Skrypt do ćwiczenia Ogniwa elektrochemiczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skrypt do ćwiczenia Ogniwa elektrochemiczne"

Transkrypt

1 Przemysław Michalski Skrypt do ćwiczenia Ogniwa elektrochemiczne Dominującym trendem we współczesnym świecie jest zapewnianie urządzeniom elektronicznym jak największej mobilności przejawia się ona w miniaturyzacji i zmniejszaniu masy podzespołów, ale również w produkcji baterii zapewniających jak najlepsze parametry. Do tego niezbędne są ogniwa o odpowiednich właściwościach stabilności: mechanicznej, chemicznej i termicznej, wysokiej pojemności grawimetrycznej oraz możliwej do uzyskania mocy, stałym napięciu podczas pracy, jak najmniejszym samorozładowaniu, krótkim czasie ładowania oraz wysokiej trwałości (wytrzymałości na wielokrotne cykle ładowania/rozładowania, bez utraty pojemności). Poprawa wyżej wymienionych parametrów jest głównym polem pracy naukowców. 1. Podstawowe pojęcia dotyczące ogniw Anoda jest elektrodą ujemną ogniwa. W ogniwach litowo-jonowych anodę stanowi z reguły grafit interkalowany litem. Podczas rozładowywania, na anodzie zachodzą procesy utleniania, prowadzące do przekazania elektronów do zewnętrznego obwodu. Przekazaniu elektronów towarzyszy wyjście jonów litu (rysunek 1). Z kolei katoda to elektroda dodatnia zachodzą na niej (podczas rozładowywania ogniwa) procesy redukcji, co wiąże się z przyjęciem elektronów z zewnętrznego obwodu oraz wejściem weń jonów litu. Standardowo używanymi materiałami katodowymi są związki o właściwościach utleniających (akceptory elektronowe), takie jak tlenek litowo-kobaltowy LiCoO 2, czy fosforan litowo-żelazowy LiFePO 4. Ze względu na specyfikę zachodzących procesów, zarówno katoda jak i anoda powinny wykazywać wysokie przewodnictwo elektronowe i jonowe. Elektrolit jest ośrodkiem, w którym zachodzi transfer jonów między katodą i anodą. Powinien on posiadać wysoką przewodność jonową oraz (w idealnym przypadku) zerową elektronową innymi słowy, wymuszać przepływ elektronów przez zewnętrzny obwód. Typowe elektrolity wodne oparte są na roztworach wodnych soli silnych kwasów i zasad. Wykazują one przewodność rzędu 1 S/cm. Ich wadą jest małe okienko, czyli zakres stabilnej pracy, wynoszący nie więcej niż 2 V. Elektrolity bezwodne, oparte na rozpuszczalnikach organicznych (stosowane w bateriach litowo-jonowych) wykazują przewodność na poziomie S/cm. 1

2 Jony w rozpuszczalnikach organicznych wykazują mniejszą ruchliwość, ze względu na wyższe współczynniki lepkości. Zaletą tego typu elektrolitów jest szerokie okienko, wynoszące nawet do 5 V. Separator służy do mechanicznego rozdzielenia elektrod, zapobiegając zwarciu ogniwa. W praktyce, jako separatory często wykorzystuje się porowate materiały izolujące, które następnie wypełnia się elektrolitem i umieszcza między katodą i anodą. Baterią nazywa się układ połączonych ogniw (lub pojedyncze ogniwo), posiadający kontakty służące do odbioru energii elektrycznej. Bateria jest zamkniętym urządzeniem, w obrębie którego zachodzi zarówno magazynowanie, jak i konwersja energii. Baterią pierwszego rodzaju nazywa się baterię jednorazowego użycia po jej rozładowaniu nie jest możliwe ponowne naładowanie i wykorzystanie. Produkty reakcji chemicznych wewnątrz tego typu baterii są stabilne (powstałe związki posiadają silne wiązania kowalencyjne) i nie jest możliwe przeprowadzenie reakcji odwrotnej (proces ładowania prowadzi do otrzymania innych związków lub zniszczenia ogniwa). Baterią drugiego rodzaju nazywa się baterię wielokrotnego użytku Rysunek 1. Schematyczne przedstawienie procesów ładowania i rozładowania ogniwa. po rozładowaniu, możliwe jest przeprowadzenie reakcji odwrotnych, przywracających stan początkowy (powstające produkty reakcji posiadają zazwyczaj słabe wiązania typu van der Waalsa). W tym celu używa się prądu o przeciwnym kierunku przepływu niż podczas rozładowania. Innym określeniem tego typu baterii jest akumulator. 2

