabilizują włókna celulozy [MALHERBE I CLOETE 2002]. Proces hydrolizy celulozy składa się z następujących etapów: adsorpcji celulazy na powierzchni celulozy, degradacji celulozy do cukrów prostych oraz desorpcji celulazy z powierzchni materiału poddawanego hydrolizie [KULIKOWSKA i KLIMKOWSKI 2008]. Hemiceluloza może być rozkładana przez różne enzymy. Ksylan ulega hydrolizie pod wpływem enzymów, takich jak endoksylanaza i β-ksylozydaza, które powodują jego degradację do ksylooligosacharydów. Z kolei α-glukuronidaza, α-arabinofuranozydaza i esteraza acetyloksylanu odszczepiają boczne grupy i łańcuchy heteroksylanu, natomiast za hydrolizę glukomannanu odpowiadają β-mannanaza i β-mannozydaza. Efektywność hydrolizy polisacharydów substratów lignocelulozowych uwarunkowana jest ich skutecznym przygotowaniem oraz precyzyjnym doborem kompleksu enzymów [KUMAR i in. 2009]. Głównym źródłem handlowych preparatów celulaz są grzyby strzępkowe, w szczególności celulolityczne szczepy należące do rodzaju Trichoderma. Najbardziej reprezentatywnymi przedstawicielami są T. viride, T. longibrachiatum, T. reesei. Produkowane obecnie na skalę przemysłową preparaty celulaz bazują głównie na genetycznie zmodyfikowanych mutantach T. reesei. Grzyby z rodzaju Aspergillus, najczęściej wykorzystywane w produkcji przemysłowej, mogą być przydatne jako źródło pozyskiwania β-glukozydazy, ksylanazy i ksyloglukanazy. Również grzyby z rodzaju Penicillium mogą być alternatywnym producentem enzymów z grupy celulaz. Enzymy tych grzybów są mniej podatne na hamujący wpływ inhibitorów, charakteryzują się także mniejszym powinowactwem do ligniny [GU- SAKOV 2011]. Innym ważnym źródłem enzymów celulolitycznych są bakterie, zarówno tlenowe, jak i beztlenowe. Bakterie razem z grzybami zajmują w przyrodzie centralne miejsce w biodegradacji biomasy roślinnej, z uwagi na ich zdolność do tworzenia odpowiednich nanokompleksów układów enzymatycznych. Przykładem takich tlenowych promieniowców mogą być Cellulomonas i Thermobifida. Natomiast beztlenowce, takie jak Clostridium i Ruminococcus, mogą produkować specjalne kompleksy celulaz, zwane cellulosomami. Pomimo istotnych zalet, jak przeżywalność w wyższej temperaturze i lepsze przystosowanie do trudnych warunków, bakterie nie mogą konkurować z mutantami grzybów, gdyż poziom ekspresji białka tych mikroorganizmów jest za niski [WILSON 2009; GUSAKOV 2011]. Celem przeprowadzonych badań było określenie przydatności celulolitycznych preparatów enzymatycznych, skomponowanych w różnych zestawieniach, do wydajnej hydrolizy polisacharydów słomy rzepakowej. Efekty hydrolizy oceniano na podstawie stężenia wydzielonych cukrów, możliwych do wykorzystania przez drożdże w procesie fermentacji alkoholowej. Materiał i metody Materiałem doświadczalnym była słoma rzepakowa (Brassica napus L. var. napus), pochodząca z Gospodarstwa Rolnego w Pacółtowie AUREPIO AGRA Sp. z o.o., w postaci wysuszonej, o zawartości 95,1% suchej masy. Surowiec poddano procesowi kilkustopniowego mielenia (młyn tnący Retsch SM100, 2007 r., Niemcy), do poziomu rozdrobnienia 1 2 mm. Określono udział poszczególnych frakcji włókna

DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ... 109 w słomie rzepakowej, stosując urządzenie Fibertec TM 1020 (FOSS, 2011 r., Chiny); oznaczono: zawartość włókna neutralno-detergentowego (NDF) według Van Soest a [VAN SOEST i in. 1991], zawartość włókna kwaśno-detergentowego (ADF) oraz zawartość ligniny kwaśno-detergentowej (ADL) [PN-EN ISO 13906]. Zawartość celulozy wyznaczono z różnicy pomiędzy udziałem frakcji ADF i ADL, natomiast zawartość hemicelulozy z różnicy pomiędzy udziałem frakcji NDF i ADF. Słomę rzepakową poddano chemicznej obróbce w warunkach: temperatura 121 C, czas 1 h, dodatek NaOH 0,1g g 1 s.s. substratu (parametry te wyznaczono na podstawie wcześniejszych badań przeprowadzonych w Katedrze Biotechnologii Żywności). Materiał po obróbce i korekcie kwasowości środowiska do ph 5,0 (za pomocą 99-procentowego kwasu octowego) poddano hydrolizie enzymatycznej. Stężenie substratu lignocelulozowego w zawiesinie ustalono na poziomie 10% s.s. (w/w), co zapewniło możliwość mieszania medium w czasie reakcji. Reakcję prowadzono w czasie 72 h, w temperaturze 50 C, w kolbach stożkowych o pojemności 500 cm 3, zawierających 100 g medium reakcyjnego, z zastosowaniem wytrząsania (250 obr min 1 ; inkubator Innova 40, New Brunswick, 2010 r., USA), przy użyciu 6 ustalonych kompozycji preparatów enzymatycznych (według tab. 1). Oceniano dwa rodzaje celulaz: Celluclast 1.5L (Novozymes, nr kat. SIGMA C2730) i celulazę z Trichoderma longibrachiatum (nr kat. SIGMA C9748) oraz dwa preparaty ksylanaz: Pentopan Mono BG ksylanaza z Thermomyces lanuginosus (Novozymes, nr kat. SIGMA X2753) i ksylanazę z Trichoderma longibrachiatum (nr kat. SIG- MA X2629). We wszystkich wariantach procesu hydrolizy zastosowano dodatek celobiazy (Novozyme 188, Novozymes, nr kat. SIGMA C6105) w celu rozkładu powstającej celobiozy (hamującej aktywność celulaz) do glukozy. Tabela 1; Table 1 Kompozycje stosowanych preparatów enzymatycznych The compositions of the enzyme preparations used Kompozycje preparatów enzymatycznych Nr; No The compositions of the enzyme preparations 1 Celluclast 1.5L + celobioza 2 Celluclast 1.5L + Pentopan Mono BG + celobiaza 3 Celluclast 1.5L + ksylanaza z T. longibrachiatum + celobiaza 4 celulaza z T. longibrachiatum + celobiaza 5 celulaza z T. longibrachiatum + Pentopan Mono BG + celobiaza 6 celulaza z T. longibrachiatum + ksylanaza z T. longibrachiatum + celobiaza Preparaty enzymatyczne stosowano w następujących dawkach: Celluclast 1.5L 15 FPU g 1 s.s. słomy, celulaza z Trichoderma longibrachiatum 15 U g 1 s.s. słomy, Pentopan Mono BG 15 FXU g 1 s.s. słomy, ksylanaza z T. longibrachiatum 15 FXU g 1 s.s. słomy, celobiaza (Novozyme 188) 30 CBU g 1 s.s. słomy. Aktywność enzymów była wyrażana następująco: 1 FPU ilość enzymu uwalniająca 1 μmol glukozy z bibuły Whatman no. 1, w czasie 1 minuty, 1 U ilość enzymu uwalniająca 1 μmol glukozy z celulozy w czasie 1 h (warunki reakcji: ph 5,0; temperatura 37 C, czas inkubacji 2 h), 1 FXU ilość enzymu uwalniająca 1 μmol ksylozy z ksylanu w czasie 1 minuty (warunki reakcji: ph 4,5; tempera-

