PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4. PROCESY INICJOWANE ŚWIATŁEM (procesy fotochemiczne)

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4. PROCESY INICJOWANE ŚWIATŁEM (procesy fotochemiczne)"

Transkrypt

1 PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4 PROCESY INICJOWANE ŚWIATŁEM (procesy fotochemiczne)

2 Procesy inicjowane światłem Zalety i ograniczenia procesów fotochemicznych Zastosowania Teoretyczne podstawy procesu Fotoreaktory Źródła promieniowania Procesy fotochemiczne w ochronie środowiska

3 Shine a light for separation 07 November 2008 UK scientists have used light to separate complex chemical mixtures. The method can be used to recover high value products and catalytic nanoparticles from reaction mixtures, they claim. Julian Eastoe, at the University of Bristol, and colleagues added lightsensitive surfactants to microemulsions. When they shone UV light on the mixtures, the surfactants caused the oil and water phases in the emulsions to separate. Previously researchers have relied on heat, ph changes or salt addition to separate the phases in microemulsions. The new method does not change the chemical composition of the microemulsion or use as much energy as heat-induced separation.

4 Procesy fotochemiczne Przemiana lub ciąg przemian chemicznych spowodowanych absorpcją promieniowania świetlnego Podstawowym warunkiem jest zbieżność charakterystyki energetycznej stosowanego promieniowania i charakterystyki energetycznej substratów reakcji, tj. energia kwantów stosowanego promieniowania powinna ściśle odpowiadać odpowiednim różnicom dozwolonych stanów energetycznych cząsteczki

5 Zalety procesów fotochemicznych Selektywność Reaktywność określonych wzbudzanych reagentów Możliwość prowadzenia procesów w umiarkowanej temperaturze Łatwość sterowania i kontroli procesu

6 Ograniczenia stosowania procesów fotochemicznych Niewielki wybór monochromatycznych źródeł światła Ograniczony zakres częstości promieniowania Powstawanie w niektórych przypadkach produktów reakcji współzawodniczących w absorpcji promieniowania co prowadzi do zahamowania procesu Wysokie koszty inwestycyjne oraz eksploatacyjne (energia świetlna uzyskiwana przez konwersję energii zawartej w paliwie)

7 Procesy fotochemiczne - zastosowania Procesy polimeryzacji Synteza związków o specjalnych właściwościach optycznych służących do uszlachetniania barwników, kosmetyków, do wytwarzania związków luminescencyjnych Reakcje chlorowania Fotosynteza cukrów z CO 2 i H 2 O w chloroplastach roślin zielonych (NATURA) Procesy fotochemiczne w technologiach ochrony środowiska (oczyszczanie wód, ścieków i atmosfery) Produkcja wodoru (water-splitting) Fotokonwersja CO 2 do lekkich węglowodorów (solar-tofuel)

8

9 Podstawy fizykochemiczne Postacie energii cząsteczki: Energia stanów elektronowych przechodząc z wyższego poziomu energetycznego E 2 na niższy poziom E 1, atom emituje kwant energii (foton) charakteryzujący się częstością fali elektromagnetycznej E 2 -E 1 = h gdzie h stałą Plancka Gdy energię atomu chcemy podnieść z poziomu E 1 do poziomu energetycznego E 2, to musimy dostarczyć taki sam kwant energii w postaci promieniowania o częstości, który zostaje przez atom pochłonięty Schemat stanów energetycznych atomu

10 absorpcja światła dezaktywacja promienista dezaktywacja bezpromienista stan wzbudzony, E 2 stan podstawowy, E 1 światło ciepło

11 Energia drgań oscylacyjnych Drgania oscylacyjne Wiązania kowalencyjne oscylują z częstością specyficzną podlegającą regułom kwantowania (E = h ) Zależy od typu wiązania i sąsiadujących atomów Oscylacje dzieli się na drgania walencyjne (rozciągające) i deformacyjne (zginające)

12 Energia drgań rotacyjnych Drgania rotacyjne Rotacja dwuatomowej cząstki symetrycznej

13 Podstawy fizykochemiczne Postacie energii cząsteczki Energia stanów elektronowych ~1 10 ev (UV-Vis) Energia ruchów oscylacyjnych ~ ev (IR) Energia rotacji ~ ev (daleki IR, zakres fal wysokiej częstotliwości) Tylko promieniowanie o krótkich falach (UV-Vis) może spowodować przejście cząsteczki na wyższy poziom elektronowy Promieniowanie IR może spowodować przejście na wyższe poziomy oscylacyjne i rotacyjne

