CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O WALCOWE. 1. Wstęp
|
|
- Lech Nowacki
- 7 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA TEORETYCZNA I STOSOWANA 2,14 (1976) CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O POWŁOKI WALCOWE STANISŁAW BIELAK (GLIWICE) 1 Wstęp W pracach autora [1, 2, 3, 4] rozwią zanie powłok prostokreś łnych rozwijalnych zostało sprowadzone do jednego równania róż niczkowego czą stkowego rzę du ósmego, ze wzglę du na niewiadomą funkcję przemieszczeń promieniowych iv 3 Przedstawione w tych pracach równanie róż niczkowe rozwią zująe c obejmuje dowolny sposób obcią ż eni a i podparcia powłoki Przyję ty matematyczny model, opisują cy pracę zgię ciową powłoki, oparty został ha liniowej teorii powłok odniesionej do oś rodka HOOKE'A Poszukiwane rozwią zanie bę dzie przedstawione w postaci sumy złoż onej z całki ogólnej, rozwią zują ce j równanie róż niczkowe jednorodne i całki szczególnej spełniają cej równanie niejednorodne Całka szczególna może być w prosty sposób wyznaczona, gdyż jest ona rozwią zaniem stanu bezmomentowego, (por pracę [1]) Istotnym problemem przedstawionym w tej pracy bę dzie podanie rozwią zania czę śi c jednorodnej równania róż niczkowego czą stkowego ósmego rzę du Równanie róż niczkowe jednorodne opisuje pracę powłoki w stanie zgię ciowym z dokładnoś cią do wielkoś ci małych wyż szego rzę du taką interpretację fizyczną moż na mu przypisać Wprowadzając pewne wielkoś ci mają ce charakter tensorowy ze wzglę du na sumowanie, mianowicie funkcje trygonometryczne, hiperboliczno kołowe z odpowiednio dobranymi argumentami, całce ogólnej równania jednorodnego moż na nadać kształt szeregu hipertrygonometrycznego 2 Ogólny układ równań Opis geometryczny powłoki walcowej oraz zwią zki geometryczne i fizyczne, podane są dla parametryzacji naturalnej w oparciu o pracę [1] 21 Opis geometryczny Równanie wektorowe powierzchni ś rodkowej powłoki walcowej (21) 7= fl(/cosm 2 +7'sinM 2 ) + M ł A:, gdzie u 1, u 2 oznaczają współrzę dne krzywoliniowe na powierzchni, (rys 1), przy czym u 1 okreś la położ enie punktu na tworzą cej, u 2 wskazuje tworzą cą, na której leży punkt
2 230 S BIELAK Współczynniki pierwszej i drugiej formy róż niczkowej, ich wyróż niki oraz ich krzywizny gaussowska i ś rednia są nastę pują ce : gil = 1, bu = 0, #12 = #21 = o, b 12 = *21 = 22 = g = a 2, = a, (22) b = o, К = o, H = 1 ~2a Symbole Christoffela drugiego rodzaju dla powierzchni walcowej są równe zeru Rys 1 22 Zwią zki geometryczne powłoki Zwią zek składowych przemieszczenia z tensorem odkształcenia błonowego przyjmuje postać (23) w,i = Yn, a 2 wf t +w} 2 = 2y l2, a 2 w 2 2 aw 3 = y 22 Przecinek uż yty w wyraż eniach (23) oznacza odpowiednią pochodną wzglę dem zmiennej u 1 lub u 2 23 Zwią zki fizyczne Zwią zki fizyczne wią ż ąe cnaprę ż eni a z odkształceniami, dla wersji uproszczonej mają postać (24) N ij = N ij + 6HM IJ, M ij ш M'J + ih 2 HN ij, gdzie: IFh (25) M lj = 1 V 2 4Eh 3 3(1 v 2 ) gdzie f oznacza parametr stały Niezmienniki A i В wystę pująe cw (25) są sumami А ш ć > Vu,
3 CAŁKA RÓWNANIA RÓŻ NICZKOWEGO 231 przy czym tensor odkształcenia błonowo zgię ciowego Q i} moż na zastą pić zależ noś ą ci (2 6) Qu = y wfij Dla powłoki walcowej zwią zki (25) napiszemy w uję ciu dostosowanym do dalszego wykorzystania Z pierwszego wyraż enia (25) wyznaczymy składowe tensora błonowego y tj w postaci nastę pują cej : (27) У 12 = У 2 =4ź /r a2^12 ' Wielkoś ci M ij opisane drugim wyraż eniem (25), po podstawieniu (26), przyjmą postać М П = Eha 2 ^ 1 ^ 1 + ^ ^ 2 (28) M 1 2 = Л / 21 = Щ 1 v) 2a 4 M 2 2 = 2<x 4 Wprowadzony w (28) parametr a jest równy (29) «"У ^И О ^) Tensory sił tną cych g' napiszemy w oparciu o pracę [3] w postaci ( 2 Л 0 ) Eha FAa 2 ' ~2Ó? e 2 = ^ fv 2 +ih 2 (HN i2 \, Niezmiennik W wystę pująy c w (210) jest sumą (211) W = g'jwftj, Przejś cia do współrzę dnych fizycznych, to znaczy odniesionych do bazy jednostkowej dokonujemy za pomocą, wzorów: (212) = \ g" V g" _ /К Я 11 Af/j = j/c^ i 2 _ / Tl VC3 1 es IV 3 Р г >= Z^1 «P 3 (po //' nie sumować ) Symbol «~» oznacza współrzę dną fizyczną