110 K. Świątek i inni tura 30 C), 1 CBU ilość enzymu przekształcająca 1 μmol celobiozy do 2 μmoli glukozy w ciągu 1 minuty (warunki reakcji: ph 4,8; temperatura 50 C). Podczas hydrolizy zastosowano dodatek azydku sodu (0,1%) celem wyeliminowania potencjalnych zakażeń mikrobiologicznych. W czasie reakcji okresowo pobierano próbki do analizy. Efekty hydrolizy określano na podstawie stężenia uwolnionych cukrów redukujących, oznaczonych przy użyciu metody z kwasem 3,5-dinitrosalicylowym [MILLER 1959]. Porównawczo przeprowadzono hydrolizę materiału natywnego. Wyniki i dyskusja Efektywność hydrolizy enzymatycznej surowców lignocelulozowych uzależniona jest od ich rodzaju, stopnia dojrzałości, składu chemicznego oraz sposobu wstępnej obróbki. Rozdrabnianie prowadzi do zmniejszenia wielkości cząstek i częściowego zniszczenia krystalicznej struktury celulozy, co ułatwia dostęp enzymów do kompleksu polisacharydów, a także powoduje zwiększenie wrażliwości substratu na działanie czynników chemicznych. Redukcja wielkości cząstek słomy pszennej do wartości 53 149 μm pozwala na zwiększenie wydajności uwalniania glukozy i ksylozy po 24-godzinnej hydrolizie enzymatycznej odpowiednio o 39% i 20% w porównaniu z próbami odniesienia (cząstki o długości 2 4 cm) [PEDER- SEN i MEYER 2009; DA COSTA SOUSA i in. 2009]. Wstępne traktowanie lignocelulozy alkaliami, takimi jak: wodorotlenek wapnia, amoniak czy wodorotlenek sodu, powoduje degradację wiązań łączących ligninę z pozostałymi polimerami, co jest przyczyną częściowego upłynnienia kompleksu, a także usunięcia części ligniny. Wymienionym zmianom towarzyszy również zwiększenie dostępności celulozy dla enzymów hydrolitycznych [ALVIRA i in. 2010]. We wcześniej prowadzonych badaniach własnych ustalono warunki wstępnej obróbki badanego substratu oraz parametry prowadzenia hydrolizy enzymatycznej. Doświadczenia opisane w niniejszej pracy dotyczyły doboru najefektywniej współdziałającej kombinacji preparatów enzymatycznych, charakteryzującej się wydajnym uwalnianiem cukrów fermentujących ze słomy rzepakowej. Udział podstawowych frakcji (celulozy, hemicelulozy i ligniny) w suchej masie słomy rzepakowej wynosił odpowiednio: 49,2; 12,2 i 14,9%, przy czym łączna zawartość celulozy i hemicelulozy polisacharydów stanowiących potencjalne źródło cukrów fermentujących kształtowała się na poziomie 61,4%. Przeprowadzenie 72-godzinnej hydrolizy substratu natywnego (próba kontrolna) pozwoliło na uzyskanie stężenia uwolnionych cukrów redukujących na poziomie 10,68 16,39 g dm 3 hydrolizatu, a największe ich stężenie osiągnięto przy zastosowaniu kompozycji, w której składzie znalazła się ksylanaza z T. longibrachiatum zarówno w skojarzeniu z celulazą Celluclast 1.5L (rys. 1), jak i z celulazą z T. longibrachiatum (rys. 2). Zastosowanie wymienionych kombinacji pozwoliło na uzyskanie wydajności hydrolizy polisacharydów w odniesieniu do wartości teoretycznej, wyznaczonej na podstawie stężenia celulozy i hemicelulozy w materiale natywnym, na poziomie odpowiednio 22,0 i 24,0%. Najmniej korzystne okazało się zastosowanie kompozycji Celluclast 1.5L i celobiaza: po 72 h procesu ich stężenie w hydrolizacie wynosiło 10,68 g cukrów dm 3, co dowodzi istotnej roli enzymów degradujących hemicelulozę podczas biokonwersji kompleksu lignocelulozowego (rys. 1).

DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ... 111 Rys. 1. Fig. 1. Stężenie uwolnionych cukrów redukujących (g dm 3 ) The concentration of released reducing sugars (g dm 3 ) 50 45 40 35 30 25 20 15 10 5 0 0 6 12 18 24 30 36 42 48 54 60 66 72 78 Czas; Time [h] 1 2 3 1 2 3 Postęp hydrolizy enzymatycznej słomy rzepakowej natywnej (symbole puste) oraz po obróbce wstępnej (NaOH 0,1 g g s.s. materiału, temperatura 121 C, czas 1 h) (symbole pełne), z zastosowaniem trzech kombinacji preparatów enzymatycznych (nr 1, 2 i 3 według tabeli 1), w czasie 72 h eksperymentu, wyrażony stężeniem cukrów redukujących w hydrolizacie Enzymatic hydrolysis rate of untreated (empty symbols) and pretreated rape straw (addition of NaOH 0,1 g g 1 d.m. of substrate, temperature 121 C, time 1 h) (filled symbols), with the use of three combinations of enzyme preparations (no. 1, 2, 3 according to table 1), during 72-hour experiment, expressed as reducing sugars concentration in hydrolysate Hydroliza enzymatyczna wstępnie przygotowanej słomy rzepakowej, prowadzona z udziałem każdej z proponowanych kompozycji preparatów enzymatycznych, pozwoliła uzyskać trzykrotnie większą zawartość cukrów redukujących po 72 h procesu niż hydroliza substratu natywnego. Już w początkowym etapie procesu zauważono wysoką skuteczność stosowania kompozycji preparatów enzymatycznych celulazy z Trichoderma longibrachiatum, ksylanazy z T. longibrachiatum i celobiazy (rys. 2). Zastosowanie tej kombinacji spowodowało uwolnienie 32,27 g cukrów dm 3 hydrolizatu juý po 12 h procesu, by w końcowym etapie osiągnąć największą z odnotowanych we wszystkich doświadczeniach wartość: 48,82 g cukrów redukujących dm 3. Najniższe stężenie cukrów fermentujących w hydrolizacie (33,42 g dm 3 ) uzyskano w doúwiadczeniu z udziaůem kompleksu preparatów Celluclast 1.5L i celobiaza (rys. 1). W eksperymencie z udziałem kompozycji preparatów celulazy i ksylanazy z Trichoderma longibrachiatum z celobiazą uzyskano wydajność hydrolizy polisacharydów słomy rzepakowej na poziomie 71,6% (rys. 3), co oznacza zwiększenie jej efektywności średnio o 45% w porównaniu z rezultatami doświadczenia z zastosowaniem preparatów Celluclast 1.5L i celobiaza. Można więc stwierdzić, że najskuteczniej działającym kompleksem enzymów okazał się zestaw celulaz i hemicelulaz z T. longibrachiatum i celobiazy, co świadczy o ich synergistycznym działaniu.