14 Energia mola fotonów (energia fotonu x liczba Avogadro) Promieniowanie UV ( dla ~200 nm) - ~600 kj/mol Promieniowanie Vis ( nm) kj/mol Promieniowanie IR (dla ~1000 nm) 120 kj/mol Energia wiązań atomu w cząsteczce ~ kj/mol NAJWIĘKSZE ZNACZENIE PRAKTYCZE DLA PRZEPROWADZANIA REAKCJI FOTOCHEMICZYCH ZWIĄZANYCH Z ZERWANIEM WIĄZAŃ POWINNO MIEĆ PROMIENIOWAIE Z ZAKRESU od UV do bliskiej IR

15 Procesy fotochemiczne Jak zaprojektować? W procesach fotochemicznych, w których są wykorzystywane reakcje chemiczne wzbudzonych cząstek, stosuje się źródła światła emitujące promieniowanie monochromatyczne lub zbliżone do monochromatycznego o długości fali odpowiadającej energii wzbudzenia Długość fali promieniowania jaką należy stosować w zamierzonej reakcji fotochemicznej, określa się na podstawie widma absorpcyjnego substratów reakcji

16 Prawa fotochemii I prawo (Grotthussa-Drapera ) promieniowanie elektromagnetyczne musi być zaabsorbowane przez układ reakcyjny aby mieć jakikolwiek efekt na przebieg reakcji II prawo (Starka- Einsteina) - jeden foton promieniowania może być zaabsorbowany tylko przez jedną cząsteczkę chemiczną

17 Photochemistry Light Absorption Transmittance T = I/I 0 Absorbance A = log I 0 /I = log T -1 Beer-Lambert Law A = C l, L mol -1 cm -1 : molar absorptivity (extinction coeff.) C, mol L -1 : concentration l, cm: path length I 0 I 0 C l I I 0

18 Quiz Jak wykorzystać prawo L-B do projektowania fotoreaktorów?

19 log(i o /I) = c l gdzie: - współczynnik ekstynkcji; c stężenie; l- grubość warstwy pochłaniającej Znając wartość, można łatwo wyznaczyć dla danej długości fali grubość warstwy pochłaniającej cześć promieniowania określonej stosunkiem I/I o Wyznaczenie grubości warstwy pochłaniającej ma istotne znaczenie dla projektowania reaktora fotochemicznego ( w zależności od i stężenia stosowanego medium, grubość może się wahać od milimetrów do blisko metra)

20 Podstawy fizykochemiczne Prawo Einsteina liczba cząsteczek lub atomów ulegających pierwotnej przemianie fotochemicznej jest równa liczbie pochłoniętych przez nie kwantów gdzie: = N h /E - wydajność kwantowa N - liczba cząstek produktu końcowego E/h - liczba pochłoniętych kwantów promieniowania

21 Wydajność kwantowa < 1 przemiany współzawodniczące > 1 reakcje łańcuchowe użyteczne w technologii chemicznej = 1 reaktor fotochemiczny zaopatrzony w rtęciową lampę łukową o mocy 1 kw emitującą UV może produkować ~2 g/h związku o masie cząsteczkowej 100

22 Procesy fotochemiczne Zastosowanie Reakcje fotochemiczne zachodzące pomiędzy substratami o wzbudzonych stanach elektronowych mają ograniczone zastosowanie Duże znaczenie mają reakcje, w których energia promieniowania służy do odszczepiania atomu lub rodników inicjujących reakcje łańcuchowe

23 Reakcje indukowane światłem: utleniania redukcji fragmentacji autooksydacji polimeryzacji kondensacji przegrupowania Reakcje fotochemiczne Fotoreaktory On the conversion of quinone into quinol (1886) Prof. Giacomo Ciamician ( ) na dachu Instytutu Chemicznego w Bolonii 23

24 Reakcje fotochemiczne Fotoreaktory Fotoacylowanie 1,4-naftoquinonu German Aerospace Center, k/kolonii Fotoutlenianie citronellolu M. Oelgemoller, C. Jung, J., M. Mattay, Pure Appl. Chem. 79 (2007)

25 Proces chlorowania Czynniki chlorujące: chlor atomowy, chlor kationowy, chlor cząsteczkowy, HCl (chlorowodór), HOCl (kwas podchlorawy) Wybór czynnika chlorującego zależy od: substratu oraz zamierzonego sposobu przeprowadzeni reakcji

