POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH
|
|
- Magda Janik
- 8 lat temu
- Przeglądów:
Transkrypt
1 POLICJA KUJAWSKO-POMORSKA Źródło: SKA-OPTYKI-W-BADANIACH-KRYMINALISTYCZNYCH.html Wygenerowano: Piątek, 6 stycznia 2017, 20:20 WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH Świat, który nas otacza jest pełen zjawisk, na które nie zwracamy uwagi w codziennym wirze obowiązków. Wiele z nich znalazło zastosowanie w kryminalistyce. Świat, który nas otacza jest pełen zjawisk, na które nie zwracamy uwagi w codziennym wirze obowiązków. Wiele z nich znalazło zastosowanie w kryminalistyce. Na wstępie należy przedstawić wybrane pojęcia-zjawiska optyczne, które są wykorzystywane w kryminalistyce. Newton jako pierwszy poprawnie sformułował zagadnienie barwnych pasm, które są wytwarzane przy rozszczepianiu światła słonecznego przy użyciu pryzmatów, otrzymując widmo o ciągłym przejściu od czerwieni do fioletu poprzez wszystkie barwy tęczy. Barwniki - związki chemiczne, które intensywnie absorbują promieniowanie elektromagnetyczne w obszarze widzialnym, bliskiej podczerwieni oraz nadfioletu, a następnie dalej przekształcają pochłoniętą energię. Przekazują tę zdolność przedmiotom, na które są nałożone. Wybielacze optyczne - związki, które część pochłoniętej energii przekształcają na energię cieplną i przekazują ją otoczeniu, a pozostałą zaabsorbowaną energię wydzielają w postaci promieniowania o dłuższej fali np. pochłaniają promieniowanie elektromagnetyczne w nadfiolecie i emitują w obszarze niebieskim. Światło - fala elektromagnetyczna, promieniowanie elektromagnetyczne. Długość fali jest zdefiniowana jako stosunek prędkości światła do częstości drgań elektromagnetycznych. W 1807 roku Thomas Young wykazał, że światło jest rzeczywiście falą i zmierzył jej średnią długość tj. ok. 570 nm za pomocą następującego układu przedstawionego na poniższym rysunku:
2 Maksimum interferencyjne uzyskujemy, gdy różnica dróg optycznych jest równa zeru lub całkowitej liczbie długości fal. Natomiast minimum, gdy różnica dróg optycznej wynosi nieparzystą wielokrotność połowy długości fali. Dyfrakcja światła - ugięcie światła. Gdy światło natrafia na przeszkody, następuje odchylenie od prostoliniowości rozchodzenia się światła. Następuje rozmycie granicy cienia i światła - pojawiają się prążki na granicy cienia. Fresnel zjawisko ugięcia fali zbadał za pomocą następującego schematu doświadczalnego: Luminescencja (według Wawiłowa) nadmiar emisji promieniowania danego ciała nad jego promieniowaniem cieplnym w danym obszarze widma i w danej temperaturze, gdy emisja ta wykazuje trwałość w czasie min. rzędu 10-10s[1]. Ze względu na czas zaniku świecenia luminescencje dzielimy na fluorescencje, którą charakteryzuje krótki czas zaniku oraz fosforescencje, której czas zaniku jest długi. Mechanizm procesów fluorescencji oraz fosforescencji przedstawia tzw. schemat Jabłońskiego.
3 Aby cząsteczka wyemitowała foton musi najpierw zostać wzbudzona. Najprostszym sposobem wzbudzenia cząsteczki jest, dostarczenie jej kwantu promieniowania o energii równej minimum różnicy między poziomami energetycznymi stanu podstawowego oraz stanu wzbudzonego. Aby zrozumieć istotę zjawiska luminescencji należy przytoczyć następującą informację. Otóż cząsteczka po zaabsorbowaniu (pochłonięciu) kwantu energii hν1 dąży do pozbycia się nadmiaru energii i powrotu do stanu równowagi termicznej. Nadmiaru energii pozbywa się na dwa sposoby tj. promieniście lub bezpromieniście. Bezpromieniście cząsteczka pozbywa się nadmiaru energii oscylacyjnej i rotacyjnej podczas zderzeń nieelastycznych. W sposób promienisty natomiast cząsteczka pozbywa się nadmiaru energii wzbudzenia elektronowego. Powróćmy myślami do schematu Jabłońskiego. W wyniku pochłaniania promieniowania atom przechodzi ze stanu podstawowego S0 do stanu, który jest stanem energetycznie wyższym. Przyjmijmy, iż będzie to stan oznaczony na schemacie jako S2. W tym przejściu jeden z dwóch elektronów najwyższego obsadzonego w cząsteczce orbitalu molekularnego HOMO (Highest Occupied Molecular Orbital) przechodzi na niższy orbital nieobsadzony przez bezpromienistą dezaktywację po czasie około 10-13s tzw. LUMO - na niższy poziom oscylacyjny stanu S2. Dwa elektrony na orbitalu HOMO zgodnie z zakazem Pauliego mogą mieć antyrównolegle skierowane spiny. Wówczas sumaryczna liczba spinowa wynosi zero. Taki stan podstawowy większości cząsteczek określony jest jako stan singletowy. Atom przez cały czas traci energię i przez bezpromieniste straty energii przechodzi do stanu S1 o czasie życia 10-8s. Następnie cząsteczka powraca już do stanu podstawowego S0 emitując tym samym światło fluorescencyjne. Jeśli cząsteczka emituje foton ze stanu singletowego mamy do czynienia ze zjawiskiem fluorescencji. W momencie, gdy cząsteczka przebywa w stanie singletowym może dojść do zmiany wzajemnej orientacji spinów obu elektronów tj. z antyrówloległej na równoległą. Wówczas zachodzi przejście tzw. interkombinacyjne do stanu tripletowego. Emisję fotonu ze stanu tripletowego nazywamy fosforescencją. Wszystkie powyżej przedstawione zjawiska fizyczne znalazły zastosowanie podczas badań dokumentów oraz podczas ujawnianie śladów kryminalistycznych. Zabezpieczenia dokumentów można podzielić na trzy poziomy zabezpieczeń: - poziom 1 - dla człowieka z ulicy, - poziom 2 dla urzędników, - Poziom 3 specjalistyczny. Zabezpieczenia ze względu na technologię wprowadzania dzielimy na: - zabezpieczenia wprowadzane w produkcji podłoża dokumentu,
4 - zabezpieczenia wprowadzane w procesie drukowania, - zabezpieczenia specjalne wprowadzane w niezależnym procesie technologicznym. Podłoże dokumentu: ZNAK WODNY Znaki wodne ze względu na stopień przezroczystości dzielimy na: a) znaki wodne jednotonowe: - jasnolinijne jaśniejsze od podstawowego prześwitu podłoża, - ciemnolinijne ciemniejsze od podstawowego prześwitu podłoża, b) znaki wodne wielotonowe (kombinowane) jaśniejsze i ciemniejsze występujące w różnych układach. Dokument poddany działaniu promieni przechodzących: WŁÓKNA I BROKI: Zabezpieczenie dokumentu za pomocą włókien i broków polega na wprowadzeniu ich do masy papierniczej w
5 ściśle określonej ilości. Wykonane są one z włókna lnianego lub bawełny jak również są wełniane lub syntetyczne. Włókna mają długość około 3-5mm. Broki to krążki syntetyczne średnicy 1-1,5mm. NITKA ZABEZPIECZAJĄCA: Nitka zabezpieczająca jest wykonana z tworzywa sztucznego, metalizowana lub jako nitka holograficzna. Najczęściej jest to nitka szerokości 0,5-1,5mm. Nitka zabezpieczająca wyczuwalna jest w dotyku i widzialna w świetle przechodzącym. Na nitkach stosuje się dodatkowe zabezpieczenie nakładające na nią mikrodruk lub pokrywając ją substancjami, które wykazują luminescencję w promieniach ultrafioletowych.
6 Farby zabezpieczające: Farby stosowane do zabezpieczeń dokumentów: - o właściwościach magnetycznych, przewodzących prąd elektryczny, - o zróżnicowanej absorpcji w podczerwieni, - widzialne w promieniach ultrafioletowych o długości fali 254nm i 356nm, - metalizowane, - zmiennooptyczne, - nieodporne na rozpuszczalniki lub działanie wody, - metameryczne, - antystockesowskie, Farba zmienna optycznie (interferencyjna) post. mgr Wojciech Apiecionek mgr inż. Krzysztof Wilke Autor: Publikacja:
7 Ocena: 0/5 (0) Tweetnij
PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
Bardziej szczegółowoStałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Bardziej szczegółowoCel ćwiczenia: Celem ćwiczenia jest zapoznanie z właściwościami optycznymi tkanek i wybranych chromoforów.
Wydział PPT Laboratorium PODSTAWY BIOFOTONIKI Ćwiczenie nr 1 Zastosowania spektroskopii Cel ćwiczenia: Celem ćwiczenia jest zapoznanie z właściwościami optycznymi tkanek i wybranych chromoforów. 1. Wprowadzenie
Bardziej szczegółowoĆw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET)
Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Wstęp W wyniku absorpcji promieniowania elektromagnetycznego o odpowiedniej długości fali (najczęściej
Bardziej szczegółowoWidmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Bardziej szczegółowoZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Bardziej szczegółowoWłaściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Bardziej szczegółowoWykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowoTemat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
Bardziej szczegółowoOPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Bardziej szczegółowoPRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru
Bardziej szczegółowoPromieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Bardziej szczegółowoPrzejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Bardziej szczegółowoPDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Bardziej szczegółowoLekcja 81. Temat: Widma fal.
Temat: Widma fal. Lekcja 81 WIDMO FAL ELEKTROMAGNETCZNYCH Fale elektromagnetyczne można podzielić ze względu na częstotliwość lub długość, taki podział nazywa się widmem fal elektromagnetycznych. Obejmuje
Bardziej szczegółowon n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Bardziej szczegółowoSPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Bardziej szczegółowoJAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
Bardziej szczegółowoTechniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Bardziej szczegółowoTrzy rodzaje przejść elektronowych między poziomami energetycznymi
Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów
Bardziej szczegółowoII.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i
Bardziej szczegółowoSKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury
Bardziej szczegółowoSPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoDyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Bardziej szczegółowoRozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoBARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Wzrok człowieka reaguje na fale elektromagnetyczne w zakresie 380-760nm. Potocznie
Bardziej szczegółowoSpektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Bardziej szczegółowoJan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
Bardziej szczegółowoPRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)
Bardziej szczegółowoAnaliza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Bardziej szczegółowoIII.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Bardziej szczegółowoĆwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Bardziej szczegółowoSPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Bardziej szczegółowoPRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Bardziej szczegółowoEKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek
Bardziej szczegółowoOZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Bardziej szczegółowoSPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
Bardziej szczegółowoKierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium
Kierunek: Elektrotechnika wersja z dn. 04.05.2018 Promieniowanie optyczne Laboratorium Temat: OCENA WPŁYWU LAMP ELEKTRYCZNYCH NA SKUTECZNOŚĆ PROCESU FOTOSYNTEZY Opracowanie wykonano na podstawie: [1] DIN
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoLasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Bardziej szczegółowoFizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Bardziej szczegółowoLasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowo6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Bardziej szczegółowoFale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.
Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego
Bardziej szczegółowoWYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET)
Ćwiczenie 9 WYZNACZANIE ODLEGŁOŚCI KRYTYCZNEJ POMIĘDZY CZĄSTECZKAMI DONORA I AKCEPTORA W PROCESIE REZONANSOWEGO PRZENIESIENIA ENERGII (FRET) Zagadnienia: procesy dezaktywacji stanów elektronowo wzbudzonych
Bardziej szczegółowoĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne.
ĆWICZENIE 44 BADANIE DYSPERSJI I. Wprowadzenie teoretyczne. Światło białe przechodząc przez ośrodek o współczynniku załamania n> na granicy ośrodka optycznie rzadszego i gęstszego ulega załamaniu. Jeżeli
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie
Bardziej szczegółowoLABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Bardziej szczegółowoDzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7
Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie
Bardziej szczegółowoPracownia fizyczna dla szkół
Imię i Nazwisko Widma świecenia pierwiastków opracowanie: Zofia Piłat Cel doświadczenia Celem doświadczenia jest zaobserwowanie widm świecących gazów atomowych i zidentyfikowanie do jakich pierwiastków
Bardziej szczegółowoŹródła światła. W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo lamp jarzeniowych nie jest ciągłe!
Źródła światła W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo ciągłe: ciało doskonale czarne Widmo emisyjne: linie emisyjne Linie absorpcyjne Widmo lamp jarzeniowych
Bardziej szczegółowoNiezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Bardziej szczegółowoRozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa
Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku
Bardziej szczegółowoĆwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoRys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Bardziej szczegółowoCiało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Bardziej szczegółowowymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Bardziej szczegółowoBARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Czym jest światło? Rozszczepienie światła białego przez pryzmat Fala elektromagnetyczna
Bardziej szczegółowoOptyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Bardziej szczegółowoWidmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Bardziej szczegółowoZwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Bardziej szczegółowoPROMIENIOWANIE ELEKTROMAGNETYCZNE, INTERAKCJA ŚWIATŁA Z MATERIĄ
PROMIENIOWANIE ELEKTROMAGNETYCZNE, INTERAKCJA ŚWIATŁA Z MATERIĄ Rys historyczny Teoria zjawisk świetlnych przechodziła w historii kilka ważnych etapów. Pierwszy etap stanowiła teoria korpuskularna światła
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoŚwiatło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Bardziej szczegółowoSpektrometr optyczny
Ćwiczenie 83 Spektrometr optyczny Cel ćwiczenia Wyznaczenie długości fali widma liniowego par rtęci za pomocą spektrometru z siatką dyfrakcyjną. Wprowadzenie Spektrometrią nazywamy dział fizyki doświadczalnej
Bardziej szczegółowoProblemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Bardziej szczegółowoE (2) nazywa się absorbancją.
1/6 Celem ćwiczenia jest poznanie zjawiska absorpcji światła przez roztwory, pomiar widma absorpcji przy pomocy spektrofotometru oraz wyliczenie stężenia badanego roztworu. Promieniowanie elektromagnetyczne,
Bardziej szczegółowoOptyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018
Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja
Bardziej szczegółowoAtom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Bardziej szczegółowoEfekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
Bardziej szczegółowop.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)
O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych
Bardziej szczegółowoMikroskopia fluorescencyjna
Mikroskopia fluorescencyjna Mikroskop fluorescencyjny to mikroskop świetlny, wykorzystujący zjawisko fluorescencji większość z nich to mikroskopy tzw. epi-fluorescencyjne zjawisko fotoluminescencji: fluorescencja
Bardziej szczegółowoWzbudzony stan energetyczny atomu
LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoSpektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
Bardziej szczegółowoII. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet
II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne
Bardziej szczegółowoInformacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Bardziej szczegółowow13 54 Źródła światła Żarówka Żarówka halogenowa Świetlówka Lampa rtęciowa wysokoprężna Lampa sodowa wysokoprężna Lampa sodowa niskoprężna LED
54 Źródła światła Żarówka Żarówka halogenowa Świetlówka Lampa rtęciowa wysokoprężna Lampa sodowa wysokoprężna Lampa sodowa niskoprężna LED inkandescencyjne - żarówki luminescencyjne -lampy fluorescencyjne
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoSpektroskopia emisyjna. Fluorescencja i Fosforescencja
Spektroskopia emisyjna Fluorescencja i Fosforescencja Reguły wyboru przejścia między termami cząsteczkowymi =0, 1 S=0 g u g g u u + + - - + - Reguła Francka-Condona Najbardziej prawdopodobne są przejścia
Bardziej szczegółowoKulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę.
Widmo elektronowe Elektrony w molekule poruszają się wokół jąder, mają więc pewną energię kinetyczną. Ponieważ znajdują się one w polu sil elektrostatycznych przyciągania przez jądra i odpychania przez
Bardziej szczegółowoWykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Bardziej szczegółowoWykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek
Bardziej szczegółowoSF5. Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych
SF5 Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych Każda cząsteczka ma charakterystyczny dla siebie układ poziomów energetycznych elektronowych, oscylacyjnych i rotacyjnych, przy czym tych
Bardziej szczegółowoEmisja spontaniczna i wymuszona
Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i
Bardziej szczegółowoSpektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
Bardziej szczegółowoSPEKTROSKOPIA METODY BADAŃ SKŁADU CHEMICZNEGO Właściwości falowe promieniowania. Promieniowanie elektromagnetyczne
METODY BADAŃ SKŁADU CHEMCZNEGO SPEKTROSKOPA - jest nauką zajmującą się oddziaływaniem promieniowania elektromagnetycznego z materią. W metodach spektroanalitycznych wykorzystuje się pomiar natężenia promieniowania
Bardziej szczegółowo2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoFalowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
Bardziej szczegółowoSPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.
SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,
Bardziej szczegółowo