112 Rys. 2. Fig. 2. Stężenie uwolnionych cukrów redukujących (g dm 3 ) The concentration of released reducing sugars (g dm 3 ) 50 45 40 35 30 25 20 15 10 5 K. Świątek i inni 0 0 6 12 18 24 30 36 42 48 54 60 66 72 78 Czas; Time [h] 4 5 6 4 5 6 Postęp hydrolizy enzymatycznej słomy rzepakowej natywnej (symbole puste) oraz po obróbce wstępnej (NaOH 0,1 g g 1 s.s. materiału, temperatura 121 C, czas 1 h) (symbole pełne), z zastosowaniem trzech kombinacji preparatów enzymatycznych (nr 4, 5 i 6 wg tabeli 1), w czasie 72 h eksperymentu, wyrażony stężeniem cukrów redukujących w hydrolizacie Enzymatic hydrolysis rate of untreated (empty symbols) and pretreated rape straw (addition of NaOH 0,1 g g 1 d.m. of substrate, temperature 121 C, time 1 h) (filled symbols), with the use of three combinations of enzyme preparations (no. 4, 5, 6 according to table 1), during 72-hour experiment, expressed as reducing sugars concentration in hydrolysate Na rysunku 3 przedstawiono wyniki ilustrujące efektywność 72-godzinnej hydrolizy enzymatycznej słomy rzepakowej. Jak wspomniano wcześniej, najkorzystniejszą z przebadanych kompozycji enzymów okazała się kombinacja preparatów, które pochodziły z grzybów T. longibrachiatum. Szczególnie istotną rolę można przypisać preparatowi ksylanaz, którego zestawienie z celulazami preparatu Celluclast 1.5L (kompozycja 3) skutkowało korzystnym stopniem hydrolizy polisacharydów, tj. 67,1%. Prawdopodobnie w preparacie ksylanazy z T. longibrachiatum aktywne są również inne hemicelulazy, które sprzyjają kompleksowej hydrolizie badanego surowca lignocelulozowego. Dodatkowo należy zaznaczyć, że wstępna obróbka alkaliami sprzyja poprawie podatności na hydrolizę kompleksu polisacharydów zawartych w substracie. MCINTOSH I VANCOV [2010] badali wpływ wstępnego traktowania alkaliami słomy sorgo (Sorghum bicolor) na efektywność hydrolizy enzymatycznej tak przetworzonego materiału. Doświadczenia hydrolizy poprzedzono obróbką substratu, stosując zmienne parametry w zakresie: stężenia NaOH (od 0 do 2,0% (w/v)), temperatury (60 i 121 C) oraz czasu jej trwania (30, 60 i 90 min). Reakcję hydrolizy enzymatycznej polisacharydów prowadzono przez 48 h w warunkach: temperatura 50 C, ph 5,0, wytrząsanie (150 rpm), z zastosowaniem kombinacji preparatów oferowanych przez firmę Novozymes: celulazy (NS50013), ksylanazy (NS50030) i β-glukozydazy (NS50010). Stężenie rozdrobnionej słomy w zawiesinie ustalono

DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ... 113 Rys. 3. Fig. 3. Wydajność; Yield (%) 80 70 60 50 40 30 20 10 0 15,7 49,0 17,6 55,2 22,0 67,1 49,3 50,6 19,0 20,6 24,0 1 2 3 4 5 6 Nr kompozycji; No of composition 71,6 hydroliza natywnego surowca; hydrolysis of untreated substrate obróbka z udziałem NaOH; pretreatment with NaOH Porównanie wydajności 72-godzinnej hydrolizy enzymatycznej słomy rzepakowej natywnej i po obróbce z udziałem NaOH, przeprowadzonej z zastosowaniem sześciu kompozycji preparatów enzymatycznych. Wydajność hydrolizy celulozy i hemicelulozy obliczono w odniesieniu do wartości teoretycznej wyznaczonej na podstawie zawartości celulozy i hemicelulozy w materiale natywnym (61,4%) The comparison of the efficiency of 72-hour enzymatic hydrolysis of untreated and pretreated (NaOH) rape straw, conducted with the use of six compositions of enzyme preparations. The efficiency of cellulose and hemicellulose hydrolysis was calculated in relation to the theoretical value determined based on the content of cellulose and hemicellulose in the native substrate (61,4%) na poziomie 5% s.s. Zaobserwowano, że zastosowanie, oprócz celulazy, preparatów ksylanazy i β-glukozydazy pozwoliło na zwiększenie skuteczności hydrolizy polisacharydów słomy sorgo, przy jednoczesnym 4-krotnym zmniejszeniu dawki celulazy. Maksymalną