PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
|
|
- Laura Kaczor
- 7 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest: poznanie budowy układu regulacji prędkości obrotowej silnika prądu stałego oraz wpływu regulatorów: proporcjonalnego P i proporcjonalno-całkującego PI na pracę silnika, wyznaczenie podstawowych parametrów (współczynników wzmocnienia) głównych członów układu, wykreślenie charakterystyk mechanicznych napędu w układzie otwartej oraz zamkniętej pętli sprzężenia zwrotnego. ZAKRES NIEZBĘDNYCH WIADOMOŚCI TEORETYCZNYCH: znajomość regulatorów liniowych (P,PI,PID), ich transmitancji oraz odpowiedzi skokowej, struktura sterowania napędu elektrycznego, umiejętność czytania i wykreślania schematów kinematycznych układów napędowych maszyn, znajomość modelu silnika prądu stałego, zapis schematyczny, zrozumienie stosowanych oznaczeń, rachunek jednostek, umiejętność przejścia pomiędzy radianami a obrotami na minutę, znajomość zagadnień sterowania z zamkniętą pętlą sprzężenia zwrotnego, schemat zamkniętego i otwartego układu regulacji, definicje: uchyb, regulator, sprzężenie zwrotne, zadania regulatorów, źródła zakłóceń w układach regulacji, obliczanie momentu bezwładności dla brył: walca, rury, twierdzenie Steinera. LITERATURA Zawirski K., Deskur J., Kamczak T.: Automatyka napędu elektrycznego, Wyd. Politechniki Poznańskiej, Schmidt D.: Mechatronika, wyd. Rea, Kostro J.: Elementy, urządzenia i układy automatyki, wyd. WSIP Kosmol J.: Serwonapędy obrabiarek sterowanych numerycznie, wyd. WNT.
2 MODEL MATEMATYCZNY SILNIKA PRĄDU STAŁEGO Modelowanie silnika elektrycznego prądu stałego (DC), odbywa się poprzez analogię do analizy klasycznych obwodów elektrycznych. W modelu silnika elektrycznego występuje źródło zasilania charakteryzujące się napięciem Us. W konstrukcji silnika prądu stałego występuje uzwojenie, które posiada dwa charakterystyczne parametry oporność R oraz indukcyjność L. Występuje również sam silnik będący przetwornikiem elektromechanicznym, opisany jest stałą momentową KT. Taki opis jest prawdziwy dla zasilania uzwojeń silnika, podczas gdy wirnik silnika wykonuje ruch obrotowy indukowane jest napięcie a parametr opisujący wielkość tego napięcia w zależności od prędkości obrotowej zwany jest stałą elektromotoryczną KB. W statycznej analizie silnika prędkość obrotowa wału jest funkcją napięcia zasilającego, poniższe modelowanie dotyczy sytuacji zmiennych w czasie gdzie decydującą rolę odgrywają procesy dynamiczne. L U S R U B K B K T M I L T T OBC B Zredukowane obciążenie K Rys. 1 Schematyczne przedstawienie modelu silnika prądu stałego W sposób mechaniczny moment obrotowy siły T (1), można zapisać, jako moment bezwładności (w przypadku silnika DC sumaryczny moment bezwładności zredukowany na wał silnika), pomnożony przez przyspieszenie kątowe dω/dt. Następnym członem w tym równaniu jest moment pochodzący od tłumienia B (np. tarcie w mechanizmach i łożyskach łożyskach), pomnożony przez aktualną prędkość kątową ω(t). Sztywność skrętna wału K ma również znaczenie pomnożona przez kąt skręcenia φ jest kolejną składową równania. Ostatnim elementem jest moment obciążający TOBC, generowany np. przez zewnętrze źródło siły lub napędu (dodawany jest do równania bez szczegółowej analizy jego pochodzenia). Z punktu widzenia elektrotechnicznego moment obrotowy silnika T (2), to stała momentowa KT pomnożona przez aktualną wielkość prądu i(t). Porównując oba wyrażenia stronami otrzymuje się zależność na wyznaczenie aktualnej prędkości obrotowej wału silnika ω:
3 T = I L dω dt + B ω(t) + K φ(t) + T obc (1) T = K T i(t) (2) I L dω dt + B ω(t) + K φ(t) + T obc = K T i(t) (3) dω dt = K T i(t) B ω(t) K φ(t) T obc I L (4) ω = K T i(t) B ω(t) K φ(t) T obc I L (5) Analizując obwód od strony elektrotechnicznej można zapisać następującą równość: napięcie zasilania US równe jest prądowi i(t) pomnożonemu przez oporność uzwojeń silnika R, indukcyjności L pomnożonej przez zmianę prądu w czasie oraz napięciu UB wytwarzanemu podczas pracy, jako generator. Napięci UB jest zależne od stałej elektromotorycznej KB i aktualnej prędkości kątowej ω. Równanie 8 umożliwia wyznaczenie aktualnego prądu w układzie. U S = R i(t) + L di(t) dt + U B (6) V B = K B ω(t) (7) V S = R i(t) + L di(t) dt di(t) dt + K B ω (8) = 1 L (V s R i(t) K B ω (t)) (9) i(t) = 1 L (V s R i(t) K B ω (t)) (10) MODEL SYMULACYJNY SILNIKA PRĄDU STAŁEGO Środowiskiem użytym do przygotowania modelu jest Matlab Simulink. W modelu pominięto moment pochodzący od sztywności skrętnej układu przeniesienia napędu. Wprowadzone parametry pracy takie jak rezystancja i indukcyjność uzwojeń wirnika, stałe elektromotoryczna i momentowa dotyczą rzeczywistego silnika DC. Karta katalogowa została załączona na końcu tej instrukcji. Odczytać można z niej wielkość napięcia zasilania, maksymalny prąd ciągły, stałą czasową oraz maksymalną prędkość obrotową.