26 Chlorowanie Cl 2 + h 2 Cl R-H + Cl HCl + R R + Cl 2 R-Cl + Cl R + Cl R-Cl (a) (b) (c) (d) np. chlorowanie w fazie gazowej transdwuchloroetylenu do czterochloroetanu

27 Otrzymywanie lindanu Lindan - HCH Chlorowanie benzenu ( w obecności UV, proces rodnikowy) Powstaje ~14% pożądanego izomeru HCH oraz 86% izomerów nieaktywnych: 65-70%, 7-10% ; 7%, 1-2%, i 1-2% innych substancji

28

29

30

31 Inne procesy fotochemiczne Otrzymywanie witaminy D (poprzez naświetlanie ergosterolu) promieniowaniem z zakresu nm Procesy polimeryzacji inicjowane światłem (fotopolimeryzacja olefin; olefiny pochłaniają promieniowanie o < 300 nm a max. dla lamp rtęciowych > 300 nm stosuje się fotoinicjatory (fotostartery)

32 FOTOINICJACJA Absorbują promieniowanie o długości fali powyżej 300nm i odszczepiają rodniki inicjujące polimeryzację (np. pochodne benzoiny lub antrachinonu) SENSYBILIZACJA Sensybilizator pochłania promieniowanie i przekazuje substratom swoją energie wzbudzenia, nie biorąc udziału w reakcji

33 FOTOREAKTORY Z wewnętrznym źródłem promieniowania Z zewnętrznym źródłem promieniowania Dla procesów prowadzonych w homogenicznych układach ciekłych Dla procesów heterogenicznych w układach gazciecz Okresowe Ciągłe

34 Jedno źródło promieniowania umieszczone centralnie Bateria lamp UV Promienniki w osłonie Ścianka wewnętrzna o własnościach refleksyjnych Zwykłe szkło nieprzezroczyste dla promieniowania o < 300nm Kwarc przezroczysty dla promieniowania o > 180 nm

35 Fotoreaktory zasilane promieniowaniem słonecznym System wzmacniania Forma fotokatalizatora Bez systemu wzmacniania Reaktory zawiesinowe System niskiego wzmacniania Reaktory ze złożem System średniego wzmacniania System wysokiego wzmacniania

36 Nazwa fotoreaktora Helioman Helioman bez systemu nadążania za słońcem CPC Płaski Opis fotoreaktora Stała szybkości k (ppm/min) Zdolność degradacji (g TOC m - 2 min -1 ) System średniego wzmacniania, 4 paraboliczne kolektory rynnowe z rurkami ze szkła borokrzemowego (średnica wew. ), obj. roztworu naświetlanego 40,l dm 3 ; powierzchnia naświetlana ; moduł umieszczony na wieży wyposażonej w dwuosiowy system nadążania za słońcem 37,4 0,29 System średniego wzmacniania, 4 paraboliczne kolektory rynnowe z rurkami ze szkła borokrzemowego (średnica wew. ), obj. roztworu naświetlanego 40,l dm 3 ; powierzchnia naświetlana ; 10,1 0,08 System niskiego wzmacniania; 3 statyczne moduły zorientowane na południe ustawione pod kątem 37 (celem uzyskania max. efektywności rocznej) Każdy moduł wyposażony w 3m 2 powierzchni naświetlanej, obj. naświetlanego 18,8 1,51 roztworu 36 dm 3 w każdym module, rurki absorbujące wykonane z fluoropolimerów o średnicy wew. Bez systemu wzmacniania promieniowania, ścieki ze zbiornika magazynowy o obj. 250 dm 3 podawane pompa do płaskiego fotoreaktora, całkowita pow. naświetlana 1,23 m 2 2,8 0,19 Laboratoryjny Fotoreaktor cylindryczny, oczyszczane ścieki przepływają szczeliną pomiędzy dwoma cylindrami (szkło Duran, średnica wew. 215 oraz, powierzchnia naświetlana 2700 cm 2 ), obj. naświetlanego roztworu 5,75 dm 3, źródła promieniowania: średniociśnieniowa lampa rtęciowa (400 W, Osram Ultra Tech) 6,9 0,26 Porównanie efektywności oczyszczania ścieków zawierających 1 mm 4-chlorofenolu (TOC 0 72 ppm) w różnych typach fotoreaktorów zasilanych promieniowaniem słonecznym z fotoreaktorem laboratoryjnym wyposażonym w sztuczne źródło promieniowania