wydajność hydrolizy celulozy i hemicelulozy (95%) uzyskano przy zastosowaniu enzymów w następujących dawkach: celulaza 5,0 FPU g 1 substratu, β-glukozydaza 7,5 CBU g 1 substratu, ksylanaza 1,5 FXU g 1 substratu. LU i in. [2010] przeprowadzili badania z wykorzystaniem słomy kukurydzianej, którą poddano wstępnej obróbce metodą eksplozji pary, a w dalszej kolejności neutralizowano lub przepłukiwano wodą. Cytowani autorzy oceniali również wpływ stężenia substratu w środowisku reakcyjnym na wydajność uwalniania cukrów fermentujących. Hydrolizę prowadzono przez 96 h, w temperaturze 50 C, ph 4,8, z zastosowaniem wytrząsania, stosując mieszankę kwaśnych celulaz (Global Green Tech, Chiny). Stężenie substratu lignocelulozowego w zawiesinie ustalono w zakresie 10 30% s.s. (w/w). Zaobserwowano, że koncentracja substratu w medium reakcyjnym ma niewielki wpływ na efektywność konwersji polisacharydów słomy. Najkorzystniejsze rezultaty uzyskano przy zastosowaniu stężenia substratu na poziomie 30%, co pozwoliło na otrzymanie 103,3 g glukozy dm 3 hydrolizatu (stopień konwersji celulozy do glukozy wyniósł 72,5%) [LU i in. 2010]. SAHA i in. [2005] przeprowadzili hydrolizę enzymatyczną słomy pszennej uprzednio traktowanej 0,75% roztworem kwasu siarkowego. Zastosowano kompleks enzymów: celulazę z Triochoderma reesei, β-glukozydazę z Aspergillus niger i ksylanazę z Trichoderma longibrachiatum. Proces hydrolizy prowadzono w tem-

114 K. Świątek i inni peraturze 45 C, przy ph 5,0, w czasie 72 h. Wymieniony zestaw enzymów okazał się najkorzystniejszy ze wszystkich zastosowanych w doświadczeniu, czego dowodzi uzyskany stopień konwersji celulozy do glukozy na poziomie 81% (565 mg cukrów redukujących g 1 surowca). Porównując badania przeprowadzone w ramach niniejszej pracy, można stwierdzić, że zastosowanie najkorzystniejszej kompozycji enzymów pozwoliło na uzyskanie koncentracji monosacharydów w hydrolizacie w ilości 488 mg g 1 surowca. Wnioski Wyniki przeprowadzonych badań wskazują, iż preparaty celulaz: Celluclast 1.5L i celulaza z Trichoderma longibrachiatum są przydatne w procesie hydrolizy enzymatycznej surowców lignocelulozowych. Większą skutecznością charakteryzuje się preparat otrzymany z gatunku T. longibrachiatum. Istotny wpływ na przebieg hydrolizy ma zastosowanie preparatów ksylanaz. W badaniach zastosowano preparaty ksylanaz: Pentopan Mono BG i ksylanazę z T. longibrachiatum, z których ta ostatnia odegrała kluczową rolę w uzyskaniu wysokiego poziomu wydajności hydrolizy polisacharydów. Jej wysoką skuteczność potwierdza korzystne stężenie monosacharydów w mediach poreakcyjnych (45,7 48,8 g dm 3 ), a także różnica pomiędzy efektami działania kompozycji enzymatycznych bez udziału ksylanaz oraz kompozycji enzymatycznych z ich udziałem. Za najkorzystniejszą kompozycję enzymów uznano: celulazę z Trichoderma longibrachiatum, ksylanazę z T. longibrachiatum i celobiazę, co dowodzi ich skutecznego synergistycznego działania. Preparaty enzymatyczne pozyskiwane z T. longibrachiatum pozwalają na uzyskanie wysokiego stopnia konwersji polisacharydów surowca lignocelulozowego do cukrów fermentujących. Przedstawione rezultaty badań potwierdziły również konieczność stosowania obróbki wstępnej w biotechnologicznym przetwarzaniu słomy rzepakowej. Literatura ALVIRA P., TOMÁS-PEJÓ E., BALLESTEROS M., NEGRO M.J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101: 4851 4861. DA COSTA SOUSA L., CHUNDAWAT S.P.S., BALAN V., DALE B.E. 2009. Cradle- -to-grave assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20: 339 347. GUSAKOV A.V. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology 29 (9): 419 425. KRISTENSEN J. B. 2009. Enzymatic hydrolysis of lignocelluloses. Substrate interactions and high solids loadings. Forest & Landscape Research 42: 7.