4 232 S BIELAK 3 Rozwią zanie równania róż niczkowego powłok walcowych Równanie róż niczkowe, rozwią zująe c powłoki walcowe dowolnie obcią ż on e i podparte posiada kształt (por [4]) (31) «^ д а + 4 ( ^ 1 Ш = 2* ( l)v Wielkoś ci a i W są opisane wyraż eniami (29), (211), a daną funkcję obcią żń e P opisuje zależ ność (32) P = agt'gupfjjtt+gu^ PMu il +v)p? kil Rozwią zanie równania (31) moż emy przedstawić jako sumę złoż oną z całki ogólnej w 3 równania jednorodnego i całki szczególnej w 3 równania niejednorodnego, (33) w 3 = w 3 + w 3 Całka szczególna w 3 jest rozwią zaniem stanu bezmomentowego i może być w prosty sposób wyznaczona w oparciu o pracę [1] Całkę ogólną równania (31) moż na przedstawić jako sumę odpowiednio dobranego szeregu złoż onego z iloczynów utworzonych z funkcji hiperbolicznych i kołowych Sumę takiego szeregu trygonometrycznego, hiperboliczno kołowego, moż na zapisać w uję ciu tensorowym, co bę dzie szczególnie korzystne dla przeprowadzenia potrzebnych obliczeń Wprowadź my nastę pująe c wielkoś ci mają ce charakter tensorowy ze wzglę du na sumowanie Argumenty funkcji trygonometrycznych: hiperbolicznej (34) 4 = «^i + /j* 2, kołowej (35) [ i u 1 li m + ntr a Funkcje trygonometryczne: hiperboliczne (36) pochodna funkcji (36') kołowe (37) H l W = K' sh dla i = 1 ch dla i = 2; ch dla 1=1 sh dla i = 2; sin dla j = 1 cos dla j = 2;
5 CAŁKA RÓWNANIA RÓŻ NICZKOWEGO 233 pochodna funkcji K J (37') Tensory trygonometryczne: hiperboliczne (38) I cos dla i K J = \ ( sin dla j Aik _ ui 7 к А Л i}i 7 k kołowe (39) Ą n» = &z l K, Blin = KJ Z ' K Całce ogólnej równania (31) moż na nadać kształt (З Л О) w 3 = CWj4LBi!n m, n= 1 Wskaź niki к, l, i, j mają znaczenie tensorowe i przyjmują wartoś ci 1, 2, natomiast m, n są liczbami naturalnymi i oznaczają sumowanie nieskoń czone Wielkoś ci CHUJ są stałymi, które mogą być wyznaczone z warunków brzegowych W wyraż eniu (310) nie znamy wielkoś ci a k i (3 k, wiemy natomiast, że są one zwią zane z m 1, n l, lub odwrotnie Moż emy je obliczyć w dwojaki sposób: albo rozwią zując odpowiednie równanie algebraiczne ósmego stopnia uzyskane ze spełnienia toż samoś cioweg o równania (31) po podstawieniu (310), albo też proś ciej wykorzystując zwią zek siły N 22 Л z przemieszczeniem w 3 Okazuje się bowiem, że całka ogólna N 2 2 może być obliczona z częsci jednorodnej równania (31), jeś li w miejsce w 3 podstawimy N 22 Moż liwość taką uzyskamy, jeś li czę ść jednorodną równania (31) odpowiednio zróż niczkujemy i utworzymy sumę, w której wykorzystamy zwią zek (por [3]) aeh л (З П ) N 22 = ^=ivf*v д Całka ogólna N 22 przyjmie więc postać wyraż enia (310) z dokładnoś cią do stałej wyniesionej przed znak sumy Suma (211) po wykorzystaniu (310) przyjmie postać OO (3 12) W = Ł C^jl^AtBiL + E^J^} mn=l Wielkoś ci Et 41 i E kl są równe D kl = (4i) 2 (^,i) 2 +4 [(4 2 ) 2 (^,2) 2 ], ( З Л З ) в г Г ( 1 E kl 2 4, i + ^F 2^, 2 z 'K 2
6 234 S BIELAK Obliczając odpowiednie pochodne z wyraż eń (34) i (35) moż emy napisać (3 14) D u = [(а *) 2 + (^) 2 (т ') 2 (и ') 2 ], a 2 [<x*m'+/?v] Przejdź my teraz do obliczenia sumy (315) W=g l >W Ai Róż niczkując wyraż enie (312) wzglę dem odpowiednich zmiennych i wykorzystując wielkoś ci (313), otrzymamy (316) W= С Щ [{В к ), 2 (Е к 1 ) 2 ]А * В ^ + 2^ m, «= 1 Podstawiając (316) do (311) oraz doprowadzając do toż samośi cz rozwią zaniem w kształcie (310) otrzymamy D kl = 0, 00 ( З Л 7 ) * 2 2 = a^r У (E^CLUjAtBL leć Д skąd po uwzglę dnieniu (314) dojdziemy do wyraż enia na siłę N22 22 : (318) N 22 = 2J CWjAtBXn 00 oraz uzyskamy układ równań, z którego wyznaczymy wielkoś ci a k i (i k, mianowicie (a k ) 2 + (fi k ) 2 (m l ) 2 (n 1 ) 2 =0, gdzie e może przybierać wartoś ci ±1 Przyjmują c, dla uproszczenia zapisu w dalszych rozważ aniach, m l = m i n l = n, bę dziemy mogli rozwią zanie układu równań (319) podać w postaci (320) gdzie ( ) e t = m ki s i /1 i " 2 ~ <* = k l " I/ 1 H >/,, 5V, т 2 2 +и / m 2 (m 2 + n 2 ) в ы = e Ł ^ r + ó,mi/ 1 I ",, ł, ^»i 2 + n 2 / т 2 (т + п 2 ) 2 f + 1 dla* = dla/= 1 \ ldla/c = 2, ó ' = ( ldla/=2 Jak więc widzimy, wielkoś ci tensorowe oc k, 0 к dla rozwią zania ogólnego muszą przyjąć wartoś ci tensorów o walencji 2, aby wyczerpać wszystkie moż liwe rozwią zania, czyli a k przejdzie w ct kl, a fi przejdzie w /3*' k
7 CAŁKA RÓWNANIA RÓŻ NICZKOWEGO 235 W niektórych szczególnych przypadkach, na przykład dla powłoki zamknię tej, uzyskamy prostsze rozwią zanie, jeś li przyjmiemy /S Ł = 0 Przyję cie takie prowadzi do zwią zku mię dzy wielkoś ciami m l i n Przy tym założ eniu rozwią zanie układu równań (319) daje (322) m ' *»]/r[la+5 'l Przyjmując w wyraż eniach (322) n = 0, otrzymamy rozwią zanie dla powłoki walcowej obcią ż one j osiowo symetrycznie (323) a k = s k, m l = d, 4 Zestawienie wyników 41 Rozwią zanie ogólne Argumenty funkcji trygonometrycznych: 2g «Tensory trygonometryczne: Całka ogólna A ikl = H l z k l BL = K'z l k, At = H l z% B mn = f>zl Całka poszukiwana 0,3 _ V f m " 4'" R W ^ l^kuja mnti, m,n = l W 3 = R' 3 + VV 3 42 Rozwią zanie szczególne powłoka zamknię ta Argumenty funkcji trygonometrycznych: ZJJ = aor, Tensory trygonometryczne: Całka ogólna I TI" 1 z K а I m L a A ik = H% Bi 1 = Kh l K, A* = H'z k H, M L = K J z l K 00 w Ь ы ц А щ D N n = l Całka poszukiwana 3 A 3 i 3