37

38 Solar photocatalytic detoxification of water containing specific organic pollutants: pesticides and dyes Participants: LACE, Laboratoire d Application de la Chimie à l Environnemen (France) PSA (Spain) Millennium Inorganic Chemicals Ahlstrom Paper Group Domaine Louis Latour Ecole Nationale d Ingénieurs de Gabès (Tunisie)

39 Photoreactor used for destruction of contaminants: 1- Heraeus medium pressure mercury lamp, 2- magnetic stirrer, 3- rotameter, 4- UV lamp cooling system

40 ASH reactor system for contaminants destruction: 1- tank, 2- gas-sparged reactor, 3- UV-lamp header, 4- cycloneheader

41 The ASH as photocatalytic reactor

42 The row of photoreactors (top picture) and the 500 gallon storage tank (bottom right picture) are primary components of the R2000 Solar Oxidation Facility. The R2000 was installed at a remediation site in Gainesville, Florida alongside an active carbon absorption system (bottom left picture).

43 Fotoreaktor homogeniczny 1 promiennik UV 2 płaszcz chłodzący 3 zbiornik reakcyjny 4 wymiennik ciepła 5 - pompa

44 Urządzenie do fotopolimeryzacji 1 zasobnik monomeru 2 taśma przesuwna 3 promienniki

45 Źródła promieniowania Lampy rtęciowe Niskociśnieniowe ( ~254 nm) Średniociśnieniowe Wysokociśnieniowe Lampy sodowe Lampy ksenonowe Lasery (promieniowanie monochromatyczne) SŁOŃCE

46 widmo liniowe widmo ciagłe

47 Promieniowanie laserowe: ZALETY Możliwość uzyskania dowolnej części promieniowania od nadfioletu do głębokiej podczerwieni Dużą intensywność promieniowania umożliwiająca prowadzenie procesu w praktycznej skali Możliwość uzyskania impulsów promieniowania o długości współmiernej lub krótszej od czasu życia wzbudzonych cząsteczek Przestrzenna i czasowa spójność umożliwiająca daleko idące wykorzystanie energii i wiązki

48 Zastosowanie procesów fotochemicznych w ochronie środowiska Oczyszczanie wód i ścieków Oczyszczanie powietrza Powierzchnie samoczyszczące Rozkład wody Fotokonwersja CO 2

49 "photocatalytic reaction" can be defined as a chemical reaction induced by photoabsorption of a solid material, or "photocatalyst", which remains unchanged during the reaction Prof. Bunsho Othani

50 Mechanizm fotokatalizy heterogenicznej rodniki OH Potencjał utleniający rodników hydroksylowych 2,74 V

51 Półprzewodniki w fotokatalizie heterogenicznej

52 Efektywność degradacji zanieczyszczeń Budowa i stężenie zanieczyszczeń Intensywność promieniowania Zawartość TiO 2 oraz O 2 Medium reakcyjne (faza gazowa/ ciekła) Właściwości TiO 2 : Powierzchnia właściwa Odmiana krystaliczna (anataz/ rutyl) Obecność domieszek

53 Fotokonwersja CO 2 TiO 2 + hv e + h + 2H 2 O + 4h + O 2 + 4H + H + + e H CO 2 + e CO 2 Formowanie metanu: CO 2 + 8H + + h + CH 4 + 2H 2 O Formowanie kw. mrówkowego: CO 2 + 2H + h + HCOOH Formowanie etanolu: CO H + 2h + C 2 H 5 OH + 3H 2 O There are two important species involved in the photoreduction of CO 2 with H 2 O: H (hydrogen atom) and CO 2 (carbon dioxide anion radical) which are produced by the electron transfer from the conduction band of TiO 2

54 Fotokonwersja CO 2 do lekkich węglowodorów TiO 2 3 CO H 2 O CH CO + 3 O 2 h Realizacja fotokonwersji: faza wodna (TiO 2 w formie wodnej zawiesiny) faza gazowa (TiO 2 w formie unieruchomionej) Możliwość współgenerowania wodoru TiO 2 2 H 2 O 2 H 2 + O 2 h Układ do fotokonwersji w fazie gazowej Układ do fotokonwersji w wodnej zawiesinie TiO 2

55 Paliwa kopalne 95% Produkcja wodoru Czyste technologie oraz energia odnawialna 5% Elektroliza wody Fotokatalityczny rozkład wody