4 PRZEBIEG ĆWICZENIA INFORMACJE WSTĘPNE: 1. Proszę uruchomić model symulacyjny znajdujący się w katalogu automatyka na pulpicie komputera. 2. W modelu znajduje się regulator PI silnika, którego nastawy będą zmieniane (Kp oraz Ki): 3. Źródło prądu ma ograniczenie i jest w stanie zapewnić maksymalny prąd o wartości 10A. 4. Zmiana toru pętli sprzężenia zwrotnego odbywa się poprzez podwójne kliknięcie LPM na bloczku Manual Switch 5. Obciążenie zadawane jest skokowo. Wchodząc w ustawienia istnieje wybór wartości obciążenia oraz czasu aktywacji.
5 6. Tłumienie zależy od prędkości obrotowej. W modelu wprowadzamy je w bloku zaprezentowanym poniżej. Proszę zwrócić uwagę na jednostkę. 7. Moment bezwładności wprowadzany jest w bloku zaprezentowanym poniżej. Proszę zwrócić uwagę, że jest to operacja dzielenia. 8. Wyniki symulacji (czas, n_rzeczywista, n_zadana, prad, uchyb), zapisywane są w obszarze workspace oraz widoczne po wybraniu bloczka scope. 9. Z obszaru workspace należy wyeksportować (najlepiej poprzez kopiuj - wklej), do pliku xls po każdym eksperymencie symulacyjnym otrzymane rezultaty. Uwaga, każdorazowe uruchomienie symulacji zmienia wartości zmiennych w workspace. 10. Wykresy wykreślamy zgodnie z poleceniami w instrukcji oraz zasadami opisanymi w instrukcji do czwartego ćwiczenia. Wszystkie wykresy przedstawiać mają wyniki w dziedzinie czasu. 11. W ćwiczeniu tym należy przebadać pracę silnika DC w przeciągu 10 sekund. ZADANIA DO REALIZACJI 1. Proszę porównać rozruch silnika dla układu, w którym: sprężenie zwrotne jest aktywne (Kp = 2; Ki = 60), sprzężenie zwrotne jest wyłączone. Nastawa regulatora oraz zadana prędkość obrotowa podana jest przez prowadzącego. Wielkość obciążenia 0 Nm, zredukowany moment bezwładności kgm 2. (wykres 1[pętal otw.]: n_zadana(t), n_rzeczywista (t) uchyb (t); wykres 2 [pętal zam.]: n_zadana(t), n_rzeczywista (t) uchyb (t);). 2. Dla tych samych parametrów pracy proszę włączyć skokowy przyrost obciążenia (w układzie otwartym i zamkniętym). Czas i wartość podane przez prowadzącego. (wykres 1[pętal otw.]: n_zadana(t), n_rzeczywista (t) uchyb (t); wykres 2 [pętal zam.]: n_zadana(t), n_rzeczywista (t) uchyb (t);). 3. Zamodelowany silnik może pracować przy określonym prądzie ciągłym. Jaka jest maksymalna wielkość obciążenia wyrażona w Nm? Moment bezwładności kgm 2. Wielkość tłumienia jest podana przez prowadzącego. Odpowiedź słowna + wykres. 4. Dla jakiej wielkości tłumienia prąd podczas pracy ciągłej będzie wynosił % maksymalnego prądu ciągłego. Wielkość procentowa zadana przez prowadzącego (Odpowiedź słowna + wykres). 5. Jaka wielkość momentu bezwładności nieobciążonego napędu spowoduje, że prąd rozruchowy będzie równy wielkość podana przez prowadzącego. Proszę podać wymiary pręta wykonanego ze stali, aluminium oraz polietylenu (nastawy regulatora Kp = 2; Ki = 60) (Odpowiedź słowna + wykres).