3 2. Fizyka pracy ogniwa Praca ogniwa oraz ilość otrzymywanej z niego energii elektrycznej podlegają prawom termodynamiki. Podstawowym równaniem opisującym zachowanie ogniw drugiego rodzaju jest związek pomiędzy potencjałem Gibbsa (entalpią swobodną) G i entalpią H : G = H T S (1) Potencjał Gibbsa określa teoretyczną ilość użytecznej energii, jaką można otrzymać z danego ogniwa.. Jest ona równa zmianie entalpii reakcji (czyli energii wyzwolonej w reakcji), pomniejszonej o składnik T S, który wyraża stratę energii związaną ze zmianą entropii materiałów (tworzenie nowych wiązań, zmiana położeń atomów, etc.). Ogniwo przetwarza energię chemiczną na elektryczną, zatem G można z drugiej strony wyrazić jako: G = nf V (2) gdzie n jest liczbą elektronów przeniesionych na jeden mol substratów, F = C/mol jest stałą Faradaya (ładunkiem jednego mola elektronów), natomiast V siłą elektromotoryczną reakcji na ogniwie. Równania 1 i 2 odnoszą się do sytuacji równowagowej gdy do ogniwa nie jest podłączone obciążenie. Parametrem opisującym wtedy ogniwo jest V OC (napięcie przy otwartym obwodzie). W przypadku, gdy ogniwo generuje prąd, napięcie V T jakie można otrzymać, jest nieco niższe zjawisko to nazywa się polaryzacją elektrod: η = V OC V T (3) Na polaryzację η składają się trzy podstawowe czynniki polaryzacja aktywacji η A, polaryzacja omowa η O oraz polaryzacja koncentracji η C. Efekty te obniżają teoretyczne maksymalne napięcie (a zatem i ilość energii), jakie można otrzymać z ogniwa. Polaryzacja aktywacji wynika z utrudnień przy przepływie materiałów na granicach warstw elektroda-elektrolit. Polaryzacja omowa ma związek z istnieniem rezystancji każdy element ogniwa (elektrolit, elementy konstrukcyjne, kontakty, etc.) posiada pewien opór elektryczny. Polaryzacja omowa spełnia prawo Ohma: η O = IR (4) Polaryzacja koncentracji wynika z utrudnień przy transferze materiału aktywnego wewnątrz ogniwa. Przy rozładowywaniu zaczynają odgrywać rolę efekty związane z ograniczonymi możliwościami dyfuzji substratów reakcji, m.in. do obszarów przyelektrodowych przykładowo, dostęp do elektrod może być niemożliwy ze względu na otaczające je, powstałe wcześniej, produkty reakcji. Typowa krzywa rozładowywania przedstawiona jest na rysunku 2. 3

4 Rysunek 2. Typowy cykl rozładowania ogniwa. Praca ogniwa, polegająca na zamianie energii chemicznej w elektryczną, możliwa jest dzięki różnicy potencjałów między katodą i anodą. Na rysunku 3 przedstawiono rozmieszczenie poziomów energetycznych w ogniwie. µ A i µ C oraz Φ A i Φ C oznaczają odpowiednio potencjały elektrochemiczne i prace wyjścia anody i katody. LUMO (ang. Lowest Unoccupied Molecular Orbital) jest najniższym energetycznie nieobsadzonym orbitalem molekularnym elektrolitu, natomiast HOMO (ang. Highest Occupied Molecular Orbital) jest Rysunek 3. Poziomy energetyczne elektrod i elektrolitu. najwyższym energetycznie orbitalem obsadzonym. Różnica między nimi wyznacza tzw. okienko elektrolitu E g, czyli obszar, w którym ogniwo będzie pracować stabilnie. Okienko to może zostać poszerzone poprzez wytworzenie warstw SEI (ang. Solid/Electrolyte Interface), powstających w wyniku pasywacji katody/anody przez elektrolit. Do bezpiecznej pracy ogniwa wymagane jest spełnienie zależności: ev OC = µ A µ C E g (5) 4