56 1.23 ev Fotokatalityczny rozkład wody Energy Levels hv TiO 2 CB level e H 2 H 2 O Honda-Fujishima effect E H2/H2O E O2/H2O e H 2 O O 2 TiO 2 VB level h + The CB level should be more negative than the hydrogen evolution level (E H2/H2O ) to initiate hydrogen production, while the VB should be more positive than water oxidation level (E O2/H2O ) for efficient oxygen production from water by photocatalysis Foujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972)

57 Niska efektywność procesu konwersji energii słonecznej do wodoru podczas fotokatalitycznego rozkładu wody jest efektem: Rekombinacja fotogenerowanych par elektrondziura; Szybka reakcja wtórna rozkład cząsteczek wody na wodór oraz tlen jest procesem energochłonnym tak więc łatwo zachodzi reakcja wtórna (rekombinacja H 2 oraz O 2 do cząsteczek H 2 O); Niezdolność czystego TiO 2 do absorpcji promieniowania z zakresu widzialnego pasmo wzbronione czystego TiO 2 wynosi około 3,2 ev tylko promieniowanie z zakresu UV może być absorbowane.

58 Jak podnieść efektywność fotokatalitycznego generowania wodoru? Dodatki chemiczne donory elektronów węglany Modyfikacja TiO 2 modyfikacja powierzchni metalami szlachetnymi domieszkowanie (metalami/ niemetalami) sensybilizacja barwnikami kompozyty półprzewodnikowe

59 Powierzchnie samoczyszczące G.B.S Co., Ltd Pilkington Activ TM Ceramics Research Institute Mitsubishi Materials Co.

60 Powierzchnie samoczyszczące

61 Powierzchnie samoczyszczące

62 Zmiana kąta zwilżania względem wody na powierzchni naświetlanego TiO 2

63 Lotus Effect

64 Produkty w których wykorzystano fotokatalityczne właściwości TiO 2 Produkt Systemy do oczyszczania powietrza zawierające TiO 2, np. eliminacji NO x Biały papier zawierający TiO 2 Włókna teksylne zawierające TiO 2 o działaniu bakteriobójczym Systemy samo-oczyszczające, superhydrofilowe, coating materiały pokryciowe do samochodów Dźwiękoszczelne ściany zawierające TiO 2 Lampy pokrywane fotokatalizatorem Cement zawierający TiO 2 Materiały stosowane do pokrywania elementów architektonicznyhc Namioty z samooczyszczającą się powierzchnią Szklane zastawy stołowe Anteny zewnętrzne Firma Sharp Co., Ltd Daikin Ind., Ltd Toyota Home, Ltd. Furukawa Kikai-Kinzoku., Inc. Mitsubishi Paper Mills, Inc. Kurare, Inc. Toto, Inc. Furukawa Kikai-Kinzoku., Inc. Toshiba Ligh. & Tech., Inc. Taiheyou Cement, Inc. National, Inc. Taiyo Ind., Inc. Kato Machinery, Ltg NTT Adv. Tech., Inc.

65 Oczyszczanie powietrza z tlenków azotu i siarki JANIS Co., Ltd.

66 Powierzchnie samoczyszczące Potencjalne zastosowania Biurowce/drapacze chmur (aluminiowe panele) Hotele, centra konferencyjne, wieże, centra handlowe, dworce kolejowe, pociągi Okna szklane (mogą tracić na przejrzystości!!) Panele z tworzyw sztucznych

67 Powierzchnie samoczyszczące ZALETY Redukcja kosztów oraz trudności utrzymania w czystości Automatyczne usuwanie/destrukcja zanieczyszczeń w atmosferze pochodzących ze spalin samochodowych i tym samym lepsza jakość powietrza w aglomeracjach miejskich Technologia przyjazna środowisku

68 Tkaniny namiotowe impregnowane TiO 2

69 Kafle/płytki ceramiczne stosowane na zewnątrz impregnowane TiO 2 A. Kafelki pokryte fotokatalityczną superhydrofilową warstwą B. zwykłe kafle

70 Szkło, które nie ulega zaparowaniu Zwykle na powierzchni szkła, podczas kontaktu z wilgotnym powietrzem, tworzą się kropelki wody - powierzchnia ulega zaparowaniu Na powierzchni szklanej pokrytej TiO 2, woda tworzy jednolita warstwę powierzchnia nie ulega zaparowaniu

71 Kafle/płytki ceramiczne stosowane w pomieszczeniach impregnowane TiO 2 Kafle pokrywane TiO 2 stosowane w pomieszczeniach szpitalnych wykazują powierzchniowy efekt antyseptyczny oraz powodują spadek ilości bakterii a powietrzu

72 KARTKÓWKA Narysuj spektrum promieniowania słonecznego

PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4 PROCESY INICJOWANE ŚWIATŁEM

PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4 PROCESY INICJOWANE ŚWIATŁEM PODSTAWY TECHNOLOGII OGÓLNEJ wykład 4 PROCESY INICJOWANE ŚWIATŁEM Procesy inicjowane światłem Wykorzystanie energii słonecznej w procesach technologicznych na przestrzeni wieków Zalety i ograniczenia procesów

Bardziej szczegółowo

Zaawansowane techniki utleniania Wprowadzenie do AOPs Fotokataliza homogeniczna i heterogeniczna. Adriana Zaleska-Medynska Wykład 6

Zaawansowane techniki utleniania Wprowadzenie do AOPs Fotokataliza homogeniczna i heterogeniczna. Adriana Zaleska-Medynska Wykład 6 Zaawansowane techniki utleniania Wprowadzenie do AOPs Fotokataliza homogeniczna i heterogeniczna Adriana Zaleska-Medynska Wykład 6 Wykład 6 1. Źródła promieniowania 2. Procesy fotochemiczne oddziaływania

Bardziej szczegółowo

TECHNOLOGIE MATERIAŁÓW. dr inż. Anna Zielińska-Jurek Katedra Technologii Chemicznej pok. 026 Ch.A., tel

TECHNOLOGIE MATERIAŁÓW. dr inż. Anna Zielińska-Jurek Katedra Technologii Chemicznej pok. 026 Ch.A., tel TECHNOLOGIE MATERIAŁÓW BUDOWLANYCH dr inż. Anna Zielińska-Jurek Katedra Technologii Chemicznej pok. 026 Ch.A., tel. 58 347 29 37 e-mail: annjurek@pg.gda.pl TiO 2 właściwości i zastosowanie Ditlenek tytanu

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

PRACOWNIA CHEMII. Reakcje fotochemiczne (Fiz3)

PRACOWNIA CHEMII. Reakcje fotochemiczne (Fiz3) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Reakcje fotochemiczne

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Sztuczna fotosynteza utopia czy szansa na efektywną konwersję energii słonecznej w paliwa?

Sztuczna fotosynteza utopia czy szansa na efektywną konwersję energii słonecznej w paliwa? Forum Czystej Energii, Poznań, 24.11.2009 Sztuczna fotosynteza utopia czy szansa na efektywną konwersję energii słonecznej w paliwa? Jan HUPKA i Adriana ZALESKA Department of Chemical Technology Chemical

Bardziej szczegółowo

Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET)

Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Wstęp W wyniku absorpcji promieniowania elektromagnetycznego o odpowiedniej długości fali (najczęściej

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

FOTOKATALITYCZNY ROZKŁAD BARWNIKÓW

FOTOKATALITYCZNY ROZKŁAD BARWNIKÓW Ćwiczenie 10 FOTOKATALITYCZNY ROZKŁAD BARWNIKÓW Zagadnienia: Poziomy energii w ciele stałym (lit. [1], rozdz. 3.6); teoria pasmowa ciała stałego (lit. [7] rozdz. 14.10); źródła promieniowania ultrafioletowego,

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata? Woda Najpospolitsza czy najbardziej niezwykła substancja Świata? Cel wykładu Odpowiedź na pytanie zawarte w tytule A także próby odpowiedzi na pytania typu: Dlaczego woda jest mokra a lód śliski? Dlaczego

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium Kierunek: Elektrotechnika wersja z dn. 04.05.2018 Promieniowanie optyczne Laboratorium Temat: OCENA WPŁYWU LAMP ELEKTRYCZNYCH NA SKUTECZNOŚĆ PROCESU FOTOSYNTEZY Opracowanie wykonano na podstawie: [1] DIN

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Fotochemia 2010/2011

Fotochemia 2010/2011 Fotochemia 200/20 Prof. dr hab. Bronisław Marciniak Zakład Fizyki Chemicznej Wydział Chemii UAM Liczba godz. wykładów: 30 Liczba godz. laboratoriów: 30 Fotochemia (200/20). Promieniowanie elektromagnetyczne

Bardziej szczegółowo

SŁOŃCEM CZYŚCI I DESZCZEM

SŁOŃCEM CZYŚCI I DESZCZEM SŁOŃCEM CZYŚCI I DESZCZEM z MECOPROTECT Moc aktywacji fotokatalitycznej Z biegiem czasu substancje organiczne i inne zanieczyszczenia z otaczającego nas środowiska odkładają się na powierzchniach do których

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Wybrane Działy Fizyki

Wybrane Działy Fizyki Wybrane Działy Fizyki energia elektryczna i jadrowa W. D ebski 25.11.2009 Rodzaje energii energia mechaniczna energia cieplna (chemiczna) energia elektryczna energia jadrowa debski@igf.edu.pl: W5-1 WNZ

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA INŻYNIERII PROCESOWEJ I TECHNOLOGII CHEMICZNEJ TECHNOLOGIE OCHRONY POWIETRZA

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA INŻYNIERII PROCESOWEJ I TECHNOLOGII CHEMICZNEJ TECHNOLOGIE OCHRONY POWIETRZA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA INŻYNIERII PROCESOWEJ I TECHNOLOGII CHEMICZNEJ TECHNOLOGIE OCHRONY POWIETRZA Powierzchnie samoczyszczące w technologiach ochrony powietrza Gdańsk, 2019 1.

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

Laboratorium Podstawowe procesy jednostkowe w technologii chemicznej. Fotodegradacja związków organicznych w wodzie

Laboratorium Podstawowe procesy jednostkowe w technologii chemicznej. Fotodegradacja związków organicznych w wodzie Laboratorium Podstawowe procesy jednostkowe w technologii chemicznej Ćwiczenie 3 Fotodegradacja związków organicznych w wodzie Miejsce F1, s. 107 Prowadzący Dr inż. Katarzyna Pstrowska, F1/203 Konsultacje:

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Zaawansowane techniki utleniania. Mokre utlenianie powietrzem Adriana Zaleska-Medynska. Wykład 9

Zaawansowane techniki utleniania. Mokre utlenianie powietrzem Adriana Zaleska-Medynska. Wykład 9 Zaawansowane techniki utleniania Adriana Zaleska-Medynska Wykład 9 Nowoczesne Procesy Utleniania (Advanced Oxidation Processes) Utlenianie fotokatalityczne Utlenianie w wodzie nadkrytycznej Termohydroliza

Bardziej szczegółowo

dr hab. inż. Anna Zielińska-Jurek Gdańsk, 18 lutego 2019 Katedra Inżynierii Procesowej i Technologii Chemicznej Wydział Chemiczny

dr hab. inż. Anna Zielińska-Jurek Gdańsk, 18 lutego 2019 Katedra Inżynierii Procesowej i Technologii Chemicznej Wydział Chemiczny dr hab. inż. Anna Zielińska-Jurek Gdańsk, 18 lutego 2019 Katedra Inżynierii Procesowej i Technologii Chemicznej Politechnika Gdańska ul. Narutowicza 11/12 Recenzja rozprawy doktorskiej Pana mgr inż. Jakuba

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII Zadanie 1. Na rysunku przedstawiono fragment układu okresowego pierwiastków. Dokoocz zdania tak aby były prawdziwe. Wiązanie jonowe występuje w związku chemicznym

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Heraeus LAMPY ZANURZENIOWE UV DO FOTOCHEMII

Heraeus LAMPY ZANURZENIOWE UV DO FOTOCHEMII Heraeus Sp. z o.o. 0179 Warszawa, ul. Duchnicka 3 tel: 22/3323, fax: 22/332 email: kendrolab@kendrolab.pl LAMPY ZANURZENIOWE UV DO FOTOCHEMII 1 LAMPY ZANURZENIOWE W ZASTOSOWANIACH LABORATORYJNYCH I PRZEMYSŁOWYCH

Bardziej szczegółowo

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH POLICJA KUJAWSKO-POMORSKA Źródło: http://www.kujawsko-pomorska.policja.gov.pl/kb/dzialania-policji/kryminalistyka/aktualnosci/arciwmlb/2545,wybrane-zjawi SKA-OPTYKI-W-BADANIACH-KRYMINALISTYCZNYCH.html

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

Lekcja 81. Temat: Widma fal.

Lekcja 81. Temat: Widma fal. Temat: Widma fal. Lekcja 81 WIDMO FAL ELEKTROMAGNETCZNYCH Fale elektromagnetyczne można podzielić ze względu na częstotliwość lub długość, taki podział nazywa się widmem fal elektromagnetycznych. Obejmuje

Bardziej szczegółowo

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę

Bardziej szczegółowo

Otrzymywanie wodoru M

Otrzymywanie wodoru M Otrzymywanie wodoru M Własności wodoru Wodór to najlżejszy pierwiastek świata, składa się on tylko z 1 protonu i krążącego wokół niego elektronu. W stanie wolnym występuje jako cząsteczka dwuatomowa H2.

Bardziej szczegółowo

Zadanie 4. Mrówczan metylu ma taki sam wzór sumaryczny jak: A. octan etylu. C. kwas mrówkowy. B. octan metylu. D. kwas octowy.

Zadanie 4. Mrówczan metylu ma taki sam wzór sumaryczny jak: A. octan etylu. C. kwas mrówkowy. B. octan metylu. D. kwas octowy. Pieczęć KONKURS CHEMICZNY dla uczniów gimnazjów województwa lubuskiego 3 marca 2011 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu Chemicznego. Przed przystąpieniem do rozwiązywania

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

SUBSTANCJE CHEMICZNE I ICH PRZEMIANY

SUBSTANCJE CHEMICZNE I ICH PRZEMIANY DOPUSZCZAJĄCĄ DZIAŁ SUBSTANCJE CHEMICZNE I ICH PRZEMIANY -zna zasady bhp obowiązujące w pracowni chemicznej -nazywa sprzęt i szkło laboratoryjne używane w pracowni chemicznej -wie, że substancje charakteryzują

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET)

WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET) Ćwiczenie 9 WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET) Zagadnienia: procesy dezaktywacji stanów elektronowo wzbudzonych

Bardziej szczegółowo

Cel ćwiczenia: Celem ćwiczenia jest zapoznanie z właściwościami optycznymi tkanek i wybranych chromoforów.

Cel ćwiczenia: Celem ćwiczenia jest zapoznanie z właściwościami optycznymi tkanek i wybranych chromoforów. Wydział PPT Laboratorium PODSTAWY BIOFOTONIKI Ćwiczenie nr 1 Zastosowania spektroskopii Cel ćwiczenia: Celem ćwiczenia jest zapoznanie z właściwościami optycznymi tkanek i wybranych chromoforów. 1. Wprowadzenie

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany Wymagania programowe na poszczególne oceny Chemia Kl.1 I. Substancje chemiczne i ich przemiany Ocena dopuszczająca [1] zna zasady bhp obowiązujące w pracowni chemicznej nazywa sprzęt i szkło laboratoryjne

Bardziej szczegółowo

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu. SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

REDUXCO. Katalizator spalania. Leszek Borkowski DAGAS sp z.o.o. D/LB/6/13 GreenEvo

REDUXCO. Katalizator spalania. Leszek Borkowski DAGAS sp z.o.o. D/LB/6/13 GreenEvo Katalizator spalania DAGAS sp z.o.o Katalizator REDUXCO - wpływa na poprawę efektywności procesu spalania paliw stałych, ciekłych i gazowych w różnego rodzaju kotłach instalacji wytwarzających energie

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV Informacja do zadań 1. i 2. Proces spalania pewnego węglowodoru przebiega według równania: C 4 H 8(g) + 6O 2(g) 4CO 2(g) + 4H 2 O (g) + energia cieplna Zadanie 1. (1 pkt) Procesy chemiczne można zakwalifikować

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1 Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja Zadanie 1 (2 pkt.) Zmieszano 80 cm 3 roztworu CH3COOH o stężeniu 5% wag. i gęstości 1,006 g/cm 3 oraz 70 cm 3 roztworu CH3COOK o stężeniu 0,5 mol/dm 3. Obliczyć ph powstałego roztworu. Jak zmieni się ph

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Moduł 5: Efektywność energetyczna w urządzeniach elektrotermicznych

Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Moduł 5: Efektywność energetyczna w urządzeniach elektrotermicznych Studia odyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Efektywność energetyczna w urządzeniach elektrotermicznych dr hab.

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu

Bardziej szczegółowo

PRACA KONTROLNA Z CHEMII NR 1 - Semestr I 1. (6 pkt) - Krótko napisz, jak rozumiesz następujące pojęcia: a/ liczba atomowa, b/ nuklid, c/ pierwiastek d/ dualizm korpuskularno- falowy e/promieniotwórczość

Bardziej szczegółowo