8 236 S BIELAK Literatura cytowana w tekś cie 1 St BIELAK, Ogólna teoria powłok prostokreś lnych pracują cych w stanie zgię ciowym, Zeszyty Naukowe Pol Ś lą skiej, Budownictwo, 33 (1973) 2 St BIELAK, A general scheme of equations covering recttlinearly drawn shell structures, Zastosowania Matematyki, 14, 2 (1974) 3 St BIELAK, Solution of a general system of equations of rectilinear evolvable shells in the bending state, Bull, de 1'Acad Polon, des Sci Ser des sci techn, 22, 2 (1974) 4 St BIELAK, Kształt równania róż niczkowego czą stkowego rozwią zują cego klasę powłok prostokreś lnych rozwijalnych, Mech Teor i Stos, 12, 3 (1974) Р е з ю ме И Н Т Е Г РЛ А Д И Ф Ф Е Р Е Н Ц И А Л Ь О Н ОУ ГР А В Н Е НЯ И В Ч А С Т Н ЫХ П Р О И З В О Д НХ ЫД Л Я Ц И Л И Н Д Р И Ч Е СХ К ОИ Б О Л О ЧК Е В р а б ое т п р е д с т а вн л ие н т е г л р а д и ф ф е р е н ц и а ло ь ун ро аг в н е я н ив о с ь м я в л я е я т ср а з р е ш а ю м щ уи р а в н е нм и ед ля ц и л и н д р и ч ех с ко иб о л о ч е к и о б щ Р е ш о гп о р я д к, ак о т о ре о е не ип о л у ч о е нв в и де д в ух и н т е г р а л: оч ва с т н о, гоот в е ч а ю що еб ге з м о м е н т у н ос мо с т о я н, и ю е г, оо т в е ч а ю що емг о м е н т к у о мс о с т о я н и Ню а й д е н нй ы и н т е г л р ад а ет в о з м о ж н ь о с рт е ш а н а л и т и ч и е сц ки л и н д р и ч е сокбио л о ч, к ри а б о т а ю е щ ниа и з г и, бп ри л ю б й о н а г р у е з ки л ю б ых у с л о в и ях о п и р а н и Чя а с т н м ы с л у ч ам е п р и в е д е н о н ор ге ш л о ч е, к з а м к н у х т ып о в с е му п е р и м е т р у е ня и я в л я е я т ср а с чт е ц и л и н д р и ч ех с ок би о аь т Summary THE INTEGRAL OF A PARTIAL DIFFERENTIAL EQUATIONS OF CYLINDRICAL SHELLS The paper shows the integral of the eighth order partial differential equation solving the problem of cylindrical shells The solution obtained is composed of two integrals: the particular integral, equivalent to the momentless work, and the general integral describing the moment work The integral derived solves the general equation of cylindrical shells working in moment state under arbitrary loads and clamped at the edges The problem of closed cylindrical shells represents a particular case of the solution given above POLITECHNIKA Ś LĄ SKA Praca została złoż ona w Redakcji dnia 7 maja 1975 r
STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK (OPOLE) 1. Wstęp Przedstawione w tym opracowaniu rozwią zanie, ilustrowane
POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, 18 (1980) POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA (OPOLE) 1. Wstę p W pracy przedstawiono rozwią zanie
ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ
Z E S Z Y T Y NAUKOWE POLITECHNIKI ŚLĄSKIEJ TADEUSZ BURCZYŃSKI METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH ECHANIKA Z. 97 GLIWICE 1989 POLITECHNIKA
ANDRZEJ MŁOTKOWSKI (ŁÓDŹ)
MECHANIKA TEORETYCZNA I STOSOWANA 2, (1970) PRZYBLIŻ ONE OBLICZANIE PŁYTY KOŁOWEJ, UŻ EBROWANEJ JEDNOSTRONNIE, OBCIĄ Ż ONE J ANTYSYMETRYCZNIE ANDRZEJ MŁOTKOWSKI (ŁÓDŹ) Oznaczenia stale, a promień zewnę
ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH ZENON RYCHTER (BIAŁYSTOK) 1. Wstęp Zginanie sprę ż ystych, izotropowych powłok o małej
CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA
MECHANIKA TEORETYCZNA I STOSOWANA, 7 (1969) SKOŃ CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA ZBIGNIEW WESOŁOWSKI (WARSZAWA) W nieliniowej teorii sprę ż ystoś i znanych c jest dotychczas zaledwie
STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM STANISŁAW ŁUKASIEWICZ, JERZY TUMIŁOWICZ (WARSZAWA) 1. Wprowadzenie Celem pracy
DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO
MECHANIKA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO PRZEKROJU EDWARD J. K R Y N I C K I Departament of Civil Engineering University of Manitoba
GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia A pole powierzchni poprzecznego
OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1.