6 6. Proszę wykonać badania napędu w zamkniętej pętli sprzężenia zwrotnego dla nastaw regulatora podanych przez prowadzącego (wszystkie serie na jednym wykresie). Moment bezwładności kgm 2, tłumienie 1 mnm/1000obr/min. 7. Zmieniając nastawy regulatora proszę uzyskać rozruch o charakterze oscylacyjnym. Moment bezwładności kgm 2, tłumienie 1 mnm/1000obr/min (wykres). 8. Proszę zmieniając nastawy regulatora PI oraz obserwować zmieniające się charakterystyki rozruchu proszę uzyskać możliwie jak najkrótszy czas rozruchu nie przekraczając przy tym wartości prądu zadanego przez prowadzącego (Zredukowany moment bezwładności 1.1 kgmm 2 ) wykres z najlepszymi wynikami + nastawy regulatora. SPRAWOZDANIE Ogólne wytyczne: Sprawozdanie powinno być wykonane na dostępnej formatce ( Sprawozdanie powinno być wykonane w sposób przejrzysty i czytelny dla odbiorcy. Sprawozdanie jest odpowiedziami na zadania przedstawione w instrukcji.
7 escap 28DT12 Grafitowo/miedziany system komutacji - 13 segmentów Silnik DC 27 Wat skala: 3:4 wymiary w mm masa: 200 g 28DT2R12 98 Typy uzwojenia -222E Mierzone wartoœæi 1 Mierzone napiêcie V 24 2 Prêdkoœæ biegu ja³owego rpm Moment utyku mnm(oz-in) 126 (17.8) 4 Œredni pr¹d biegu ja³owego ma Typowe napiêcie pocz¹tkowe V - Max. zalecane wartoœci 6 Max. pr¹d ci¹g³y A Max. moment ci¹g³y mnm (oz-in) 41 (5.8) 8 Max. przyspieszenie k¹towe 10 3 rad/s 2 82 Parametry wewnetrzne 9 Sta³a elektromotoryczna V/1000 rpm Sta³a momentowa mnm/a (oz-in/a) 32.5 (4.60) 11 Rezystancja zacisków ohm Wspó³czynnik R/k /Nms Indukcyjnoœæ wirnika mh Bezw³adnoœæ wirnika kgm Mechaniczna sta³a czasowa ms 12 Wytrzyma³oœæ termiczna: wirnika: 4 C/W silnik w powietrzu: 8 C/W Termiczna sta³a czasowa wirnika/statora: 18 s / 630 s Max. temperatura rdzenia: 155 C Zakres temperatur powietrza: -30 C do +125 C (-22 F do 176 F) Max. sta³a si³a osiowa na nacisk: 500 N Luz wzd³u ny: 150 µm Luz promieniowy: 25 µm Bicie wa³ka: 10 µm Max. obci¹ enie 5 mm od czo³a: : - ³o yska kulkowe: 10 N Silnik pasowany z ³o yskiem kulkowym Max. zalecana prêdkoœæ n (rpm) Max. ci¹g³a moc wyjœciowa Obszar pracy ci¹g³ej Obszar pracy tymczasowej M(mNm) Portescap 22 Specifications subject to change without prior notice
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 6) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:
Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego
Jakub Wierciak Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych
Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany
Symulacja pracy silnika prądu stałego
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 5) MECHANICZNE CZŁONY AUTOMATYKI CZŁON RÓŻNICZKUJĄCY RZECZYWISTY PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA Celem ćwiczenia jest
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
Zasady doboru mikrosilników prądu stałego
Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Typowy profil prędkości w układzie napędowym (Wierciak
Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego
Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego
Wykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE
UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji
Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych
Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Mikrosilniki prądu stałego cz. 2
Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,
Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:
A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami
Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych
Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:
Mikrosilniki prądu stałego cz. 2
Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,
Inteligentnych Systemów Sterowania
Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika
Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13
Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..
SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i
SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny
Dobór silnika serwonapędu. (silnik krokowy)
Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 4) MECHANICZNE CZŁONY AUTOMATYKI CZŁON OSCYLACYJNY PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA Celem ćwiczenia jest uzyskanie wykresów
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego
Ćwiczenie 3 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Urządzenia
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Napędy urządzeń mechatronicznych
1. Na rysunku przedstawiono schemat blokowy układu wykonawczego z napędem elektrycznym. W poszczególne bloki schematu wpisać nazwy jego elementów oraz wskazanych sygnałów. Napędy urządzeń mechatronicznych
Silniki prądu stałego. Wiadomości ogólne
Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment
Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu.
PRZYKŁAD C5 Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu. W charakterze przykładu rozpatrzmy model silnika klatkowego, którego parametry są następujące: Moc znamionowa
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Podstawy inżynierii sterowania Ćwiczenia laboratoryjne
Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Laboratorium nr 4: Układ sterowania silnika obcowzbudnego prądu stałego z regulatorem PID 1. Wprowadzenie Przedmiotem rozważań jest układ automatycznej
INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki
Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.
XLIV SESJA STUDENCKICH KÓŁ NAUKOWYCH KOŁO NAUKOWE MAGNESIK
XLIV SESJ STUDENCKICH KÓŁ NUKOWYCH KOŁO NUKOWE MGNESIK naliza własności silnika typu SRM z wykorzystaniem modeli polowych i obwodowych Wykonali: Miłosz Handzel Jarosław Gorgoń Opiekun naukow: dr hab. inż.
Problemy optymalizacji układów napędowych w automatyce i robotyce
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Automatyki Autoreferat rozprawy doktorskiej Problemy optymalizacji układów napędowych
Ćw. 18: Pomiary wielkości nieelektrycznych II
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych
MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2
MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium Ćwiczenie Hamulec magnetoreologiczny Katedra Automatyzacji Procesów Wydział Inżynierii Mechanicznej i Robotyki Akademia Górniczo-Hutnicza Ćwiczenie Cele:
Ćwiczenie EA1 Silniki wykonawcze prądu stałego
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
Laboratorium Maszyny CNC
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 5 Badanie dynamiki pozycjonowania stołu obrotowego w zakresie małych przemieszczeń Opracował: mgr inż. Krzysztof Netter
Zastosowania liniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy 1. Zapoznanie się z konstrukcją, zasadą działania i układami sterowania
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Opracował: mgr inż. Marcin Wieczorek
Opracował: mgr inż. Marcin Wieczorek Jeżeli moment napędowy M (elektromagnetyczny) silnika będzie większy od momentu obciążenia M obc o moment strat jałowych M 0 czyli: wirnik będzie wirował z prędkością
STUDIA I STOPNIA NIESTACJONARNE ELEKTROTECHNIKA
PRZEDMIOT: ROK: 3 SEMESTR: 6 (letni) RODZAJ ZAJĘĆ I LICZBA GODZIN: LICZBA PUNKTÓW ECTS: RODZAJ PRZEDMIOTU: STUDIA I STOPNIA NIESTACJONARNE ELEKTROTECHNIKA Maszyny Elektryczn Wykład 30 Ćwiczenia Laboratorium
Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie
Hamulce elektromagnetyczne EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie Elektromagnetyczne hamulce i sprzęgła proszkowe Sposób oznaczania zamówienia P Wielkość mechaniczna Odmiana
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA
Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną
Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane
INSTRUKCJA I MATERIAŁY POMOCNICZE
Wiesław Jażdżyński INSTRUKCJA I MATERIAŁY POMOCNICZE Ćwiczenie Przedmiot: Podzespoły Elektryczne Pojazdów Samochodowych IM_1-3 Temat: Maszyna indukcyjna modelowanie i analiza symulacyjna Zakres ćwiczenia:
Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan
Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni
PROGRAMY I WYMAGANIA TEORETYCZNE DO ĆWICZEŃ W LABORATORIUM NAPĘDOWYM DLA STUDIÓW DZIENNYCH, WYDZIAŁU ELEKTROTECHNIKI I ELEKTRONIKI.