5 3. Parametry materiałów Podczas laboratorium będziemy badać ogniwa zbudowane w oparciu o nowoczesne materiały katodowe. Parametry opisujące właściwości tych materiałów mogą być wyrażone w odniesieniu do ich masy (grawimetryczne) lub objętości (wolumetryczne). Najistotniejszymi wielkościami są pojemność grawimetryczna (wyrażona w mah/g) definiująca jak duży zasób energii elektrycznej można zmagazynować w ogniwie oraz gęstość mocy (wyrażona w W/cm 3 lub W/g) określająca, jak szybko ta energia może być uwolniona. W praktyce, maksymalna ilość energii jaką można otrzymać z ogniwa drugiego rodzaju stanowi 25% energii teoretycznej dla danej masy ogniwa. Ma to związek z obecnością innych elementów ogniwa, które nie zwiększają jego pojemności, ale zwiększają masę, dysypacją ciepła na oporach oraz ograniczeniami w transporcie substratów. Aby spełniać swoje zadanie, materiał katodowy musi posiadać kilka cech: 1. Zawierać jon łatwo ulegający utlenieniu/redukcji, np. metalu przejściowego; 2. Reagować z litem w sposób odwracalny; 3. Reakcja z litem winna zachodzić z wysoką entalpią swobodną, oraz szybko i wydajnie (przynajmniej jeden atom litu na jeden atom metalu katody). Spełnienie tych warunków prowadzi do uzyskania ogniw o dobrych parametrach pojemności, mocy i energii. Potencjał ogniwa dla reakcji z litem winien wynosić około 4 V; 4. Materiał powinien być dobrym przewodnikiem elektronowym, co pozwala na łatwy transfer elektronów w procesach elektrochemicznych oraz umożliwia zachodzenie reakcji na całej powierzchni katody, nie tylko w miejscach o dobrej przewodności (np. domieszkowanych grafitem), oraz dobrym przewodnikiem jonowym, co umożliwia przyjmowanie jonów z roztworu; 5. Materiał powinien być stabilny, tj. nie ulegać dekompozycji przy kolejnych cyklach ładowania/rozładowania oraz tani i nieszkodliwy dla środowiska. Na rysunku 4 przedstawiono część znanych materiałów katodowych oraz ich parametry. 5

6 Rysunek 4. Materiały katodowe i ich właściwości. 4. Nanokrystaliczne materiały katodowe Znanym faktem jest, że substancje rozdrobnione do wielkości rzędu nm wykazują zupełnie inne właściwości, niż ich makroskopowe, krystaliczne lub polikrystaliczne odpowiedniki. Dzieje się tak, gdyż dla materiałów nanokrystalicznych stosunkowo duży odsetek stanowią atomy powierzchniowe, znajdujące się na granicy ziaren krystalicznych ponieważ ziarna zorientowane są losowo we wszystkich kierunkach, powierzchniowe warstwy łączące sąsiednie ziarna ze sobą mogą być silnie zdefektowane. W przypadku nanokrystalicznych materiałów katodowych poprawie ulega kilka parametrów: 1. Zmniejszenie rozmiaru ziarna ułatwia transport jonów litu i elektronów do jego wnętrza; 2. Mniejsze ziarno oznacza zmniejszenie oporu elektrycznego oraz lepszy kontakt elektryczny z kolektorem prądowym i pomiędzy sąsiednimi ziarnami; 3. Rozdrobnienie materiału do skali nanometrycznej zwiększa jego powierzchnię właściwą, co ułatwia kontakt katody z elektrolitem i przekłada się na szybszą reakcję chemiczną (rośnie maksymalna moc ogniwa). Badane podczas laboratorium materiały otrzymano dzięki termicznej nanokrystalizacji szkieł. Jest to proces polegający na wygrzewaniu materiału szklistego w temperaturach wyższych od temperatury przejścia szklistego, ale niższych od temperatury topnienia. Otrzymuje się wtedy krystality o rozmiarach z przedziału nm, zanurzone w amorficznym płaszczu. Płaszcz jest silnie zdefektowany i może zawierać jony pierwiastków na różnym stopniu utlenienia. W płaszczu powstają zatem przewodzące ścieżki, na których transport elektro6