M ECHAN IKA TEORETYCZNA 1 STOSOWANA 3, IS (1977) OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ E NORMALNYCH MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp
NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM EDWARD WALICKI, JERZY SAWICKI 1. Wstęp Przepływy MHD w kanałach płaskich i okrą
WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp
MECHANIKA TEORETYCZNA 1 STOSOWANA 4, 7 (1969) WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp W pracy [1] autor przedstawił wyniki badań nad wpływem
WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO. JÓZEF W R A N i к (GLIWICE) 1.
MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO NA JÓZEF W R A N i к (GLIWICE) 1. Wstęp Wartoś ci naprę żń
WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4 22 (1984) WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU JERZY MARYNIAK KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Politechnika Warszawska
IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM KRZYSZTOF SZUWALSKI (KRAKÓW) 1. Wstęp Ogólne zagadnienie teorii plastycznoś ci polega na
ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW)
I MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW) Modelowanie
INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA)
MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA) W artykule tym przedstawimy
IN ŻYNIE R IA S R O D O W IS K A
ZESZYTY NAUKOWE POLITECHNIKI ŚLISKIEJ JANUARY BIEŃ KONWENCJONALNE I NIEKONWENCJONALNE PRZYGOTOWANIE OSADÓW ŚCIEKOWYCH DO ODWADNIANIA IN ŻYNIE R IA S R O D O W IS K A Z. 27 A GLIWICE 1986 POLITECHNIKA ŚLĄSKA
PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1.
MECHANIKA TEORETYCZNA I STOSOWANA 2, 11 (1973) PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI C JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1. Wprowadzenie W liniowym oś
STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA I, 7 (1969) STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p Reologiczne zagadnienia geometrycznie
UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp Celem niniejszej pracy jest wyprowadzenie równań podstawowych
WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH KAROL T U R S K I (WARSZAWA) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH GANIU KAROL T U R S K I (WARSZAWA) 1. Wstęp Teoretyczne rozwią zanie uzyskane
DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp Rozwój techniki, zwłaszcza w
NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA, (9) NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' ANDRZEJ STRZELCZYK, STANISŁAW WOJCIECH (BIELSKO BIAŁA). Wstęp Problem statecznoś
NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H
MEGHAN IK Л TEORETYCZNA 1 STOSOWANA 2/3, 21 (1983) NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H ZYGMUNT K A S P E R S K I WSI Opole W pracy podaje
JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA)
MECHANIKA TEORETYCZNA I STOSOWANA 2, 8 (1970) WPŁYW ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDŁA NA STATECZNOŚĆ PODŁUŻ NĄ SZYBOWCA JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA) 1. Wstęp Przedmiotem niniejszej pracy
WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE. Wstęp
MECHAN1 К A TEORETYCZNA I STOSOWANA 2/3, 21 (1983) WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE RYSZARD W Ó J C I K Politechnika Warszawska \ JACEK S T U P
DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY (WARSZAWA) Waż niejsze oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY JACEK SAMBORSKI (WARSZAWA) Waż niejsze oznaczenia a,b e Qw, Qz uw, uz Cw, Cz
O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1.
MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1. Wstęp i W pracy [1] autor niniejszej
MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie W wielu zagadnieniach mechaniki
OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1.
MECHANIKA TEORETYCZNA I STOSOWANA 3, 7 (1969) OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1. Wprowadzenie Badaniem narastania
ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD BOHDAN KOWALCZYK, TADEUSZ RATAJCZAK (GDAŃ SK) 1. Uwagi ogólne
MECHANIKA TEORETYCZNA I STOSOWANA 2 14 (197Й ) ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD UKŁADU O SKOŃ CZONEJ LICZBIE STOPNI SWOBODY BOHDAN KOWALCZYK TADEUSZ RATAJCZAK (GDAŃ
JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DRGANIA ŁOPAT Ś MIGŁA* JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL (WARSZAWA) 1. Wstęp Na przykładzie łopaty ś migła ogonowego ś migłowca (rys. 1) przedstawiono
Fonetyka kaszubska na tle fonetyki słowiańskiej
Fonetyka kaszubska na tle fonetyki słowiańskiej (szkic i podpowiedzi dla nauczycieli) prof. UG dr hab. Dušan-Vladislav Paždjerski Instytut Slawistyki Uniwersytetu Gdańskiego Gdańsk, 21 marca 2016 r. Fonetyka
KRZYSZTOF G R Y s A (POZNAŃ)
MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SUMOWANIU PEWNYCH SZEREGÓW FOURIERA BESSELA KRZYSZTOF G R Y s A (POZNAŃ) Przy rozważ aniu zagadnień termosprę ż ystoś, cidotyczą cych wyznaczania pól mechanicznych
па ре по па па Ьо е Те
ц с р г р су Ё Д чсу ю г ц ц р ус ф р с у г с рр й Ы Р с р с ц ус М т ч с Ф Сру ф Ьу с Ы Ьу р у рь м Д ц с ю ю г Ы г ч с рр р Н р у С с р ч Ф р м р уш с К ц г В з зз с у Г с у с у Д Ы ус О Ьу р ус А Ь
OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH. 1. Wstęp
MECHANIК Л TEORETYCZNA I STOSOWANA 2/3, 21 (1983) OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH JERZY Ł U С Z К O Politechnika Krakowska 1. Wstęp Zagadnienie doboru
Znaki alfabetu białoruskiego Znaki alfabetu polskiego
ROZPORZĄDZENIE MINISTRA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie
WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY
MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY WANDA SZEMPLIŃ SKA STUPNICKA (WARSZAWA) W
OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > 1.
MECHANIKA TEORETYCZNA I STOSOWANA 1, 15 (1977) OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > JERZY STELMARCZYK (ŁÓDŹ) 1.
NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wprowadzenie Nagłe
с Ь аё ффсе о оýои р а п
гат т ТО Л Ш Л ПЮ ОВ О С тем к лк е еп е р пу Н ОЬ оппу оь отчо пущ п л е по у е о оппу К Т ццв Ф щцшчьц ц Ро ф вф ц уш Н е о е ф ч лп е ю Н З е оёе ю п ч р по п еш ш Ф р НчЬе ро о у о ш ц оь оё рц ц цр
ŁOŻ YSKA WIEŃ COWEGO TERESA GIBCZYŃ SKA, MICHAŁ Ż YCZKOWSKI (KRAKÓW) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 4, 7 (1969) RÓWNANIA STATYKI DWURZĘ ŁOŻ YSKA WIEŃ COWEGO DOWEGO KULKOWEGO TERESA GIBCZYŃ SKA, MICHAŁ Ż YCZKOWSKI (KRAKÓW) 1. Wstęp Konstrukcja łoż ysk wień cowych znacznie
SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW)
MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW) 1. Założ enia
ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA I, 15 (1977) ANALIZA ROZWIĄ ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I (WARSZAWA) 1. Wstęp Wyraź ny
O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy
ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE VI (1961) F. Barański (Kraków) O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy 1. F. Leja w pracy zamieszczonej
NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE. 1, Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE WYCISKANIA JAN PIWNIK (BIAŁYSTOK) 1, Wprowadzenie Rozwój zaawansowanych metod obliczeniowych procesów obróbki
1. Organizowanie regularnych zebrań naukowych w Oddziałach PTMTS
B I U L E T Y N I N F O R M A C Y J N Y S P R A W O Z D A N I E Z DZIAŁALNOŚ CI POLSKIEGO TOWARZYSTWA TEORETYCZNEJ I STOSOWANEJ ZA ROK 1968 MECHANIKI I. ROZWIJANIE DZIAŁALNOŚ CI W DZIEDZINIE MECHANIKI
ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM EDWARD WŁODARCZYK (WARSZAWA) Wojskowa
UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia 6, [m] rozpię toś ć skrzydeł
ZDERZENIE W UKŁADZIE O WIELU STOPNIACH. 1. Wstęp
MEC;HAN I KA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) ZDERZENIE W UKŁADZIE O WIELU STOPNIACH SWOBODY WIESŁAW G R Z E S I K I E W I C Z Politechnika Warszawska ANDRZEJ W А К U L I С Z Instytut Matematyczny
W pracy rozpatrzymy osobliwość naprę żń e siłowych i naprę żń e momentowych w półprzestrzeni. ): Xi ^ 0, co < x 2
MECHANIKA TEORETYCZNA I STOSOWANA 4, 11 (1973) OSOBLIWOŚĆ NAPRĘ ŻŃ E W LINIOWYM OŚ RODKU MIKROPOLARNYM SPOWODOWANA NIECIĄ GŁYMI OBCIĄ Ż ENIAM I (II) JANUSZ DYSZLEWICZ, STANISŁAW MATYSIAK (WARSZAWA) 1.
ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU. 1. Wstęp
MECHANIK A TEORETYCZNA t STOSOWANA 2/3, 21 (1983) ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU HENRYK S К R О С К I Uniwersytet Warszawski Filia w Białymstoku 1. Wstęp Materiały
PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane
MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane Spotykane w przyrodzie odksztalcalne ciała stałe opisujemy w
HYDROMAGNETYCZNY PRZEPŁYW CIECZY LEPKIEJ W SZCZELINIE MIĘ DZY WIRUJĄ CYMI POWIERZCHNIAMI OBROTOWYMI EDWARD WALICKI (BYDGOSZCZ) Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) HYDROMAGNETYCZNY PRZEPŁYW CIECZY LEPKIEJ W SZCZELINIE MIĘ DZY WIRUJĄ CYMI POWIERZCHNIAMI OBROTOWYMI EDWARD WALICKI (BYDGOSZCZ) Wstęp Laminarny przepływ cieczy
STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA JERZY M A R Y N I A K,
ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń
MECHANIKA TEORETYCZNA I STOSOWANA 2, 7 (1969) ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń 5 pole powierzchni
~г в +t *( ' (p ' w^'
MECHANIKA TEORETYCZNA 1 STOSOWANA 2/3, 21 (1983) EQUATIONS OF THE SPHERICAL SHELL WITH AXIALLY STOCHASTIC IMPERFECTIONS SYMMETRIC, GRAŻ YNA B R Y C Politechnika Warszawska 1. Introduction Realization of
OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) 1. Wstęp
' ' 1 t I ) MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) ' JAN TATJ BBi.Ar.H4T Ł A C H U T fkuatrń
Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8
Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M
MECHANIKA TEORETYCZNA I STOSOWANA 4, 15 (1977) WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M KAROL GRUDZIŃ SKI, TADEUSZ BURDA, LEON Ł
PROGRAM ZAJĘĆ POZALEKCYJNYCH
PROGRAM ZAJĘĆ POZALEKCYJNYCH PN: Zajęcia TEATR ROSYJSKI realizowany w roku szkolnym 2017/2018 w Szkole Podstawowej nr 43 im. Simony Kossak w Białymstoku w ramach projektu współfinansowanego z Europejskiego
JAN GRABACKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 1 U (1973) PRZYKŁADY ULTRADYSTRYBUCYJNYCH ROZWIĄ ZAŃ PASMA PŁYTOWEGO JAN GRABACKI GWIDON SZEFER (KRAKÓW) 1. Wstęp W pracy przedstawione bę dą rozwią zania wybranych zadań
przyrostem naprę ż eń, а А ц и stanowi macierz funkcji materiałowych, którą wyznacza się doś wiadczalnie, przy czym
MECHANIKA TEORETYCZNA I STOSOWANA 3 14 (1976) I O OPISIE FIZYCZNIE NIELINIOWEJ SPRĘ Ż YSTOŚI CMATERIAŁÓW SYPKICH TOMASZ H U E C K E L (WARSZAWA) 1 Wstęp Materiały sypkie wykazują cechy sprę ż yst e i plastyczne
LESZEK JARECKI (WARSZAWA)
MECHANIKA TEORETYCZNA I STOSOWANA 4, 14 (1976) TERMODYNAMIKA DEFORMACJI KRYSTALITÓW POLIMERU ZANURZONYCH W NAPRĘ Ż ONYM OŚ RODKU AMORFICZNYM LESZEK JARECKI (WARSZAWA) Szeroko stosowane kalorymetryczne,
ROCZNIKI BIESZCZADZKIE 22 (2014) str wskazówki dla autorów
Wskazówki dla autorów 409 ROCZNIKI BIESZCZADZKIE 22 (2014) str. 409-414 Roczniki Bieszczadzkie wskazówki dla autorów Roczniki Bieszczadzkie wydawnictwo Bieszczadzkiego Parku Narodowego utworzono dla publikowania
Ш Ш *Ш &>\vdi;fclbi>!«> У TEORETYCZNA ii.stosowana fiuncq i 4, 15 (1977)
8 lc Ш Ш *Ш &>\vdi;fclbi>!«> У TEORETYCZNA ii.stosowana fiuncq i 4, 15 (1977) ki invnkiis unolbiiło t: L*1 oś. и к п э ип и bo vi'jb:>. :.'.. k'isi >q i /j:;"mij',!rio>!! i TENSOR TARCIA COULOMBA*) ALFRED
WPŁYW POZIOMU NAPRĘ Ż ENI A I WSPÓŁCZYNNIKA NAPRĘ Ż ENI A NA PROCES WIBROPEŁZ ANI A') 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 4, 7 (1969) WPŁYW POZIOMU NAPRĘ Ż ENI A I WSPÓŁCZYNNIKA NAPRĘ Ż ENI A NA PROCES WIBROPEŁZ ANI A') AMPLITUDY ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp Przedstawiana praca
OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ
MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ CYCH TADEUSZ LISZKA, MICHAŁ Ż Y C Z K O W S
polska ludowa tom Vll PAŃSTWOWE WYDAWNICTWO NAUKOWE
polska ludowa PAŃSTWOWE WYDAWNICTWO NAUKOWE tom Vll INSTYTUT HISTORII POLSKIEJ AKADEMII NAUK POLSKA LUDOWA MATERIAŁY I STU D IA TOM VII PA Ń STW O W E W YDAW NICTW O NAUKOW E W ARSZAW A 1968 1 K O M IT
DRGANIA CIĘ GNA W PŁASZCZYŹ NIE ZWISU Z UWZGLĘ DNIENIEM JEGO SZTYWNOŚ CI NA ZGINANIE JÓZEF NIZIOŁ, ALICJA PIENIĄ Ż EK (KRAKÓW) 1.
MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) DRGANIA CIĘ GNA W PŁASZCZYŹ NIE ZWISU Z UWZGLĘ DNIENIEM JEGO SZTYWNOŚ CI NA ZGINANIE JÓZEF NIZIOŁ, ALICJA PIENIĄ Ż EK (KRAKÓW) 1. Wstęp Zagadnienia dynamiki
Wykład 3. Ruch w obecno ś ci wię zów
Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy
0 WYZNACZANIU NAPRĘ ŻŃ ECIEPLNYCH WYWOŁANYCH RUCHOMYMI OBCIĄ TERMICZNYMI. Oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 15 (1977) 0 WYZNACZANIU NAPRĘ ŻŃ ECIEPLNYCH WYWOŁANYCH RUCHOMYMI OBCIĄ TERMICZNYMI Ż ENIAM I JÓZEF KUBIK (POZNAŃ) Oznaczenia a, współczynnik liniowej rozszerzalnoś
NIELINIOWE DRGANIA ELASTYCZNIE POSADOWIONYCH SILNIKÓW TŁOKOWYCH PRZY SZEROKOPASMOWYCH WYMUSZENIACH STOCHASTYCZNYCH JANUSZ K O L E N D A (GDAŃ SK)
MECHANIKA TEORETYCZNA I STOSOWANA 3 14 (1976) NIELINIOWE DRGANIA ELASTYCZNIE POSADOWIONYCH SILNIKÓW TŁOKOWYCH PRZY SZEROKOPASMOWYCH WYMUSZENIACH STOCHASTYCZNYCH JANUSZ K O L E N D A (GDAŃ SK) 1. Wstęp
O OPERATOROWYM PODEJŚ CIU DO FORMUŁOWANIA ZASAD WARIACYJNYCH DLA OŚ RODKÓW PLASTYCZNYCH. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 4 14 (1976) O OPERATOROWYM PODEJŚ CIU DO FORMUŁOWANIA ZASAD WARIACYJNYCH DLA OŚ RODKÓW PLASTYCZNYCH JÓZEF JOACHIM TELEGA (RADOM) 1 Wstęp W ostatnich latach ukazały się
WPŁYW ZASTOSOWANIA KONDENSACJI KROPLOWEJ W POJEDYNCZYM DWUFAZOWYM NA WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA PRZEZ Ś CIANKĘ SKRAPLACZA. 1.
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) WPŁYW ZASTOSOWANIA KONDENSACJI KROPLOWEJ W POJEDYNCZYM DWUFAZOWYM NA WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA PRZEZ Ś CIANKĘ SKRAPLACZA BOGUMIŁ BIENIASZ (RZESZÓW)
DYNAMIKA PŁASKIEJ WIĄ ZKI PRZEWODÓW PRZY PRĄ DACH ZWARCIOWYCH MARIA RADWAŃ SKA, ZENON WASZCZYSZYN (KRAKÓW) 1. Uwagi wstę pne, założ enia i oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) DYNAMIKA PŁASKIEJ WIĄ ZKI PRZEWODÓW PRZY PRĄ DACH ZWARCIOWYCH MARIA RADWAŃ SKA, ZENON WASZCZYSZYN (KRAKÓW) 1. Uwagi wstę pne, założ enia i oznaczenia Przy
Wyświetlacze tekstowe jednokolorowe
Wyświetlacze tekstowe jednokolorowe Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w trybie jednokolorowym (monochromatycznym) z wykorzystaniem różnorodnych efektów graficznych.
ZWIĄ ZKI POMIĘ DZY RÓŻ NICZKOWYMI I CAŁKOWYMI ZASADAMI MECHANIKI N. JA. C Y G A N O W A (WOŁGOGRAD)
MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) ZWIĄ ZKI POMIĘ DZY RÓŻ NICZKOWYMI I CAŁKOWYMI ZASADAMI MECHANIKI N. JA. C Y G A N O W A (WOŁGOGRAD) Decydują ce znaczenie dla kierunków rozwoju badań w omawianej
ANALIZA JEDNOWYMIAROWYCH FAL UDERZENIOWYCH I PRZYSPIESZENIA. WITOLD KOSIŃ SKI (WARSZAWA) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) ANALIZA JEDNOWYMIAROWYCH FAL UDERZENIOWYCH I PRZYSPIESZENIA W OŚ RODKU NIESPRĘ Ż YSTY M WITOLD KOSIŃ SKI (WARSZAWA) 1. Wstęp Liczne badania eksperymentalne
NA POZIOMIE B1 TEST PRZYK 0 9ADOWY. Za ca 0 0y egzamin mo 0 4esz uzyska 0 4 120 punkt w
1 3EGZAMIN CERTYFIKACYJNY Z J 0 0ZYKA HINDI NA POZIOMIE B1 TEST PRZYK 0 9ADOWY Za ca 0 0y egzamin mo 0 4esz uzyska 0 4 120 punkt w Egzamin trwa 120 minut Do wszystkich cz 0 1 0 2ci egzaminu do 0 0 0 2czone
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
MODELE FENOMENOLOGICZNE OŚ RODKA CIEKŁOKRYSTALICZNEGO CZESŁAW R Y M A R Z (WARSZAWA) 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 4, 14 (1976) MODELE FENOMENOLOGICZNE OŚ RODKA CIEKŁOKRYSTALICZNEGO CZESŁAW R Y M A R Z (WARSZAWA) 1 Wstęp Molekuły niektórych zwią zków organicznych posiadają wydłuż ony
Geometria powłoki, wg publikacji dr inż. Wiesław Baran
Geometria powłoki, wg publikacji dr inż. Wiesław Baran Gładką i regularną powierzchnię środkową S powłoki można opisać za pomocą funkcji wektorowej (rys. 2.1) dwóch współrzędnych krzywoliniowych u 1 i
Wyświetlacze tekstowe jednokolorowe SERIA B
WYŚWIETLACZE TEKSTOWE JEDNOKOLOROWE HERMETYCZNE Wyświetlacze tekstowe jednokolorowe SERIA B Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w trybie jednokolorowym (monochromatycznym)
WYŚWIETLACZE TEKSTOWE 15 KOLOROWE
$ WYŚWIETLACZE TEKSTOWE 15 KOLOROWE OBSŁUGA ; W STANDARDZIE KLAWIATURA USB - PRZEWODOWO OPCJA PŁATNA - KLAWIATURA BEZPRZEWODOWA Wyświetlacze tekstowe 15-kolorowe Wyświetlacz tekstowy służy do wyświetlania
Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk
Scenariusz lekcji Czy światło ma naturę falową Wojciech Dindorf Elżbieta Krawczyk? Doświadczenie Younga. Cele lekcji nasze oczekiwania: Chcemy, aby uczeń: postrzegał doś wiadczenie jako ostateczne rozstrzygnię
Oferta ważna od r.