DOSKONALENIE WARUNKÓW HYDROLIZY ENZYMATYCZNEJ... 115 KULIKOWSKA D., KLIMOWSKI K. 2008. Produkcja bioetanolu z odpadów lignocelulozowych możliwości i ograniczenia. Cz. II. Hydroliza i fermentacja. Gaz, Woda i Technika Sanitarna 2: 24 28. KUMAR R., SINGH S., SINGH O.V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377 391. KUMAR R., MAGO G., BALAN V., WYMAN C.E. 2009. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100: 3948 3962. LU Y., WANG Y., XU G., CHU J., ZHUANG Y., ZHANG S. 2010. Influence of High Solid Concetration on Enzymatic Hydrolysis and Fermantation of Steam-Exploded Corn Stover Biomass. Appl. Biochem. Biotechnol. 160: 360 369. MALHERBE S., CLOETE T.E. 2002. Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Bio/Technology 1: 105 114. MCINTOSH S., VANCOV T. 2010. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101: 6718 6727. MILLER G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3): 426 428. PEDERSEN M., MEYER A.S. 2009. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25: 399 408. SAHA B.C., ITEN L.B., COTTA M.A., WU Y.V. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc. Biochem. 40: 3693 3700. VAN SOEST P.J., ROBERTSON J.B., LEWIS B.A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583 3597. WILSON D.B. 2009. Cellulases and biofuels. Curr. Opin. Biotechnol. 20: 295 299. Słowa kluczowe: lignoceluloza, słoma rzepakowa, hydroliza enzymatyczna, ksylanaza Streszczenie Przeprowadzono badania, których celem było określenie wpływu różnych kompozycji preparatów celulolitycznych na efektywność procesu hydrolizy enzymatycznej polisacharydów słomy rzepakowej po wstępnej obróbce alkalicznej. Skuteczność ich działania oceniono na podstawie stężenia cukrów prostych uwolnionych w trakcie reakcji enzymatycznej oraz wydajności obliczonej w odniesieniu do sumy polisacharydów zawartych w surowcu natywnym. Najkorzystniejszym ze-

116 K. Świątek i inni stawem okazała się kombinacja preparatów pochodzących z grzybów Trichoderma longibrachiatum. Wykazano istotne znaczenie ksylanaz z T. longibrachiatum, których obecność sprzyjała poprawie efektywności hydrolizy polisacharydów o 37 45% w porównaniu z doświadczeniami bez ich udziału. Wyniki przeprowadzonych badań potwierdziły również konieczność stosowania obróbki wstępnej podczas przetwarzania substratów lignocelulozowych. THE IMPROVEMENT OF THE CONDITIONS OF ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSIC SUBSTRATE POLYSACCHARIDES Karolina Świątek, Małgorzata Lewandowska, Magdalena Świątek, Włodzimierz Bednarski Chair of Food Biotechnology University of Warmia and Mazury, Olsztyn Key words: lignocellulose, rape straw, enzymatic hydrolysis, xylanase Summary Research evaluating the impact of different compositions of cellulolytic preparations on the efficiency of enzymatic hydrolysis of polysaccharides of alkali pretreated rape straw was carried out. The effectiveness of the used compositions was assessed based on the amount of reducing sugars released during the enzymatic reaction and the yield calculated in relation to the sum of polysaccharides contained in the native substrate. The combination of the preparations derived from the fungus Trichoderma longibrachiatum was the most favorable. It was stated that xylanases from T. longibrachiatum were essential, allowing to improve the efficiency of hydrolysis of polysaccharides by 37 45% compared to experiments without their participation. The results of the conducted research also confirmed the necessity of the pretreatment step in the processing of lignocellulosic substrates. Mgr inż. Karolina Świątek Katedra Biotechnologii Żywności Uniwersytet Warmińsko-Mazurski ul. Heweliusza 1 10-718 OLSZTYN e-mail: karolina.swiatek@uwm.edu.p