7 nów zachodzi poprzez przeskoki między różnowartościowymi jonami (ang. electron hopping). Jest to model core-shell. Dzięki istnieniu wyżej wspomnianych przewodzących ścieżek, znacząco poprawiają się parametry elektryczne materiału. W przypadku związku o wzorze chemicznym 90V 2 O 5 10P 2 O 5 (który badany będzie podczas laboratorium) udało się uzyskać ponad tysiąckrotny wzrost przewodności (rysunek 5). Dla innych materiałów (np. pochodnych oliwinu LiFePO 4 ) przewodność wzrosła blisko miliard razy! Rysunek 5. Zależność przewodności od temperatury dla związku 90V 2 O 5 10P 2 O Laboratorium Podczas laboratorium zbudujemy prototypowe ogniwo elektrochemiczne w oparciu o badane w Zakładzie Joniki Ciała Stałego nanokrystaliczne materiały katodowe, tj. tlenek wanadu (V) domieszkowany tlenkiem fosforu (V) o wzorze 90V 2 O 5 10P 2 O 5 oraz fosforan litowo-wanadowy o wzorze Li 3 V 2 (PO 4 ) 3. Anodą będzie metaliczny lit, a elektrolitem roztwór organiczny heksafluorofosforku litu LiPF 6. Używana katoda składa się (wagowo) w 70% z materiału aktywnego elektrochemicznie, 20% stanowi węgiel aktywny, a pozostałe 10% spoiwo. Po otrzymaniu materiału aktywnego w postaci nanokrystalicznej (poprzez odpowiednie wygrzewanie szkła) jest on dokładnie mieszany z węglem i spoiwem w obecności rozpuszczalnika, a następnie wylewany i rozprowadzany 7

8 na folii aluminiowej, pełniącej rolę kolektora prądowego. Folię suszy się w celu odparowania rozpuszczalnika. Prototypowe ogniwo, w którym umieszczone zostaną, w postaci krążków, katoda, anoda i separator przedstawiono na rysunku 6. Wszelkie prace prowadzone są w rękawicowej komorze argonowej, ze względu na reaktywność litu. Po zbudowaniu, ogniwo jest wyjmowane z komory, dodatkowo uszczelniane folią Parafilm i podłączane do urządzenia firmy Arbin Instruments służącego do prowadzenia testów elektrochemicznych baterii. Test taki polega na Rysunek 6. Złożony uchwyt do testów elektrochemicznych przeprowadzeniu ładowania/rozładowania baterii przy zadanym prądzie, w celu określenia kształtu krzywej rozładowania i wyznaczenia pojemności grawimetrycznej w kolejnych cyklach. Do naszych testów przeprowadzimy na jednym ogniwie 5 cyklów 20-godzinnych i 10 cyklów 10-godzinnych. 6. Kwestie do rozważenia 1. Dlaczego w ogniwie musi być spełnione równanie 5? 2. Jaką rolę pełnią spoiwo i węgiel aktywny w materiale katodowym? 3. Dlaczego dla pracy ogniwa istotny jest dobry kontakt elektryczny między jego elementami? 4. Dlaczego dobry materiał katodowy musi wykazywać zarówno dobrą przewodność elektronową, jak i jonową? 5. Jakie wady (wymienić przynajmniej dwie) posiada obecnie powszechnie wykorzystywany tlenek litowo-kobaltowy LiCoO 2? 8

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Materiały elektrodowe

Materiały elektrodowe Materiały elektrodowe Potencjał (względem drugiej elektrody): różnica potencjałów pomiędzy elektrodami określa napięcie możliwe do uzyskania w ogniwie. Wpływa na ilość energii zgromadzonej w ogniwie. Pojemność

Bardziej szczegółowo

Materiały w bateriach litowych.

Materiały w bateriach litowych. Materiały w bateriach litowych. Dlaczego lit? 1. Pierwiastek najbardziej elektrododatni ( pot. 3.04V wobec standardowej elektrody wodorowej ). 2. Najlżejszy metal ( d = 0.53 g/cm 3 ). 3. Gwarantuje wysoką

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Historia elektrochemii

Historia elektrochemii Historia elektrochemii Luigi Galvani (1791): elektryczność zwierzęca Od żab do ogniw Alessandro Volta (około 1800r): weryfikacja doświadczeń Galvaniego Umieszczenie dwóch różnych metali w ciele żaby może

Bardziej szczegółowo

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Obwody prądu stałego Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Podstawowe prawa elektrotechniki w zastosowaniu do obwodów elektrycznych: Obwód elektryczny

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja)

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu chmury dipoli i chmury jonowej. W otoczeniu jonu dodatniego (kationu) przewaga

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Schemat ogniwa:... Równanie reakcji:...

Schemat ogniwa:... Równanie reakcji:... Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat

Bardziej szczegółowo

Podstawy elektrochemii

Podstawy elektrochemii Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

Parametry ogniw: napięcie ogniwa otwartego

Parametry ogniw: napięcie ogniwa otwartego Parametry ogniw: napięcie ogniwa otwartego OCV napięcie ogniwa bez obciążenia, siła elektromotoryczna. Pierwsze przybliżenie: różnica potencjałów standardowych Napięcie ogniwa może być zapisane jako różnica

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie i Inżynieria Produkcji Chemia procesów pozyskiwania energii Chemistry of energy receiving processes Kod przedmiotu: ZIP.PK.O.4.4. Rodzaj przedmiotu: przedmiot z

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839 Historia IDEA WYKONANIE Jeżeli przepływ prądu powoduje rozkład wody na tlen i wodór to synteza wody, w odpowiednich warunkach musi prowadzić do powstania różnicy potencjałów. Christian Friedrich Schönbein,

Bardziej szczegółowo

wykład 6 elektorochemia

wykład 6 elektorochemia elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona

Bardziej szczegółowo

HAZE BATTERY Company Ltd. Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V. seria HZY-ŻELOWE

HAZE BATTERY Company Ltd. Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V. seria HZY-ŻELOWE HAZE BATTERY Company Ltd Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V seria HZY-ŻELOWE KONSTRUKCJA - Siatki płyt dodatnich i ujemnych odlewane są z ołowiuwapniowo-cynowego, aby zredukować

Bardziej szczegółowo

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Budowa i zasada działania akumulatora

Budowa i zasada działania akumulatora Budowa i zasada działania akumulatora Źródło https://neomax.pl/akumulator-world-batt-12v44ah-wbs02-03.html Źródło https://www.tayna.co.uk/industrial-batteries/sonnenschein/a602-1000/ 1 Akumulator elektryczny

Bardziej szczegółowo

Część 3. Magazynowanie energii. Akumulatory Układy ładowania

Część 3. Magazynowanie energii. Akumulatory Układy ładowania Część 3 Magazynowanie energii Akumulatory Układy ładowania Technologie akumulatorów Najszersze zastosowanie w dużych systemach fotowoltaicznych znajdują akumulatory kwasowo-ołowiowe (lead-acid batteries)

Bardziej szczegółowo

INDEKS ALFABETYCZNY 119 60050-482 CEI:2004

INDEKS ALFABETYCZNY 119 60050-482 CEI:2004 119 60050-482 CEI:2004 INDEKS ALFABETYCZNY A aktywacja aktywacja... 482-01-19 aktywacyjny polaryzacja aktywacyjna... 482-03-05 aktywny materiał aktywny... 482-02-33 mieszanina materiałów aktywnych... 482-02-34

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia, Potencjometria Potencjometria instrumentalna metoda analityczna, wykorzystująca zaleŝność pomiędzy potencjałem elektrody wzorcowej, a aktywnością jonów lub cząstek w badanym roztworze (elektrody wskaźnikowej).

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 -

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 - Jak nazwa działu wskazuje będę tu umieszczał różne rozwiązania umożliwiające pozyskiwanie energii elektrycznej z niekonwencjonalnych źródeł. Zaczniemy od eksperymentu, który każdy może wykonać sobie w

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI

Bardziej szczegółowo

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa

Bardziej szczegółowo

Technologia ogniw paliwowych w IEn

Technologia ogniw paliwowych w IEn Technologia ogniw paliwowych w IEn Mariusz Krauz 1 Wstęp Opracowanie technologii ES-SOFC 3 Opracowanie technologii AS-SOFC 4 Podsumowanie i wnioski 1 Wstęp Rodzaje ogniw paliwowych Temperatura pracy Temperatura

Bardziej szczegółowo

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5 Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Katedra Inżynierii Materiałowej

Katedra Inżynierii Materiałowej Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał

Bardziej szczegółowo

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu

Bardziej szczegółowo

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające Ćwiczenie nr 37 NAPIĘCIE ROZKŁADOWE I. Cel ćwiczenia Celem ćwiczenia jest: przebadanie wpływu przemian chemicznych zachodzących na elektrodach w czasie elektrolizy na przebieg tego procesu dla układu:

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Ogniwo paliwowe typu PEM (ang. PEM-FC)

Ogniwo paliwowe typu PEM (ang. PEM-FC) OPRACOWALI: MGR INŻ. JAKUB DŁUGOSZ MGR INŻ. MARCIN MICHALSKI OGNIWA PALIWOWE I PRODUKCJA WODORU LABORATORIUM I- ZASADA DZIAŁANIA SYSTEMU OGNIW PALIWOWYCH TYPU PEM NA PRZYKŁADZIE SYSTEMU NEXA 1,2 kw II-

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Prąd elektryczny - przepływ ładunku

Prąd elektryczny - przepływ ładunku Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: KOROZJA I OCHRONA PRZED KOROZJĄ ĆWICZENIA LABORATORYJNE Temat ćwiczenia: OGNIWA GALWANICZNE Cel

Bardziej szczegółowo

To jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f.

To jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f. 34 Wymagania programowe To jest przyrodniczych,,,,, chemicznego na podstawie zapisu A Z E,,,, podaje masy atomowe pierwiastków chemicznych,, n,,,,, s, p, d oraz f przyrodniczych,,,,, oraz Z,,, d oraz f,,

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

Okres realizacji projektu: r r.

Okres realizacji projektu: r r. PROJEKT: Wykorzystanie modułowych systemów podawania i mieszania materiałów proszkowych na przykładzie linii technologicznej do wytwarzania katod w bateriach termicznych wraz z systemem eksperckim doboru

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/2015

VII Podkarpacki Konkurs Chemiczny 2014/2015 II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

Półprzewodniki. złącza p n oraz m s

Półprzewodniki. złącza p n oraz m s złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii

Bardziej szczegółowo

LiVO 2 materiał elektrodowy dla ogniw Li-ion

LiVO 2 materiał elektrodowy dla ogniw Li-ion Wydział Energetyki i Paliw Rozprawa doktorska LiVO 2 materiał elektrodowy dla ogniw Li-ion Bartłomiej Gędziorowski Promotor prof. dr hab. inż. Janina Molenda Kraków 2016 Składam serdeczne podziękowania

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1. Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -

Bardziej szczegółowo

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie.

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie. Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki. Elektrolizery. Rafinacja. Elektroosadzanie. Szereg elektrochemiczny (standardowe potencjały półogniw

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia --6. Reakcje redoks (reakcje utlenienia-redukcji) - stopień utlenienia - bilansowanie równań reakcji. Ogniwa (galwaniczne) - elektrody (półogniwa) lektrochemia - schemat (zapis) ogniwa - siła elektromotoryczna

Bardziej szczegółowo

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać

Bardziej szczegółowo

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne?

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne? Czy prąd przepływający przez ciecz zmienia Zadanie Zmierzenie charakterystyki prądowo-napięciowej elektrolitu zawierającego roztwór siarczanu miedzi dla elektrod miedzianych. Obserwacja widocznych zmian

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. ELEKTRODY i OGNIWA Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. Me z+ + z e Me Utl + z e Red RÓWNANIE NERNSTA Walther H. Nernst

Bardziej szczegółowo

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego OBWODY PRĄDU STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Elektrotechnika - dział techniki zajmujący się praktycznym zastosowaniem wiedzy

Bardziej szczegółowo

Elementy Elektrochemii

Elementy Elektrochemii Elementy Elektrochemii IV.: Ogniwa galwaniczne przykłady Ogniwa Pierwotne - nieodwracalne - ogniwo Volty (A.G.A.A. Volta 1800r.) - ogniwo Daniela (John Daniell 1836 r.) - Ogniwo cynkowo-manganowe (Leclanche,

Bardziej szczegółowo

Zalety przewodników polimerowych

Zalety przewodników polimerowych Zalety przewodników polimerowych - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg) - Bezpieczne (przy przestrzeganiu zaleceń użytkowania) Wady - Degradacja na skutek starzenia,

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z CHEMII

MATERIAŁ DIAGNOSTYCZNY Z CHEMII dysleksja MATERIAŁ DIAGNOSTYCZNY Z CHEMII Arkusz II POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 9 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 9 listopada 2005r Temat lekcji: Ogniwa jako źródła prądu. Budowa ogniwa Daniella. Cel ogólny lekcji:

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego TEMAT I WYBRANE WŁAŚCIWOŚCI ZWIĄZKÓW NIEORGANICZNYCH. STOPNIE UTLENIENIA. WIĄZANIA CHEMICZNE. WZORY SUMARYCZNE I STRUKTURALNE. TYPY REAKCJI CHEMICZNYCH. ILOŚCIOWA INTERPRETACJA WZORÓW I RÓWNAŃ CHEMICZNYCH

Bardziej szczegółowo

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5 1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika

Bardziej szczegółowo

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych

Bardziej szczegółowo

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Elektrochemia - prawa elektrolizy Faraday a. Zadania Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA 1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział

Bardziej szczegółowo

PL B1. Sposób i układ do odzyskiwania energii elektrycznej z ogniwa elektrochemicznego, zwłaszcza pierwotnego

PL B1. Sposób i układ do odzyskiwania energii elektrycznej z ogniwa elektrochemicznego, zwłaszcza pierwotnego PL 223075 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223075 (13) B1 (21) Numer zgłoszenia: 403779 (51) Int.Cl. H02J 7/34 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.

Bardziej szczegółowo

Ogniwa z elektrodami stałymi

Ogniwa z elektrodami stałymi Ogniwa z elektrodami stałymi Ogniwa pierwotne Najczęściej spotykane: - cynkowo - węglowe - alkaliczne - cynkowo srebrowe i inne cynkowe/srebrowe - litowe Ogniwa typu air wykorzystują tylko jedną elektrodę

Bardziej szczegółowo

(1) Przewodnictwo roztworów elektrolitów

(1) Przewodnictwo roztworów elektrolitów (1) Przewodnictwo roztworów elektrolitów 1. Naczyńko konduktometryczne napełnione 0,1 mol. dm -3 roztworem KCl w temp. 298 K ma opór 420 Ω. Przewodnictwo właściwe 0,1 mol. dm -3 roztworu KCl w tej temp.

Bardziej szczegółowo