Oferta ważna od 01.11.2016r. Wyświetlacze tekstowe 15-kolorowe Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w 15 wyrazistych kolorach z wykorzystaniem różnorodnych efektów
DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A. 1. Wstę p
MECHAN IKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A STANISŁAW MAZURKIEWICZ (KRAKÓW) 1. Wstę p Własnoś ci mechaniczne tworzyw sztucznych zależ
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
SPRAWOZDANIE Z DZIAŁALNOŚ CI POLSKIEGO TOWARZYSTWA MECHANIKI TEORETYCZNEJ I STOSOWANEJ ZA I KWARTAŁ 1976 ROKU
B I U L E T Y N I N F O R M A C Y J N Y SPRAWOZDANIE Z DZIAŁALNOŚ CI POLSKIEGO TOWARZYSTWA MECHANIKI TEORETYCZNEJ 1. Zebrania naukowe I STOSOWANEJ ZA I KWARTAŁ 1976 ROKU W okresie sprawozdawczym odbyło
PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI
MECHANIKA TEORETYCZNA I STOSOWANA 3, 10 (1972) PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI KAROL H. BOJDA (GLIWICE) W pracy wykorzystano wł asnoś ci operacji T a [1] do rozwią zania równania
Wyświetlacze tekstowe jednokolorowe
RGB Technology RGB Technology Sp. z o.o. jest wiodącym polskim producentem wyświetlaczy w technologii diod LED. Siedziba firmy oraz zakład produkcyjny zlokalizowane są w miejscowości Tymieo (woj. zachodniopomorskie).
SPOSÓB ELEKTRYCZNEGO MODELOWANIA RÓWNAŃ RÓŻ NICZKOWYCH LINIOWYCH STKOWYCH O WSPÓŁCZYNNIKACH STAŁYCH I CZŁONACH RZĘ DU PARZYSTEGO
MECHANIKA TEORETYCZNA 1 STOSOWANA 4, 7 (1969) SPOSÓB ELEKTRYCZNEGO MODELOWANIA RÓWNAŃ RÓŻ NICZKOWYCH LINIOWYCH ZWYCZAJNYCH I CZĄ STKOWYCH O WSPÓŁCZYNNIKACH STAŁYCH I CZŁONACH RZĘ DU PARZYSTEGO ALEKSANDER
DYNAMIKA JEDNOKULKOWEGO KOREKTORA PIONU SZTUCZNEGO \s HORYZONTU. 1. Przeznaczenie korektora
MECHANIKA TEORETYCZNA l STOSOWANA 3 4, 22 (1984) DYNAMIKA JEDNOKULKOWEGO KOREKTORA PIONU SZTUCZNEGO \s HORYZONTU ALEKSANDER DĄ BROWSKI (WARSZAWA) ZBIGNIEW BURDA Politechnika Warszawska 1. Przeznaczenie
O PEWNEJ METODZIE WYZNACZANIA KRYTERIUM ZNISZCZENIA POLIMERÓW. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3, 7 (1969) O PEWNEJ METODZIE WYZNACZANIA KRYTERIUM ZNISZCZENIA POLIMERÓW ANDRZEJ DRESCHER (WARSZAWA) 1. Wprowadzenie Stosowane coraz szerzej w konstrukcjach inż ynierskich
MACIERZ SZTYWNOŚ CI ELEMENTU ZGINANEJ PŁYTY
MECHANIKA TEORETYCZNA I STOSOWANA 4, 11 (1973) MACIERZ SZTYWNOŚ CI ELEMENTU ZGINANEJ PŁYTY TRÓJWARSTWOWEJ HENRYK MIKOŁAJCZAK, BOGDAN W o S I E W I С Z (POZNAŃ) 1. Uwagi wstę pne Płyty trójwarstwowe, z
Czuwajcie więc, bo nie znacie dnia ani godziny. (Mt. 25:13)
r ł k J o p e. d e usz T a M U A i t A i t o r u m s ro n o m zn e c se Ob rw a? u k o 8 0 9 1 w ą ri e b y S d a n o h c u b y w o C Czuwajcie więc, bo nie znacie dnia ani godziny. (Mt. 25:13) Seminarium
PEWIEN MODEL MECHANICZNY KRĘ GOSŁUPA LĘ DŹ WIOWO KRZYŻ OWEG O CZŁOWIEKA. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) PEWIEN MODEL MECHANICZNY KRĘ GOSŁUPA LĘ DŹ WIOWO KRZYŻ OWEG O CZŁOWIEKA MAREK D I E T R I C H Politechnika Warszawska PAWEŁ KUROWSKI Politechnika Warsza