PROGRAMY I WYMAGANIA TEORETYCZNE DO ĆWICZEŃ W LABORATORIUM NAPĘDOWYM DLA STUDIÓW DZIENNYCH, WYDZIAŁU ELEKTROTECHNIKI I ELEKTRONIKI. Dla ćwiczeń symulacyjnych podane są tylko wymagania teoretyczne. Programy
MODELOWANIE MASZYNY SRM JAKO UKŁADU O ZMIENNYCH INDUKCYJNOŚCIACH PRZY UŻYCIU PROGRAMU PSpice
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Piotr BOGUSZ*, Mariusz KORKOSZ*, Adam MAZURKIEWICZ*, Jan PROKOP* zmienna
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi
Wydział: EAIiE kierunek: AiR, rok II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi Grupa laboratoryjna: A Czwartek 13:15 Paweł Górka
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych
Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Studia Magisterskie IIgo stopnia Specjalności: PTiB, EiNE, APiAB, Rok I Opracował: dr hab. inż. Wiesław Jażdżynski, prof.nz.agh Kraków,
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI
Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
Wyznaczanie momentu bezwładności wirników maszyn elektrycznych
Wyznaczanie momentu bezwładności wirników maszyn elektrycznych Zakres ćwiczenia 1) Pomiar momentu bezwładności metodą drgań skrętnych Należy wyznaczyć moment bezwładności wirnika z klatką aluminiową; Wybrane
ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH
Zakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 4) MECHANICZNE CZŁONY AUTOMATYKI PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA Celem ćwiczenia jest uzyskanie wykresów charakterystyk
Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.
1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących
Wykład 5. Piotr Sauer Katedra Sterowania i Inżynierii Systemów
Serwonapędy w automatyce i robotyce Wykład 5 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Prądnica prądu stałego zasada działania e Blv sinαα Prądnica prądu stałego zasada działania Prądnica prądu
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 4) MECHANICZNE CZŁONY AUTOMATYKI PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA Celem ćwiczenia jest uzyskanie wykresów charakterystyk
bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe.
Silnik prądu stałego - budowa Stojan - najczęściej jest magneśnicą wytwarza pole magnetyczne jarzmo (2), bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe,
Nr katalogowy Moc Znamionowy moment siły Prędkość znamionowa
ASTOR GE INTELLIGENT PLATFORMS - SERWONAPĘDY VERSAMOTION 6.3 SILNIKI Silniki są wykonywane na moce od 100 W do 3 kw i moment siły od 0,32 Nm do 14,32 Nm dla pracy ciągłej i od 0,96 Nm do 42,96 Nm dla pracy
Badanie prądnicy prądu stałego
POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel
Silniki prądu stałego
Silniki prądu stałego Maszyny prądu stałego Silniki zamiana energii elektrycznej na mechaniczną Prądnice zamiana energii mechanicznej na elektryczną Często dane urządzenie może pracować zamiennie. Zenobie
Mikrosilniki prądu stałego cz. 1
Jakub Wierciak Mikrosilniki cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Struktura elektrycznego układu napędowego (Wierciak
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Elektromechaniczne przetwarzanie energii Rok akademicki: 2012/2013 Kod: EEL-1-403-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Modelowanie bilansu energetycznego pomieszczeń (1)
Wydział Inżynierii Środowiska Politechnika Wrocławska Modelowanie bilansu energetycznego pomieszczeń (1) 2 / 7 Na czym polega ćwiczenie? Ćwiczenie polega na badaniu modelu nagrzewnicy wodnej i chłodnicy
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Instytut Elektrotechniki i Automatyki Okrętowej Część 8 Maszyny asynchroniczne indukcyjne prądu zmiennego Maszyny asynchroniczne
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
UWAGA. Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Wykład 1. Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi.
Serwonapędy w automatyce i robotyce Wykład 1 iotr Sauer Katedra Sterowania i Inżynierii Systemów Wprowadzenie Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi. roces pozycjonowania osi - sposób
Silniki skokowe EMMS-ST
q/w Podstawowy program produkcyjny Festo Obejmuje 80% Twoich zadań automatyzacji Na całym świecie: Zawsze na stanie Znakomity: Jakość Festo w atrakcyjnej cenie Prostota: Zredukowana złożoność zamawiania
KARTA PRZEDMIOTU Rok akademicki: 2010/11
KARTA PRZEDMIOTU Rok akademicki: 2010/11 Nazwa przedmiotu: Maszyny elektryczne Rodzaj i tryb studiów: niestacjonarne I stopnia Kierunek: Maszyny elektryczne Specjalność: Automatyka i energoelektryka w
Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M2 protokół Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 5. Analiza pracy oraz zasada działania silników asynchronicznych
ĆWCZENE 5 Analiza pracy oraz zasada działania silników asynchronicznych 1. CEL ĆWCZENA Celem ćwiczenia jest zapoznanie się z podstawowymi układami elektrycznego sterowania silnikiem trójfazowym asynchronicznym
Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym
Napędy urządzeń mechatronicznych - projektowanie Dobór silnika skokowego do pracy w obszarze rozruchowym Precyzyjne pozycjonowanie (Velmix 2007) Temat ćwiczenia - stolik urządzenia technologicznego (Szykiedans,
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa