NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE. 1, Wprowadzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE. 1, Wprowadzenie"

Transkrypt

1 MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE WYCISKANIA JAN PIWNIK (BIAŁYSTOK) 1, Wprowadzenie Rozwój zaawansowanych metod obliczeniowych procesów obróbki plastycznej jest oparty na rozwią zaniach zagadnień brzegowych teorii niejednorodnej plastycznoś ci [1, 2, 3, 4]. Rozwią zując dane zagadnienie brzegowe przyjmujemy jako znane wartoś ci granicy plastycznoś ci w poszczególnych punktach obszaru plastycznego. Rozkład granicy plastycznoś ci w uplastycznionym polu utoż samiany z niejednorodnoś cią plastyczną jest moż liwy obecnie do wyznaczenia tylko na drodze doś wiadczalnej. Podstawą jest przyję cie hipotez o zgodnoś ci zwią zków aktualnej granicy plastycznoś ci, branej dalej jako intensywność naprę żń e a t, z intensywnoś cią odkształceń e t lub twardoś cią Я w prostych i złoż o nych stanach naprę ż eń. Praktyczne wykorzystanie zwią zku a t z innymi wielkoś ciami fizycznymi, na przykład optycznymi lub elektrycznymi, jest jeszcze z braku podstaw doś wiadczalnych niemoż liwe. Celem tej pracy jest omówienie hipotez wykorzystywanych przy wyznaczaniu pól niejednorodnoś ci plastycznej. Szerzej poruszono zastosowanie pomiarów twardoś ci do analizy rozkładu granicy plastycznoś ci w strefie deformacji plastycznej dwuczę ś cioweg o modelu. Metodę zilustrowano wynikami badań własnych dla procesu wyciskania prę ta cylindrycznego przez matryce stoż kowe [5]. 2. Podstawy doś wiadczalne hipotez stosowanych przy wyznaczaniu pól niejednorodnoś ci plastycznej Dotychczas stosowano najczę ś cie j dwie metody okreś lania pola niejednorodnoś ci plastycznej [1, 2, 3, 4, 5] a) metoda oparta na przyję ciu hipotezy uosólnionej krzywej płynię cia a t = с г ( (^) [1,2], b) metoda oparta na hipotezie zwią zku granicy plastycznoś ci z twardoś cią a t = a t (H) [3, 4, 5]. Metoda wykorzystują ca zwią zek a, = <т 4 (е ; ) polega na wyznaczeniu rozkładu intensywnoś ci naprę żń e a t w odcią ż onym elemencie po przez obliczenie intensywnoś ci odkształceń e i z pomiarów zdeformowanej, począ tkowo kwadratowej siatki. Siatka ta jest najczę ś cie j

2 566 J. PlWNIK nanoszona w ś rodkowej płaszczyź nie dwuczę ś cioweg o modelu. Nastę pnie dla pomierzonej, w danym punkcie strefy deformacji, wartoś ci e% należy przyporzą dkować odpowiadają cą jej wartość a t wzię tą z krzywej materiałowej a t e t. Krzywą materiałową otrzymujemy w jednoosiowej próbie rozcią gania lub ś ciskania. Poważ nym problemem jest tu jednak fakt, że zwią zku a t e% nie moż na uważ ać za uniwersalne prawo wzmocnienia, lecz za przybliż oną zależ ność opisują cą wzmocnienie materiału [6]. Obecnie brakuje dostatecznej iloś ci faktów doś wiadczalnych potwierdzają cych istnienie wspólnej krzywej płynię cia w prostych i złoż onych stanach naprę żń e niezależ nej od rodzaju stanu naprę ż enia, postaci dewiatora, historii obcią ż enia, prę dkośi c odkształcenia i innych efektów. Inną poważ ną niedogodnoś cią jest bardzo duża pracochłonność przy opracowywaniu wyników doś wiadczeń i dokładnym nanoszeniu siatek na powierzchni przekroju dwuczę ś cioweg o modelu. Pomimo tych wad, metoda wyznaczania pól niejednorodnoś ci plastycznej oparta na hipotezie <x t = a^ei) znalazła rozpowszechnienie w metodach obliczeniowych obróbki plastycznej uwzglę dniają cyc h wzmocnienie materiału [1, 2, 3, 4]. Najważ niejszą zaletą tej metody jest moż liwość przedstawienia zwią zku a t = <х ( (е,) w postaci analitycznej. Twardość wię kszośi c metali poddanych odkształceniom plastycznym ulega zmianie. Zjawisko to wykorzystano do poszukiwania iloś ciowych zwią zków twardoś ci z granicą plastycznoś ci. Uż ycie zwią zków róż nych miar twardoś ci z właś ciwoś ciami fizycznymi materiału do analizy złoż onych procesów obróbki plastycznej metalu wzbudza szereg wą tpliwoś ci. Niejasność w tej sprawie wynika z braku podstaw fizycznych opisują cych bardzo złoż ony proces zagłę biania kulki, piramidy czy stoż ka w materiał. Pomimo to poję cie twardoś ci ze wzglę du na lokalność próby i prosty pomiar jest cennym instrumentem badawczym w mechanice ciała stałego [7, 8, 9]. Z fizycznego punktu widzenia nierozwiązanym problemem w interpretacji twardoś ci jest uzyskanie odpowiedzi na pytanie, jak zależy twardoś ć, rozumiana jako ś rednie ciś nienie na powierzchni odcisku, od stanu naprę ż eni a i historii naprę ż enia. Szukając odpowiedzi na to pytanie należy opisać anizotropię własnoś ci realnego materiału wywołaną deformacją plastyczną zależ ną od stanu napręż enia i historii obcią ż enia, przy których przebiega odkształcenie plastyczne. Nastę pnie należ ałoby rozwią zać zadanie o wciskaniu osiowo symetrycznego, sztywnego stempla w umacniają cy się i anizotropowy materiał. Wobec tego, że materiał nabył już cech anizotropowych, w ogólnym przypadku zagadnienie nie jest już osiowo symetryczne. Aktualnie teoria plastycznoś ci nie dysponuje rozwią zaniem takich przypadków. Dlatego też zadanie 0 istnieniu wspólnych zwią zków pomię dzy liczbą twardoś ci i intensywnoś cią naprę ż eni a dla róż nych stanów naprę ż eni a i trajektorii obcią ż eni a w realnych materiałach wymaga skomplikowanych badań doś wiadczalnych na maszynach, w których moż liwe jest uzyskanie złoż onych stanów naprę ż eń. W monografiach Diela [3, 4] przedstawiono wyniki badań doś wiadczalnych dla oś miu róż nych materiałów. W tym celu wykonywano doś wiadczenia na próbkach rurkowych poddanych róż nym kombinacjom siły rozcią gają cej, momentu skrę cają ceg o i ciś nienia wewnę trznego. Obcią ż eni a realizowano przyrostami według zadanego programu i po odcią ż eni u wykonywano wzdłuż powierzchni zewnę trznej 10 pomiarów twardoś ci Vickersa, przyjmując ostatecznie wartość ś redniej arytmetycznej twardoś ci. Z doś wiadczeń wyznaczono wykresy twardoś ci w funkcji intensywnoś ci naprę ż eni a 1 intensywnoś ci odkształcenia. Dla wszystkich badanych materiałów rozrzuty punktów doś wiadczalnych dla róż nych stanów naprę ż eni a nic przekroczyły 15% na wykresie

3 STOP PA2 w PROCESIE WYCISKANIA 567 HV = /(o,) i 20% na wykresie HV = f(e,) w stosunku do wykresu cechują cego otrzymanego przy jednoosiowym stanie naprę ż enia. Zwią zki mię dzy róż nymi miarami twardoś cią a trwałym odkształceniem czy wywołują cym je stanem naprę ż eni a są zwią zkami empirycznymi, i ich jednoznaczność jest cią gle jeszcze sprawą dyskusyjną. Wynika to z innego charakteru pomiarów twardoś ci i pomiarów odkształceń przy jednoosiowym rozcią ganiu czy ś ciskaniu. Dokładność pomiarów twardoś ci zależy w duż ym stopniu od właś ciwego przygotowania próbek. Uzyskanie jednorodnego rozkładu twardoś ci nawet w niezdeformowanej próbce stanowi istotny problem i wymaga zastosowania specjalnych zabiegów [9]. W pracach [3, 4] uważa się, że twardość jest jednoznaczną funkcją intensywnoś ci naprę ż eni a wywołują cego odkształcenia plastyczne. Natomiast zwią zek mię dzy twardoś cią a intensywnoś cią odkształceń plastycznych wynika z hipotezy o jednej krzywej wzmocnienia. Innego zdania są autorzy pracy [8]. Uważ ają oni, że twardość jest jednoznaczną funkcją intensywnoś ci odkształceń, niezależ ną od sposobu, w jaki te odkształcenia otrzymano. Zaletą tego sposobu weryfikacji zależ nośi c H = H(e,) jest moż liwość przeprowadzenia badań w duż ym zakresie odkształceń na jednej próbce. Zwią zek mię dzy róż nymi miarami twardoś ci a granicą plastycznoś ci został zauważ ony doś wiadczalnie jeszcze w XIX wieku. Wyznaczając empiryczne zależ nośi cmię dzy intensywnoś cią naprę ż eni a a twardoś cią dla róż nych materiałów przyjmowano liniową zależ ność w postaci najczę ś cie j O t = С H, <r, ^ er 0 gdzie С współczynnik proporcjonalnoś ci, a 0 granica plastycznoś ci. W pracy [10] podano rozwią zanie statyczne przy wciskaniu kulki w plastyczną półprzestrzeń. Zależ ność pomię dzy granicą plastycznoś ci ciała izotropowego idealnie plastycznego i twardoś cią Brinella ma postać a t = 0,383 HB. Wyznaczenie pola niejednorodnoś ci a { w dwuwymiarowych zagadnieniach plastycznego płynię cia polega na pomiarze twardoś ci w odkształconym obszarze odcią ż oneg o elementu. Nastę pnie z krzywej cechują cej dla danego materiału H = H(ff t ) bierzemy te wartoś ci o,, które odpowiadają pomierzonym wartoś ciom twardoś ci. Uwzglę dniony przy tym w przybliż eniu efekt wzmocnienia jest typu izotropowego. Funkcja wzmocnienia izotropowego bę dzie miała inny przebieg, niż to ma miejsce w hipotezie jednej krzywej a t = ffj(ej). Ocena tej róż nicy może być dokonana tylko na drodze doś wiadczalnej i jest w dalszym cią gu otwarta z powodu małej liczby danych eksperymentu [3, 5, 8]. Zdając sobie sprawę ze wszystkich niejasnoś ci i niedokładnoś ci oceny własnoś ci mechanicznych materiału na podstawie próby twardoś ci trzeba przyznać, że metoda ma wiele zalet. Pomiar twardoś ci jest stosunkowo prosty, a jego wykorzystanie do analizy niejednorodnoś ci plastycznej i stanu naprę ż eni a może być stosowane nie tylko do modeli, lecz również do rzeczywistych detali. Kierując się tymi zaletami wykorzystano metodę pól twardoś ci do analizy niejednorodnoś ci plastycznej w procesie wyciskania. 3. Badania doś wiadczalne Próby wyciskania przeprowadzono w temperaturze normalnej na przyrzą dzie własnej konstrukcji z dwuczę ś ciową komorą, w której umieszczono próbki złoż one z dwóch pół

4 568 J. PlVVNIK cylindrycznych połówek [5]. Próbki wykonano ze stopu aluminium Р А 2 i były one przed wyciskaniem wyż arzone. Proces prowadzono bez smarowania, ale z wysoką gładkoś cią na powierzchni styku narzę dzia z materiałem. Ś rednica wyjś ciowa próbek wynosiła 50 mm. Dalej pokazane bę dą reprezentatywne wyniki dla trzech próbek wyciskanych przez matryce stoż kowe o ką tach rozwarcia i stopniach redukcji odpowiednio 2a = 60, = 0,57 oraz 2a = 90 i 120, R = 0,88. Stopień redukcji R = l d/d 2, przy czym D ś rednica począ tkowa a d ś rednica po redukcji. W ś rodkowej płaszczyź nie dwuczę ś ciowyc h próbek była naniesiona począ tkowo kwadratowa siatka, z deformacji której obliczano intensywność odkształceń w poszczególnych punktach obszaru uplastycznionego [5]. Wyznaczanie rozkładu niejednorodnoś ci plastycznej poprzedzono sporzą dzeniem krzywych cechujących e t =H 'i H di oraz wykonaniem pomiarów twardoś ci HRB w płaszczyź nie podziału próbek Krzywe cechowania e, HRB a,. Do sporzą dzenia doś wiadczalnej krzywej cechują cej, wyraż ają ce j zależ ność pomię dzy intensywnoś cią odkształceń i twardoś cią, wartoś ci twardoś ci Rockwella HRB brano z bezpoś redniego otoczenia wę złów siatki w których obliczano c'i. Punkty te leż ały w otoczeniu osi symetrii wyciskanych próbek. Wartoś ci o t w tych punktach wyznaczono z krzywej materiałowej na ś ciskanie a t = a^e,), którą pokazano na rys. 1 [5]. Rys. 2 przedstawia obydwie krzywe cechują ce, tj. a t HRB i HRB ei, które powstały z naniesienia punktów doś wiadczalnych wzię tych z obliczeń li ь I I I I I I I I ,2 0,3 0,1. 0,5 0,6 0,7 0,8 0,9 1,0 Rys. 1 intensywnoś ci odkształceń oraz pomiarów twardoś ci w otoczeniu osi symetrii ś rodkowych płaszczyzn trzech wyciskanych próbek. Dodatkowo naniesiono punkty na krzywe cechują ce otrzymane z doś wiadczenia przy jednoosiowym ś ciskaniu. Pomiary twardoś ci w ś ciskanych próbkach wykonywano w ś rodku powierzchni czołowych po odkształceniu plastycznym [5]. W ten sposób otrzymano wykorzystaną dalej uś rednioną, doś wiadczalną

5 STOP PA2 w PROCESIE WYCISKANIA 569 krzywą HRB <7;. Powstała ona z przyję cia trzech hipotez, tj. a, = <r ; (<?;), HRB = f(e^), HRB = Д с Г ;). Zapewnia to wię kszą dokładność metody. Daje również moż liwość porównywania przebiegów krzywych cechują cych w prostych i złoż onych stanach naprę ż eń. Charakter krzywych cechują cych (rys. 2) e ( HRB a t wskazuje na wię kszą zgodność przebiegów zależ nośi c a t HRB w złoż onym (osiowo symetrycznym) i jednoosiowym stanie naprę ż enia, w porównaniu ze znacznymi róż nicami w przebiegach zwią zków HRB ej Doś wiadczalne pola intensywnoś ci naprę ż eń. Budowa pól cr,(r, z) we współrzę dnych cylindrycznych r, z obszaru uplastycznienia odbywa się w ten sposób, że z krzywej cechują cej bierzemy te wartoś ci a i, które odpowiadają wartoś ciom pomierzonych twardoś ci. Pomiar twardoś ci kulką wymaga szeregu zabiegów przygotowawczych. Po obróbce frezem walcowo czołowym z chłodzeniem denaturatem przy duż ych obrotach i małym posuwie powierzchnie ś rodkowe próbek polerowano [5]. Twardość badano wzdłuż współrzę dnych biegunowych w odstę pach zapewniają cych uniknię cie wzajemnego wpływu stref wzmocnienia. Celem uzyskania moż liwie duż ej dokładnoś ci w odczytaniu zmian twardoś ci w jednej płaszczyź nie mierzono przecię tnie twardość 60 = 100 punktów. Pomiary twardoś ci wykonano dla trzech próbek [5]. Jako przykład podano rozkład twardoś ci w polu uplastycznionym próbki o parametrach 2a = 60 i R = 0,57. Rezultat pomiarów pokazano na rys. 3. Na rysunkach 4, 5, 6 zestawiono przebiegi wykresów przyrostu intensywnoś ci naprę żń e odniesionych do umownej granicy plastycznoś ci <т ( (е ( = 0,02) materiału niezdeformowanego (wyjś ciowego) wzdłuż linii ABCDE, które są liniowymi współrzę dnymi układu biegunowego /, #. We wszystkich próbkach pokazane przebiegi zależ nośi c Aff./ffj Cfii = 0,02) moż na w przybliż eniu uważ ać za bezwymiarowy rozkład wzmocnienia w strefie deformacji plastycznej. Wzmocnienie ulega znacznym zmianom w kierunku promie

6 570 J. PlWNIK Rys. 3 niowym i obwodowym. Wzmocnienie wzrosło szczególnie w warstwach przekroju ś rodkowego położ onych w pobliżu zewnę trznej powierzchni styku materiału próbki z matrycą. Z przebiegów Д о ^/о "; ^ = 0,02) na rys. 4, 5, 6 wynika, że wzmocnienie materiału prę ta wyciskanego przez matryce stoż kowe roś nie w kierunku powię kszania się ką ta rozwarcia matrycy i stopnia redukcji. 4. Wnioski 1. Stosowane obecnie metody wyznaczania niejednorodnoś ci plastycznej w obszarze uplastycznienia deformowanych trwale materiałów mają charakter doś wiadczalny. Pomiar intensywnoś ci naprę żń e jest dokonywany poś rednio po przez krzywe cechowania

7 STOP PA2 w PROCESIE WYCISKANIA 571 # o j i krzywą materiałową a t = о ; (е ; ). Przyjmuje się, że zwią zki te mają tę samą postać w prostych i złoż onych stanach naprę ż eń. Słuszność hipotez tych jest cią gle sprawą dyskusyjną z braku dostatecznej iloś ci danych eksperymentu. 2. Przebiegi umownych funkcji wzmocnienia Д о (/о ;(<? г = 0,02) w obszarzach uplastycznienia wyciskanych próbek z PA 2 wskazują na istotne róż nice we własnoś ciach mechanicznych pomię dzy materiałem znajdują cym się w otworze stoż ka matrycy a pozostałą llmm] I П A z 0 \* 30 mm Rys. 4 czę ś ą ci próbki. Zwraca uwagę znaczna niejednorodność materiału w strefie deformacji plastycznej. Jest to zwią zane z niejednorodnoś cią wyjś ciową materiału i silną niejednorodnoś cią duż ych odkształceń plastycznych powstałych w procesie wyciskania. 3. Nieuwzglę dnienie niejednorodnoś ci plastycznej, zwią zanej ze wzmocnieniem, w obliczeniach procesów obróbki plastycznej prowadzi do poważ nych błę dów jakoś ciowych. Pominię cie wzmocnienia w obliczeniach procesu wyciskania metodą wizjoplastycznoś ci [1] daje jakoś ciowo inny rozkład rozcią gają cyc h naprę żń e osiowych. Uważa się [1, 3, 4], że kształt i obję tość tej czę śi cmateriału, w której działają naprę ż eni a rozcią gają ce, decyduje o skłonnoś ci do ś rodkowych pę knięć w wyciskanych prę tach.

8 В 572 J. PlWNIK 4. Badanie pól niejednorodnoś ci plastycznej wymaga opracowania nowych metod fizycznych. Metody te powinny umoż liwiać bezpoś redni pomiar intensywnoś ci naprę żń e w obszarze uplastycznienia. Jest to jednak zadanie trudne. Stąd należy prowadzić badania metodami, które przedstawiono powyż ej. Przemawia za tym mało danych w literaturze i 1 1,75 1,50 i A в с \ 1,25 \ \ ; I I \\ 0,50. A D ' \л 40 I I [mml A h" 20 mm Rys. 5 na temat niejednorodnoś ci plastycznej materiałów poddawanych obróbce plastycznej [1, 3, 4, 5, 8, 9, 11, 12]. Metody oparte na hipotezach jednej krzywej płynię cia i jednego zwią zku H Oi są z koniecznoś ci przybliż one, pozwalają jednak dostarczyć dostatecznie pewnych danych o rozkładzie wzmocnienia w strefie deformacji plastycznej.

9 STOP PA2 w PROCESIE WYCISKANIA 573 Rys. 6 Literatura 1. A. H. SHABAIK, F. G. THOMSEN, Flow studies in extrusions, Annals of the C.I.R.P. XVII, L. DIETRICH, Uwzglę dnienie wzmocnienia materiału w analizie złoż onych procesów plastycznego płynię cia, Prace I.P.P.T. PAN 52/ G. D. DIEL, Opriediełenije napriaż enij w płasticzeskojobłasti po raspriedieleniju twiordosti. Maszinostrojenije G. D. DIEL, Tiechnologiczeskaja miechanika. Maszinostrojenije J. PIWNIK, Metody obliczeń złoż onych procesów obróbki plastycznej w ś wietle badań doś wiadczalnych, Prace I.P.P.T. PAN 14, J. MIASTKOWSKI, Kryteria plastycznego płynię cia i hipotezy wzmocnienia metali w ś wietle badań doś wiadczalnych, Prace I.P.P.T. PAN 41, W. K. GRIGOROWICZ, Twiordost' i mikrotwiordost'mietallow, I. Nauka. Moskwa J. N. ROBINSON, A. H. SHABAIK, The determination of the relationship between strain and microhardness by means of visioplasticity, Metallurgical Trans., 4, 9, 1973., 9. Z. JASIEŃ SKI, Wpływ nierównomiernoś ci odkształcenia na zależ noś ć naprę ż enia właś ciwego od stopnia deformacji w szyjce rozcią ganej próbki metalowej, Arch. Hut., X, 2, A. J. ISZLIŃ SKIJ, Osiesimmietricznaja zadacza i próba Briniella. P.M.M. 8. wyp U. L. E. FARMER, S. W. CONNING, Numerical smoothing offlow patterns, Int. J. Mech. Sci. Vol W. A. BACKOFEN, Deformation Processing, Massachusetts Institute of Technology 1972.

10 574 J. PlWNIK Р е з ю ме П Л А С Т И Ч Е С Я К АН Е О Д Н О Р О Д Н ОЬ С ПТ РИ П Р Е С С О В А И Н ИС П Л А ВА П А 2 В р а б ое т с д е лн а о б з ор с т а т е, йк а с а ю щ ия х мс е т о дв о и с с л е д о в я а ни ин т е н с и в ни о сн та п р я ж (<Т ((У, z)) в п л а с т и ч е й с кооб л а си т д е ф о р м и р у ео м мо ег т а л. л аэ к с п е р и м е н т о а ли ьс нс л е д о во а тн в е р д о с ь т и и н т е н с и в нь о нс ат п р я ж ей н пи ри п р е с с о в аи н сит е р ж нй еи з с п л аа в а л ю м и ня ип А 2. ей н и Summary NONHOMOGENEITY OF THE PLASTIC PROPERTIES OF ALLOY DURING EXTRUSION In the paper we discuss the problem of the influence of the plastic deformation in cold extrusion on the intensity of shear stresses {a t {r, z)) in the sphere of deformation. The plastic properties of aluminum alloy were studied by means hardness measurements in the plastic zone. Praca została złoż ona w Redakcji dnia 15 lutego 1984 roku

WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH KAROL T U R S K I (WARSZAWA) 1. Wstęp

WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH KAROL T U R S K I (WARSZAWA) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH GANIU KAROL T U R S K I (WARSZAWA) 1. Wstęp Teoretyczne rozwią zanie uzyskane

Bardziej szczegółowo

NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie

NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wprowadzenie Nagłe

Bardziej szczegółowo

ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU. 1. Wstęp

ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU. 1. Wstęp MECHANIK A TEORETYCZNA t STOSOWANA 2/3, 21 (1983) ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU HENRYK S К R О С К I Uniwersytet Warszawski Filia w Białymstoku 1. Wstęp Materiały

Bardziej szczegółowo

DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp

DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp Rozwój techniki, zwłaszcza w

Bardziej szczegółowo

STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM. 1. Wprowadzenie

STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM STANISŁAW ŁUKASIEWICZ, JERZY TUMIŁOWICZ (WARSZAWA) 1. Wprowadzenie Celem pracy

Bardziej szczegółowo

INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA)

INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA) W artykule tym przedstawimy

Bardziej szczegółowo

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ Z E S Z Y T Y NAUKOWE POLITECHNIKI ŚLĄSKIEJ TADEUSZ BURCZYŃSKI METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH ECHANIKA Z. 97 GLIWICE 1989 POLITECHNIKA

Bardziej szczegółowo

GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia

GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia A pole powierzchni poprzecznego

Bardziej szczegółowo

ANDRZEJ MŁOTKOWSKI (ŁÓDŹ)

ANDRZEJ MŁOTKOWSKI (ŁÓDŹ) MECHANIKA TEORETYCZNA I STOSOWANA 2, (1970) PRZYBLIŻ ONE OBLICZANIE PŁYTY KOŁOWEJ, UŻ EBROWANEJ JEDNOSTRONNIE, OBCIĄ Ż ONE J ANTYSYMETRYCZNIE ANDRZEJ MŁOTKOWSKI (ŁÓDŹ) Oznaczenia stale, a promień zewnę

Bardziej szczegółowo

STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM. 1. Wstęp

STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK (OPOLE) 1. Wstęp Przedstawione w tym opracowaniu rozwią zanie, ilustrowane

Bardziej szczegółowo

WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp

WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4 22 (1984) WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU JERZY MARYNIAK KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Politechnika Warszawska

Bardziej szczegółowo

NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' 1. Wstęp

NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA, (9) NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' ANDRZEJ STRZELCZYK, STANISŁAW WOJCIECH (BIELSKO BIAŁA). Wstęp Problem statecznoś

Bardziej szczegółowo

CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O WALCOWE. 1. Wstęp

CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O WALCOWE. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 2,14 (1976) CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O POWŁOKI WALCOWE STANISŁAW BIELAK (GLIWICE) 1 Wstęp W pracach autora [1, 2, 3, 4] rozwią zanie

Bardziej szczegółowo

WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO. JÓZEF W R A N i к (GLIWICE) 1.

WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO. JÓZEF W R A N i к (GLIWICE) 1. MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO NA JÓZEF W R A N i к (GLIWICE) 1. Wstęp Wartoś ci naprę żń

Bardziej szczegółowo

WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp

WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp MECHANIKA TEORETYCZNA 1 STOSOWANA 4, 7 (1969) WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp W pracy [1] autor przedstawił wyniki badań nad wpływem

Bardziej szczegółowo

ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I. 1. Wstęp

ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA I, 15 (1977) ANALIZA ROZWIĄ ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I (WARSZAWA) 1. Wstęp Wyraź ny

Bardziej szczegółowo

O PEWNEJ METODZIE WYZNACZANIA KRYTERIUM ZNISZCZENIA POLIMERÓW. 1. Wprowadzenie

O PEWNEJ METODZIE WYZNACZANIA KRYTERIUM ZNISZCZENIA POLIMERÓW. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 3, 7 (1969) O PEWNEJ METODZIE WYZNACZANIA KRYTERIUM ZNISZCZENIA POLIMERÓW ANDRZEJ DRESCHER (WARSZAWA) 1. Wprowadzenie Stosowane coraz szerzej w konstrukcjach inż ynierskich

Bardziej szczegółowo

CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA

CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA MECHANIKA TEORETYCZNA I STOSOWANA, 7 (1969) SKOŃ CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA ZBIGNIEW WESOŁOWSKI (WARSZAWA) W nieliniowej teorii sprę ż ystoś i znanych c jest dotychczas zaledwie

Bardziej szczegółowo

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz

Bardziej szczegółowo

STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p

STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA I, 7 (1969) STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p Reologiczne zagadnienia geometrycznie

Bardziej szczegółowo

OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1.

OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1. MECHANIKA TEORETYCZNA I STOSOWANA 3, 7 (1969) OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1. Wprowadzenie Badaniem narastania

Bardziej szczegółowo

NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM. 1. Wstęp

NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM EDWARD WALICKI, JERZY SAWICKI 1. Wstęp Przepływy MHD w kanałach płaskich i okrą

Bardziej szczegółowo

IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM. 1. Wstęp

IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM KRZYSZTOF SZUWALSKI (KRAKÓW) 1. Wstęp Ogólne zagadnienie teorii plastycznoś ci polega na

Bardziej szczegółowo

DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO

DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO MECHANIKA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO PRZEKROJU EDWARD J. K R Y N I C K I Departament of Civil Engineering University of Manitoba

Bardziej szczegółowo

ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH. 1. Wstęp

ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH ZENON RYCHTER (BIAŁYSTOK) 1. Wstęp Zginanie sprę ż ystych, izotropowych powłok o małej

Bardziej szczegółowo

DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A. 1. Wstę p

DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A. 1. Wstę p MECHAN IKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A STANISŁAW MAZURKIEWICZ (KRAKÓW) 1. Wstę p Własnoś ci mechaniczne tworzyw sztucznych zależ

Bardziej szczegółowo

WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE. Wstęp

WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE. Wstęp MECHAN1 К A TEORETYCZNA I STOSOWANA 2/3, 21 (1983) WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE RYSZARD W Ó J C I K Politechnika Warszawska \ JACEK S T U P

Bardziej szczegółowo

Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk

Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk Scenariusz lekcji Czy światło ma naturę falową Wojciech Dindorf Elżbieta Krawczyk? Doświadczenie Younga. Cele lekcji nasze oczekiwania: Chcemy, aby uczeń: postrzegał doś wiadczenie jako ostateczne rozstrzygnię

Bardziej szczegółowo

I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć)

I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć) BADANIE PĘTLI HISTEREZY DIELEKTRYCZNEJ SIARCZANU TRÓJGLICYNY Zagadnienia: 1. Pole elektryczne wewnątrz dielektryków. 2. Własnoś ci ferroelektryków. 3. Układ Sowyera-Towera. Literatura: 1. Sz. Szczeniowski,

Bardziej szczegółowo

JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL. 1. Wstęp

JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DRGANIA ŁOPAT Ś MIGŁA* JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL (WARSZAWA) 1. Wstęp Na przykładzie łopaty ś migła ogonowego ś migłowca (rys. 1) przedstawiono

Bardziej szczegółowo

OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1.

OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1. M ECHAN IKA TEORETYCZNA 1 STOSOWANA 3, IS (1977) OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ E NORMALNYCH MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp

Bardziej szczegółowo

OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) 1. Wstęp

OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) 1. Wstęp ' ' 1 t I ) MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) ' JAN TATJ BBi.Ar.H4T Ł A C H U T fkuatrń

Bardziej szczegółowo

SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW)

SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW) MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW) 1. Założ enia

Bardziej szczegółowo

ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW)

ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW) I MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW) Modelowanie

Bardziej szczegółowo

12. Wyznaczenie relacji diagnostycznej oceny stanu wytrzymało ci badanych materiałów kompozytowych

12. Wyznaczenie relacji diagnostycznej oceny stanu wytrzymało ci badanych materiałów kompozytowych Open Access Library Volume 2 211 12. Wyznaczenie relacji diagnostycznej oceny stanu wytrzymało ci badanych materiałów kompozytowych 12.1 Wyznaczanie relacji diagnostycznych w badaniach ultrad wi kowych

Bardziej szczegółowo

MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA)

MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 3, 12 (1974) WPŁYW CYKLICZNEJ PLASTYCZNEJ DEFORMACJI NA POWIERZCHNIĘ PLASTYCZNOŚ CI* MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA) W pracach eksperymentalnych, poś wię conych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

METODYKA STATYCZNYCH BADAŃ DOŚ WIADCZALNYCH PLASTYCZNEGO PŁYNIĘ CIA METALI. 1. Wprowadzenie

METODYKA STATYCZNYCH BADAŃ DOŚ WIADCZALNYCH PLASTYCZNEGO PŁYNIĘ CIA METALI. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 2, 13 (1975) METODYKA STATYCZNYCH BADAŃ DOŚ WIADCZALNYCH PLASTYCZNEGO PŁYNIĘ CIA METALI JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wprowadzenie Rzeczywiste warunki pracy elementów

Bardziej szczegółowo

NIEKTÓRE PROBLEMY MODELOWANIA UKŁADÓW MECHANICZNYCH AGNIESZKA M U S Z Y Ń S KA (WARSZAWA)

NIEKTÓRE PROBLEMY MODELOWANIA UKŁADÓW MECHANICZNYCH AGNIESZKA M U S Z Y Ń S KA (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) NIEKTÓRE PROBLEMY MODELOWANIA UKŁADÓW MECHANICZNYCH AGNIESZKA M U S Z Y Ń S KA (WARSZAWA) W dobie dokonują cej się rewolucji naukowo technicznej niezwykle

Bardziej szczegółowo

OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH. 1. Wstęp

OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH. 1. Wstęp MECHANIК Л TEORETYCZNA I STOSOWANA 2/3, 21 (1983) OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH JERZY Ł U С Z К O Politechnika Krakowska 1. Wstęp Zagadnienie doboru

Bardziej szczegółowo

Wykład 3. Ruch w obecno ś ci wię zów

Wykład 3. Ruch w obecno ś ci wię zów Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy

Bardziej szczegółowo

WPŁYW POZIOMU NAPRĘ Ż ENI A I WSPÓŁCZYNNIKA NAPRĘ Ż ENI A NA PROCES WIBROPEŁZ ANI A') 1. Wstęp

WPŁYW POZIOMU NAPRĘ Ż ENI A I WSPÓŁCZYNNIKA NAPRĘ Ż ENI A NA PROCES WIBROPEŁZ ANI A') 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 4, 7 (1969) WPŁYW POZIOMU NAPRĘ Ż ENI A I WSPÓŁCZYNNIKA NAPRĘ Ż ENI A NA PROCES WIBROPEŁZ ANI A') AMPLITUDY ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp Przedstawiana praca

Bardziej szczegółowo

przyrostem naprę ż eń, а А ц и stanowi macierz funkcji materiałowych, którą wyznacza się doś wiadczalnie, przy czym

przyrostem naprę ż eń, а А ц и stanowi macierz funkcji materiałowych, którą wyznacza się doś wiadczalnie, przy czym MECHANIKA TEORETYCZNA I STOSOWANA 3 14 (1976) I O OPISIE FIZYCZNIE NIELINIOWEJ SPRĘ Ż YSTOŚI CMATERIAŁÓW SYPKICH TOMASZ H U E C K E L (WARSZAWA) 1 Wstęp Materiały sypkie wykazują cechy sprę ż yst e i plastyczne

Bardziej szczegółowo

ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń

ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń MECHANIKA TEORETYCZNA I STOSOWANA 2, 7 (1969) ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń 5 pole powierzchni

Bardziej szczegółowo

WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA

WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA MECHANIKA. TEORETYCZNA I STOSOWANA 1, 2 (1964) WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA WOJCIECH SZCZEPIKJSKI (WARSZAWA) Dla peł nego wyznaczenia na drodze doś

Bardziej szczegółowo

Do najbardziej rozpowszechnionych metod dynamicznych należą:

Do najbardziej rozpowszechnionych metod dynamicznych należą: Twardość metali 6.1. Wstęp Twardość jest jedną z cech mechanicznych materiału równie ważną z konstrukcyjnego i technologicznego punktu widzenia, jak wytrzymałość na rozciąganie, wydłużenie, przewężenie,

Bardziej szczegółowo

11.1. Zale no ć pr dko ci propagacji fali ultrad wi kowej od czasu starzenia

11.1. Zale no ć pr dko ci propagacji fali ultrad wi kowej od czasu starzenia 11. Wyniki bada i ich analiza Na podstawie nieniszcz cych bada ultrad wi kowych kompozytu degradowanego cieplnie i zm czeniowo wyznaczono nast puj ce zale no ci: pr dko ci propagacji fali ultrad wi kowej

Bardziej szczegółowo

Fonetyka kaszubska na tle fonetyki słowiańskiej

Fonetyka kaszubska na tle fonetyki słowiańskiej Fonetyka kaszubska na tle fonetyki słowiańskiej (szkic i podpowiedzi dla nauczycieli) prof. UG dr hab. Dušan-Vladislav Paždjerski Instytut Slawistyki Uniwersytetu Gdańskiego Gdańsk, 21 marca 2016 r. Fonetyka

Bardziej szczegółowo

DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY (WARSZAWA) Waż niejsze oznaczenia

DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY (WARSZAWA) Waż niejsze oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY JACEK SAMBORSKI (WARSZAWA) Waż niejsze oznaczenia a,b e Qw, Qz uw, uz Cw, Cz

Bardziej szczegółowo

TEORETYCZNA ANALIZA PROCESU WYCISKANIA RURY JERZY BIAŁKIEWICZ (KRAKÓW) 1. Wstę p

TEORETYCZNA ANALIZA PROCESU WYCISKANIA RURY JERZY BIAŁKIEWICZ (KRAKÓW) 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 2, 13 (1975) TEORETYCZNA ANALIZA PROCESU WYCISKANIA RURY JERZY BIAŁKIEWICZ (KRAKÓW) 1. Wstę p Teoria płynię cia oś rodka sztywno- idealnie plastycznego w warunkach osiowo-

Bardziej szczegółowo

WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M

WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M MECHANIKA TEORETYCZNA I STOSOWANA 4, 15 (1977) WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M KAROL GRUDZIŃ SKI, TADEUSZ BURDA, LEON Ł

Bardziej szczegółowo

BADANIE WPŁYWU ODKSZTAŁCENIA PLASTYCZNEGO NA ZACHOWANIE SIĘ METALU PRZY RÓŻ NYCH DROGACH WTÓRNEGO OBCIĄ Ż ENI A. 1. Wprowadzenie

BADANIE WPŁYWU ODKSZTAŁCENIA PLASTYCZNEGO NA ZACHOWANIE SIĘ METALU PRZY RÓŻ NYCH DROGACH WTÓRNEGO OBCIĄ Ż ENI A. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 1, 9 (1971) BADANIE WPŁYWU ODKSZTAŁCENIA PLASTYCZNEGO NA ZACHOWANIE SIĘ METALU PRZY RÓŻ NYCH DROGACH WTÓRNEGO OBCIĄ Ż ENI A KAROL TURSKI (WARSZAWA) 1. Wprowadzenie Badania

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp

UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp Celem niniejszej pracy jest wyprowadzenie równań podstawowych

Bardziej szczegółowo

IN ŻYNIE R IA S R O D O W IS K A

IN ŻYNIE R IA S R O D O W IS K A ZESZYTY NAUKOWE POLITECHNIKI ŚLISKIEJ JANUARY BIEŃ KONWENCJONALNE I NIEKONWENCJONALNE PRZYGOTOWANIE OSADÓW ŚCIEKOWYCH DO ODWADNIANIA IN ŻYNIE R IA S R O D O W IS K A Z. 27 A GLIWICE 1986 POLITECHNIKA ŚLĄSKA

Bardziej szczegółowo

HYDROMAGNETYCZNY PRZEPŁYW CIECZY LEPKIEJ W SZCZELINIE MIĘ DZY WIRUJĄ CYMI POWIERZCHNIAMI OBROTOWYMI EDWARD WALICKI (BYDGOSZCZ) Wstęp

HYDROMAGNETYCZNY PRZEPŁYW CIECZY LEPKIEJ W SZCZELINIE MIĘ DZY WIRUJĄ CYMI POWIERZCHNIAMI OBROTOWYMI EDWARD WALICKI (BYDGOSZCZ) Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) HYDROMAGNETYCZNY PRZEPŁYW CIECZY LEPKIEJ W SZCZELINIE MIĘ DZY WIRUJĄ CYMI POWIERZCHNIAMI OBROTOWYMI EDWARD WALICKI (BYDGOSZCZ) Wstęp Laminarny przepływ cieczy

Bardziej szczegółowo

WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY

WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY WANDA SZEMPLIŃ SKA STUPNICKA (WARSZAWA) W

Bardziej szczegółowo

с Ь аё ффсе о оýои р а п

с Ь аё ффсе о оýои р а п гат т ТО Л Ш Л ПЮ ОВ О С тем к лк е еп е р пу Н ОЬ оппу оь отчо пущ п л е по у е о оппу К Т ццв Ф щцшчьц ц Ро ф вф ц уш Н е о е ф ч лп е ю Н З е оёе ю п ч р по п еш ш Ф р НчЬе ро о у о ш ц оь оё рц ц цр

Bardziej szczegółowo

ZDERZENIE W UKŁADZIE O WIELU STOPNIACH. 1. Wstęp

ZDERZENIE W UKŁADZIE O WIELU STOPNIACH. 1. Wstęp MEC;HAN I KA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) ZDERZENIE W UKŁADZIE O WIELU STOPNIACH SWOBODY WIESŁAW G R Z E S I K I E W I C Z Politechnika Warszawska ANDRZEJ W А К U L I С Z Instytut Matematyczny

Bardziej szczegółowo

PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1.

PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1. MECHANIKA TEORETYCZNA I STOSOWANA 2, 11 (1973) PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI C JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1. Wprowadzenie W liniowym oś

Bardziej szczegółowo

PROGRAM ZAJĘĆ POZALEKCYJNYCH

PROGRAM ZAJĘĆ POZALEKCYJNYCH PROGRAM ZAJĘĆ POZALEKCYJNYCH PN: Zajęcia TEATR ROSYJSKI realizowany w roku szkolnym 2017/2018 w Szkole Podstawowej nr 43 im. Simony Kossak w Białymstoku w ramach projektu współfinansowanego z Europejskiego

Bardziej szczegółowo

DYNAMIKA PŁASKIEJ WIĄ ZKI PRZEWODÓW PRZY PRĄ DACH ZWARCIOWYCH MARIA RADWAŃ SKA, ZENON WASZCZYSZYN (KRAKÓW) 1. Uwagi wstę pne, założ enia i oznaczenia

DYNAMIKA PŁASKIEJ WIĄ ZKI PRZEWODÓW PRZY PRĄ DACH ZWARCIOWYCH MARIA RADWAŃ SKA, ZENON WASZCZYSZYN (KRAKÓW) 1. Uwagi wstę pne, założ enia i oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) DYNAMIKA PŁASKIEJ WIĄ ZKI PRZEWODÓW PRZY PRĄ DACH ZWARCIOWYCH MARIA RADWAŃ SKA, ZENON WASZCZYSZYN (KRAKÓW) 1. Uwagi wstę pne, założ enia i oznaczenia Przy

Bardziej szczegółowo

PEWIEN MODEL MECHANICZNY KRĘ GOSŁUPA LĘ DŹ WIOWO KRZYŻ OWEG O CZŁOWIEKA. 1. Wstęp

PEWIEN MODEL MECHANICZNY KRĘ GOSŁUPA LĘ DŹ WIOWO KRZYŻ OWEG O CZŁOWIEKA. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) PEWIEN MODEL MECHANICZNY KRĘ GOSŁUPA LĘ DŹ WIOWO KRZYŻ OWEG O CZŁOWIEKA MAREK D I E T R I C H Politechnika Warszawska PAWEŁ KUROWSKI Politechnika Warsza

Bardziej szczegółowo

PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane

PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane Spotykane w przyrodzie odksztalcalne ciała stałe opisujemy w

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ

OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ CYCH TADEUSZ LISZKA, MICHAŁ Ż Y C Z K O W S

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H

NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H MEGHAN IK Л TEORETYCZNA 1 STOSOWANA 2/3, 21 (1983) NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H ZYGMUNT K A S P E R S K I WSI Opole W pracy podaje

Bardziej szczegółowo

MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie

MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie W wielu zagadnieniach mechaniki

Bardziej szczegółowo

JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA)

JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 2, 8 (1970) WPŁYW ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDŁA NA STATECZNOŚĆ PODŁUŻ NĄ SZYBOWCA JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA) 1. Wstęp Przedmiotem niniejszej pracy

Bardziej szczegółowo

па ре по па па Ьо е Те

па ре по па па Ьо е Те ц с р г р су Ё Д чсу ю г ц ц р ус ф р с у г с рр й Ы Р с р с ц ус М т ч с Ф Сру ф Ьу с Ы Ьу р у рь м Д ц с ю ю г Ы г ч с рр р Н р у С с р ч Ф р м р уш с К ц г В з зз с у Г с у с у Д Ы ус О Ьу р ус А Ь

Bardziej szczegółowo

W pracy rozpatrzymy osobliwość naprę żń e siłowych i naprę żń e momentowych w półprzestrzeni. ): Xi ^ 0, co < x 2

W pracy rozpatrzymy osobliwość naprę żń e siłowych i naprę żń e momentowych w półprzestrzeni. ): Xi ^ 0, co < x 2 MECHANIKA TEORETYCZNA I STOSOWANA 4, 11 (1973) OSOBLIWOŚĆ NAPRĘ ŻŃ E W LINIOWYM OŚ RODKU MIKROPOLARNYM SPOWODOWANA NIECIĄ GŁYMI OBCIĄ Ż ENIAM I (II) JANUSZ DYSZLEWICZ, STANISŁAW MATYSIAK (WARSZAWA) 1.

Bardziej szczegółowo

ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM. 1. Wstęp

ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM EDWARD WŁODARCZYK (WARSZAWA) Wojskowa

Bardziej szczegółowo

DOŚ WIADCZALNE BADANIE POWIERZCHNI PLASTYCZNOŚ CI WSTĘ PNIE ODKSZTAŁ CONEGO MOSIĄ DZU J. MIASTKOWSKI, W. SZCZEPIŃ SKI (WARSZAWA) 1.

DOŚ WIADCZALNE BADANIE POWIERZCHNI PLASTYCZNOŚ CI WSTĘ PNIE ODKSZTAŁ CONEGO MOSIĄ DZU J. MIASTKOWSKI, W. SZCZEPIŃ SKI (WARSZAWA) 1. MECHANIKA TEORETYCZNA I STOSOWANA 2, 3 (1965) DOŚ WIADCZALNE BADANIE POWIERZCHNI PLASTYCZNOŚ CI WSTĘ PNIE ODKSZTAŁ CONEGO MOSIĄ DZU J. MIASTKOWSKI, W. SZCZEPIŃ SKI (WARSZAWA) 1. Wstęp Warunkiem plastycznoś

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

INFORMACJA DOTYCZĄCA DZIAŁALNOŚ TOWARZYSTW FUNDUSZY INWESTYCYJNYCH W 2004 ROKU

INFORMACJA DOTYCZĄCA DZIAŁALNOŚ TOWARZYSTW FUNDUSZY INWESTYCYJNYCH W 2004 ROKU KOMISJA PAPIERÓW WARTOŚCIOWYCH I GIEŁD DEPARTAMENT FUNDUSZY INWESTYCYJNYCH INFORMACJA DOTYCZĄCA DZIAŁALNOŚ CI TOWARZYSTW FUNDUSZY INWESTYCYJNYCH W 2004 ROKU WARSZAWA, DNIA 25.04.2005 R. strona 1 /9 WSTĘP

Bardziej szczegółowo

Znaki alfabetu białoruskiego Znaki alfabetu polskiego

Znaki alfabetu białoruskiego Znaki alfabetu polskiego ROZPORZĄDZENIE MINISTRA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie

Bardziej szczegółowo

Pomiar twardości ciał stałych

Pomiar twardości ciał stałych Pomiar twardości ciał stałych Twardość jest istotną cechą materiału z konstrukcyjnego i technologicznego punktu widzenia. Twardość, to właściwość ciał stałych polegająca na stawianiu oporu odkształceniom

Bardziej szczegółowo

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8 Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od

Bardziej szczegółowo

Regulamin prowadzenia rokowa po II przetargu na zbycie nieruchomo ci stanowi cych własno Gminy Strzy ewice

Regulamin prowadzenia rokowa po II przetargu na zbycie nieruchomo ci stanowi cych własno Gminy Strzy ewice Zał ą cznik nr 1 do Zarz ą dzenia nr 18/08 Wójta Gminy StrzyŜ ewice z dnia 10. 03. 2008 roku Regulamin prowadzenia rokowa po II przetargu na zbycie nieruchomo ci stanowi cych własno Gminy Strzy ewice 1

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > 1.

OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > 1. MECHANIKA TEORETYCZNA I STOSOWANA 1, 15 (1977) OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > JERZY STELMARCZYK (ŁÓDŹ) 1.

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

NOŚ NOŚĆ GRANICZNA ROZCIĄ GANYCH OSIOWO- SYMETRYCZNYCH PRĘ TÓW OSŁABIONYCH SZEREG IEM KARBÓW KĄ TOWYCH LECH D I E TR I C H, KAROL TU R SKI (WARSZAWA)

NOŚ NOŚĆ GRANICZNA ROZCIĄ GANYCH OSIOWO- SYMETRYCZNYCH PRĘ TÓW OSŁABIONYCH SZEREG IEM KARBÓW KĄ TOWYCH LECH D I E TR I C H, KAROL TU R SKI (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 4, 6 (1968) NOŚ NOŚĆ GRANICZNA ROZCIĄ GANYCH OSIOWO- SYMETRYCZNYCH PRĘ TÓW OSŁABIONYCH SZEREG IEM KARBÓW KĄ TOWYCH LECH D I E TR I C H, KAROL TU R SKI (WARSZAWA) 1. Wstę

Bardziej szczegółowo

UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia

UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia 6, [m] rozpię toś ć skrzydeł

Bardziej szczegółowo

ŁOŻ YSKA WIEŃ COWEGO TERESA GIBCZYŃ SKA, MICHAŁ Ż YCZKOWSKI (KRAKÓW) 1. Wstęp

ŁOŻ YSKA WIEŃ COWEGO TERESA GIBCZYŃ SKA, MICHAŁ Ż YCZKOWSKI (KRAKÓW) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 4, 7 (1969) RÓWNANIA STATYKI DWURZĘ ŁOŻ YSKA WIEŃ COWEGO DOWEGO KULKOWEGO TERESA GIBCZYŃ SKA, MICHAŁ Ż YCZKOWSKI (KRAKÓW) 1. Wstęp Konstrukcja łoż ysk wień cowych znacznie

Bardziej szczegółowo

ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD BOHDAN KOWALCZYK, TADEUSZ RATAJCZAK (GDAŃ SK) 1. Uwagi ogólne

ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD BOHDAN KOWALCZYK, TADEUSZ RATAJCZAK (GDAŃ SK) 1. Uwagi ogólne MECHANIKA TEORETYCZNA I STOSOWANA 2 14 (197Й ) ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD UKŁADU O SKOŃ CZONEJ LICZBIE STOPNI SWOBODY BOHDAN KOWALCZYK TADEUSZ RATAJCZAK (GDAŃ

Bardziej szczegółowo

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

SYSTEM PRZERWA Ń MCS 51

SYSTEM PRZERWA Ń MCS 51 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Zakład Cybernetyki i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA SYSTEM PRZERWA Ń MCS 51 Opracował: mgr inŝ. Andrzej Biedka Uwolnienie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem.

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania

Bardziej szczegółowo

STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA

STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA JERZY M A R Y N I A K,

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

KRZYSZTOF G R Y s A (POZNAŃ)

KRZYSZTOF G R Y s A (POZNAŃ) MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SUMOWANIU PEWNYCH SZEREGÓW FOURIERA BESSELA KRZYSZTOF G R Y s A (POZNAŃ) Przy rozważ aniu zagadnień termosprę ż ystoś, cidotyczą cych wyznaczania pól mechanicznych

Bardziej szczegółowo

O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1.

O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1. MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1. Wstęp i W pracy [1] autor niniejszej

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo