Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ
|
|
- Stanisława Kowalska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstawowe oddziaływania w cząsteczkach istotne dla spektroskopii MRJ Ekranowanie jądra przez elektrony B ef = B o (1 σ) Oddziaływanie spin spin sprzęŝenie pośrednie (skalarne) J sprzęŝenie bezpośrednie (dipol dipol) D oddziaływanie spinu z niesparowanym elektronem (metale przejściowe, wolny rodnik) SprzęŜenie kwadrupolowe (jądra o spinie > 1/2) (Procesy relaksacyjne)
2 Ekranowanie jądra przez elektrony B ef = B o (1 σ) σ =( σ dia + σ para ) + σ AB + σ delok. B o e σ dia + σ para σ AB σ AB σ delok. Indukowane pole magnetyczne przesunięcie chemiczne (δ) = ekranowanie (σ) ekranowanie wzorca (σ ref )
3 Ekranowanie - wielkość anizotropowa B ef = B o (1 σ) Anizotropia przesunięcia chemicznego: róŝna wartość przesunięcia chemicznego (ekranowania) w zaleŝności od orientacji cząsteczki względem pola magnetycznego B σ σ xx σ xy σ xz σ yx σ yy σ yz σ zx σ zy σ zz σ iso = 1/3 (σ xx + σ yy + σ zz ) tensor ekranowania roztwór Roztwór: wartość średnia przesunięć chemicznych (ekranowania) Ekranowanie (przesunięcie chemiczne) zaleŝy od indukcji pola magnetycznego
4 Skala przesunięć chemicznych δ (skala ppm) ν x ν ref PołoŜenie sygnału: zęstość rezonansowa (np z) z duŝe liczby, zaleŝność od indukcji pola magnetycznego (typu aparatu) Mz zęstość względna: ν x ν ref [z] Skala przesunięć chemicznych ppm (parts per milion) zaleŝność od indukcji pola magnetycznego wartość niezaleŝna od indukcji pola magnetycznego δ = ν x - ν ref ν 0 ν x - ν ref [z] 10 6 = [Mz] ν 0 " ppm " niskie (słabe) pole odsłanianie + - wysokie (silne) pole przesłanianie
5 D J n J( 1-1 ) Oddziaływanie spin spin - sprzęŝenie skalarne J, sprzęŝenie pośrednie - sprzęŝenie dipol-dipol D, sprzęŝenie bezpośrednie Wielkość stałej sprzęŝenia jest niezaleŝna od indukcji pola magnetycznego Wielkość stałej sprzęŝenia wyraŝamy w hercach ( stała sprzęŝenia ) (z) Stałe sprzęŝenia J i D mogą być większe lub mniejsze od 0! Uwaga na znak! od a do b od a do b!!! w tym drugim przypadku a moŝe być równe 0!!
6 SPRZĘśENIE SKALARNE (POŚREDNIE) J Stała sprzęŝenia J moŝe mieć wartość mniejszą lub większa od zera Wartość bezwzględna J: od 0 do z (!!) SprzęŜenie J składa się z czterech członów eksperymentalnie nierozróŝnialnych, ale istotnych w przypadku obliczeń teoretycznych* J jest wielkością anizotropową, zaleŝy od orientacji cząsteczki SprzęŜenie J jest funkcją struktury elektronowej molekuły i współczynników magnetogirycznych obu jąder Zredukowana stała sprzęŝenia K AB : * zgodnie z nierelatywistyczną teorią Ramseya, N. F. Ramsey, Physical Review, 1953, 91, 303
7 Obliczanie parametrów MRJ Reguły empiryczne (np. metoda inkrementów, zaleŝności Karplusa) Metody MQ nierelatywistyczne (Gaussian, Dalton,...) relatywistyczne (ADF,...) Gaussian: # nmr=giao b3pw91/ g(2d,p)... # nmr=(giao,spinspin) b3pw91/ g(2d,p)... wynik: Tensor ekranowania (wartości σ), istotna jest wartość izotropowa ( isotropic ) δ obl. = σ obl. ref - σ obl. ztery człony stałej sprzęŝenia (J oraz K): kontaktowy Fermiego (Fermi contact, F) spinowo-dipolowy (spin-dipolar, SD) paramagnetyczny spinowo-orbitalny (paramagnetic spin-orbit, PSO) diamagnetyczny spinowo-orbitalny (diamagnetic spin-orbit, DSO) Total
8 3 3 Obliczone wartości δ optymalizacja struktury: B3LYP/6-31G(2d) NMR: B3PW91/ G(2d,p) 3 O obl. (ppm) r 2 = rms obl. (ppm) r 2 = rms δ eksp. = 0.944δ obl eksp. (ppm) eksp. (ppm) δ eksp. = aδ obl. + b a = 1?? b = 0??
9 Obliczone wartości δ optymalizacja struktury: B3LYP/6-31G(2d) NMR: B3PW91/ G(2d,p) O O (41 rotamerów) (13 rotamerów) obl. (ppm) 4 3 r 2 = rms 0.16 obl. (ppm) 4 3 r 2 = rms eksp. (ppm) eksp. (ppm)
10 3 X Obliczone wartości J optymalizacja struktury: B3LYP/6-31G(2d) NMR: B3PW91/ G(2d,p) 2 J(1,3) X F SD PSO DSO J eksp F N J(1,2) T. elgaker, M. Jaszuński and M. Pecul, Progress in Nuclear Magnetic Resonance Spectroscopy, 2008, 53, 249 J. Autschbach and S. Zheng, Annual Report on NMR Spectroscopy, 2009, 67, 1 J Vaara, J. Jokisaari, R. E. Wasylishen and D. L. Bryce, Progress in Nuclear Magnetic Resonance Spectroscopy, 2002, 41, 233
11 SPRZĘśENIE BEZPOŚREDNIE D Wielkość stałej sprzęŝenia D zaleŝy od orientacji sprzęgających się atomów względem pola magnetycznego oraz od odległości r pomiędzy atomami W roztworze sprzęŝenie D uśredniają się do zera i nie wpływają na strukturę multipletową widma. SprzęŜenia D odgrywają istotną rolę w procesach relaksacyjnych (NOE) B o α D ~ [3cos 2 (α) 1] (r -3 ) α = o D = 0
12 ODDZIAŁYWANIE SPINU Z NIESPAROWANYM ELEKTRONEM Niesparowane elektrony występują w atomach metali przejściowych i wolnych rodnikach Wpływ na widmo: skrócenie czasu relaksacji i poszerzenie sygnałów (wszystkich!!) zmiana przesunięcia sygnałów (np. kilkaset ppm w przypadku 1 ) SPRZĘśENIE KWADRUPOLOWE Występuje w jądrach posiadających moment kwadrupolowy, czyli jądrach o spinie większym niŝ ½. Wpływ na widmo: skrócenie czasu relaksacji i poszerzenie sygnałów jądra o spinie >1/2 Relaksacja: oddziaływanie spinów ze zmiennym polem magnetycznym generowanymi przez cząsteczkę.
13 o moŝna zmierzyć metodami MRJ? e Li Be B N O F Ne Na Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o Ni u Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag d In Sn Sb Te I Xe s Ba La f Ta W Re Os Ir Pt Au g Tl Pb Bi Po At Rn Fr Ra Ac e Pr Nd Pm Sm Eu Gd Tb Dy o Er Tm Yb Lu Th Pa U Np Pu Am m Bk f Es Fm Md No Lr pierwiastki posiadające co najmniej jeden izotop o spinie 1/2
14 PODZIAŁ IZOTOPÓW spin = 1/2 spin > 1/2 duŝa zawartość naturalna 1, 19 F, 31 P 14 N mała zawartość naturalna 3, 13, 15 N 2, 17 O, 33 S Inny podział: izotopy o małej lub duŝej częstotliwości rezonansowej
15 MAGNETYZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: % spin ½ Mz ( T) % spin Mz ( T) 3 0 spin ½ Mz ( T)
16 Przykładowe widmo 1 NMR wykonane w roztworze: Widmo protonowe, 1 NMR ( 1 MRJ): PołoŜenie sygnałów (przesunięcie chemiczne, ppm) Wzorzec: tetrametylosilan, Si( 3 ) 4 0 ppm Typowy zakres przesunięć chemicznych: 0 15 ppm Struktura sygnałów (krotność lub multipletowość, sprzęŝenie spin-spin) Intensywność sygnałów, intensywność integralna ( całka ) Skala δ ( przesunięć chemicznych ), skala τ = 10 - δ
17 Równocenność (nierównocenność) atomów: równocenność/nierównocenność chemiczna równocenność/nierównocenność magnetyczna Ilość nierównocennych chemicznie atomów (grup atomów) = ilość sygnałów Nierównocenne atomy (grupy atomów) oznacza się róŝnymi literami alfabetu DuŜa róŝnica przesunięć chemicznych = litery odległe w alfabecie Przykłady: układ AB układ AMX układ A 3 X 2 FAZA IEKŁA ILOŚĆ SYGNAŁÓW Protony (grupy protonów) homotopowe = równocenne chemicznie Protony (grupy protonów) enancjotopowe = równocenne chemicznie Protony (grupy protonów) diastereotopowe = nierównocenne chemicznie Metody spektroskopowe i ich zastosowania do identyfikacji związków organicznych Praca zbiorowa pod redakcją W. Zielińskiego i A. Rajcy, Wydawnictwa Naukowo-Techniczne, Warszawa, 2000 Spektroskopowe metody identyfikacji związków organicznych R.M.Silverstein, F.X.Webster, D.J.Kiemle, Wydawnictwo Naukowe PWN, Warszawa 2007
18 Równocenność / nierównocenność chemiczna atomów l l Br F Br R* równocenne chemicznie (homotopowe) nierównocenne chemicznie (diastereotopowe) równocenne chemicznie (enancjotopowe) nierównocenne chemicznie (!) l Br ax Br eq???
19 Równocenność / nierównocenność chemiczna atomów Br 2 l 3 Br 2 l 2 R FBrl 2 R l Br l Br l R Br l Br Br Br R Br F R Układ A 3 (A 2 B??) Układ A 2 Układ A 2 (AB??) Układ AB!! Atomy wodorów w grupach 3 i 2 w związkach łańcuchowych są chemicznie równocenne ( uśrednienie przesunięć chemicznych) Wyjątek: centrum chiralne obok grupy!!! Spektroskopia MRJ w fazie ciekłej, w achiralnym środowisku, nie rozróŝnia enancjomerów, a rozróŝnia diastereoizomery. (R)(S) = (S)(R), (R)(R) = (S)(S), (R)(S) (S)(S),...
20 Równocenność / nierównocenność chemiczna atomów l l równocenne (układ A 2 ) l Br nierównocenne (układ AB lub AX) N OR 3 3 Ukryte wiązanie podwójne N O N 3 3 O N 3 3 O R2 N R1 O R1 N R2 R X Y R
21 Rozpuszczalniki stosowane w 1 NMR Aceton-d ppm Acetonitryl-d ppm Benzen-d ppm hlorek metylenu-d ppm hloroform-d 7.3 ppm Dimetyloformamid-d 6 (DMF) 2.9 ppm, 8.0 ppm Dimetylosulfotlenek-d 6 (DMSO) 2.6 ppm Metanol-d ppm 3 Woda (D 2 O) 4.8 ppm 3 Si 3 (Wg materiałów firmy BRUKER) 3 Wzorzec: tetrametylosilan (TMS), ( 3 ) 4 Si DSS Wzorzec zewnętrzny (external reference) Wzorzec wewnętrzny (internal reference) Wzorzec wtórny (secondary reference) 0.00 ppm ppm TMS Si SO 3 Na DSS
22 Kilka przesunięć chemicznych 1 NMR (ppm) Elektroujemność podstawnika: F 3 -F l Br I O N( 3 ) S Li ( 3 ) 4 Si 0.00 Rząd wiązania: Ilość grup metylowych: ( 3 ) Ilość heteroatomów: l l l Atom wodoru przy heteroatomie: O (alif.) 1 5 O (Ar) 4 10 O (kwas) 9 12 S 3 4 N 2 3 5
23 Kilka przesunięć chemicznych 1 NMR (ppm) X N O 3.8 O 6.2 O N N N N N ca elektronów π 20 elektronów π haitanya S.Wannere, Paul von Ragué Schleyer, Organic Letters, 2003, 5(5), 605
24 Zmiany przesunięcia chemicznego 1 NMR wywołane metalem przejściowym: do ± 600 ppm l N N Fe 3+ N N 1 NMR (Dl 3 ) protony pirolowe: ppm proton mezo: ppm protony Ar: ppm (J.Wojaczyński, Praca Doktorska, Wrocław, 1998)
25 SprzęŜenie pośrednie (skalarne) J sprzęŝenie geminalne 2 J gem sprzęŝenie wicynalne 3 J vic sprzęŝenie dalekiego zasięgu n J 2 J gem 2 J( 1-1 ) 1 J( 13-1 ) 3 J(5-6) Stała sprzęŝenia J ma znak Określenie znaku stałej sprzęŝenia wymaga dodatkowych eksperymentów Nazwy sprzęŝeń dotyczą dwóch dowolnych jąder, nie tylko protonów SprzęŜenia pomiędzy jądrami równocennymi chemicznie nie wpływają na strukturę multipletów (w widmach I rzędu!!)
26 Geminalna stała sprzęŝenia 2 J gem (atom sp 3 ) 2 J gem = (+ 6) (- 20) z (- 12) (- 14) (- 11) (- 18) 3 N N 2 N X (- 3) (- 9) (+ 6) (- 1.4) O O (X = NR, J 0 z)
27 Geminalna stała sprzęŝenia 2 J gem (atom sp 2 ) R X X = F N Li R O O N
28 Nietypowe sprzęŝenia 2 J( 1, 1 ) w wodorkach niektórych metali Me Me + + Me Ph 3 P Me Ir Me Ph 3 P Ir 2 J(,) = 36.6 z (125 K) 99.0 z (201 K) 2 J(,) = 160 z (125 K) 533 z (201 K) Quantum Mechanical Exchange oupling M.einekey, A.inkle, J.lose, J. Am. hem. Soc., 1996, 118, 5353
29 Wicynalna stała sprzęŝenia 3 J vic ZaleŜność Karplusa 3 J = 8.5 cos 2 φ 0.3 (0 90 o ) 3 J = 9.5 cos 2 φ 0.3 ( o ) φ 3 J [z] kąt φ [ o ] O 2 9 z 6 14 z z 4 10 z 3 7 z
30 OO N 2 R OO N 2 R N 2 R OO R O N N R N O R O N R N O R O N R N O R O N R N O R O N R N O R O N R N O R O 3 J( 1-1 ) 3 J( 13-1 ) 3 J( 15 N- 1 ) 3 J( 15 N- 15 N) 3 J( ) 3 J( 13-1 ) 3 J = Acos 2 (φ + α) + Bcos(φ + α) +
31 3 J = Acos 2 (φ + α) + Bcos(φ + α) + 3 J [z] kąt φ [ o ] A.Ejchart, Scalar ouplings in Structure Determination of Proteins Bulletin of the Polish Academy of Sciences; hemistry, 1999, 47(1) 1
32 O O O O OMe 3 J(,) = A + Bcos(φ) + cos (2φ) Parametryzacja równania: na podstawie 90 konformerów. A. Taha, N. astillo, D.N. Sears, R. E. Wasylishen, T. L. Lowary, P.-N. Roy, Journal of hemical Theory and omputation, 2010, 6, 212 O O O O O O O O O O OMe 3 J(,) = cos(φ) + 5.3cos 2 (φ) N. J. hristensen, P. I. ansen, F.. Larsen, T. Folkerman, M. S. Motawia, S. B. Engelsen, arbohydrate Research, 2010, 345, 464
33 (- 3) (- 1) z 2 3 z 3 J orto = z 4 J 5 meta = 2 3 z J para = z J( 1-1 ) 0 z 4 J( 1-1 ) 0 z 2 J ax-eq = (- 11) (- 13) z 3 J ax-ax = z 3 J ax-eq = 2 5 z 3 J eq-eq = 2 5 z SprzęŜenie W ok. 1 z
34 Konstrukcja multipletów Widma NMR dzielą się na widma pierwszego i drugiego rzędu. W widmach pierwszego rzędu: δ >> J brak atomów magnetycznie nierównocennych sprzęŝenia pomiędzy atomami chemicznie równocennymi nie wpływają na krotność (multipletowość) sygnałów; np. sygnał grupy 3 jest singletem, znak stałej sprzęŝenia nie wpływa na strukturę multipletu, δ i J moŝna odczytać wprost z widma W widmach drugiego rzędu: δ J, i / lub są atomy nierównocenne magnetycznie sprzęŝenia pomiędzy atomami chemicznie równocennymi i znak stałej sprzęŝenia wpływają na strukturę sygnałów Trudna analiza multipletów
35 Praca domowa: konstrukcja multipletów w widmach I rzędu ilość sygnałów vs. struktura związku przesunięcie chemiczne vs. struktura związku
36
37 3 3 3 Praca domowa: jak wygląda sygnał czerwonego atomu wodoru
38 Nierównocenność protonów w grupie 2 (widmo w Dl 3 ) Układ A 3 MNX N N( 3 ) N 2 ppm
39 Widma protonowe drugiego rzędu
40 J δ widmo drugiego rzędu AX AM AB
41 X 2-2 Y A 2 X 2 A 2 M 2 A 2 B 2
42 - 2 3 A 2 X 3 A 2 B 3
43 J δ widmo drugiego rzędu J J AX δ x δ y AM b AB a J δ = a*b δ x = δ 0 δ/2 δ y = δ 0 + δ/2
44 X J = 7 z Układ spinowy AX 2 AB 2 A δ = 1 ppm (500 z) 5 δ = 0.1 ppm (50 z) δ = 0.02 ppm (10 z) 5 4 δ A δ B = (δ 5 + δ 7 ) / 2! dla δ = 0 ppm pozostanie tylko jedna linia (układ A 3 ) 8 7 δ B 3 2 J AB = (ν 1 - ν 4 ) + (ν 6 ν 8 ) / 3 1
45 NIERÓWNOENNOŚĆ MAGNETYZNA* Równocenność / nierównocenność magnetyczna: dotyczy atomów równocennych chemicznie Dwa atomy są równocenne magnetycznie, kiedy: są równocenne chemicznie stałe sprzęŝenia tych atomów z dowolnym innym atomem w cząsteczce są identyczne δ = δ δ = δ A 2 X 2?? X 3 J() 4 J() AA XX (AA BB ) * próbka w roztworze
46 Z Z Z Y Z Układ spinowy AA XX (AA BB )
47 A A' N = ν 1,2 ν 7,8 K = ν 3 ν 4 = ν 5 ν 6 M = ν 9 ν 10 = ν 11 ν 12 (2O) 2 = (ν 3 ν 5 ) 2 = (ν 4 ν 6 ) 2 (2P) 2 = (ν 9 ν 11 ) 2 = (ν 10 ν 12 ) 2 X X X' 1,2 7,8 L = [(2O) 2 K 2 ] 0.5 = [(2P) 2 M 2 ] N = J AX + J AX L = J AX J AX K = J AA + J XX M = J AA J XX E. W. Garbisch, Journal of hemical Education, 1968, 45(5), , 45(6), , 45(7),
48 Układ AA MM X A 2 M 2 X
49 WIDMO SATELITARNE: POMIAR J(,) * * * * 12 ~1% ~1% 1 J( 13, 1 ) 1 J( 13, 1 ) * 3 J( 1, 1 ) układ ABX dwa atomy 13 obok siebie: ~0.01% * układ AA BB X
50 2 J( 13, 1 ) 3 J( 1, 1 ) 13 3 J( 1, 1 ) 12 1 J( 13, 1 ) δ δ efekt izotopowy!!
51 POMIAR 1 NMR I PRZYZYNY BŁĘDÓW cz.2
52 Przygotowanie próbki Próbka o odpowiednim stęŝeniu, rozpuszczona w odpowiedniej ilości deuterowanego rozpuszczalnika, bez osadu i stałych zanieczyszczeń. zy moŝna uŝyć rozpuszczalnika nie deuterowanego? Brak sygnału deuteru; brak sygnału uŝywanego do regulacji jednorodności pola i do stabilizacji pola. MoŜna ewentualnie uŝyć sygnału FID-u. l 3, 2 l 2... konieczność usuwania sygnału rozpuszczalnika. l 4, S 2, freon... moŝna uŝyć; ew. zastosować rozpuszczalnik deuterowany w kapilarze. Wzorzec: zewnętrzny lub wewnętrzny. MoŜna uŝyć sygnału resztkowego rozpuszczalnika.
53 Przykładowe widmo 1 NMR wykonane w roztworze: stała sprzęŝenia J (z) połoŝenie sygnału (przesunięcie chemiczne) intensywność integralna całka
54 BŁĘDY I I PRZYZYNY Przesunięcie chemiczne niedoskonałość wzorca ( wewnętrzny TMS) błąd do ± 0.5 ppm (!!). W precyzyjnych pomiarach naleŝy stosować wzorzec zewnętrzny. efekty stęŝeniowe, temperatura próbki, asocjacja związku, itp. rozdzielczość spektralna ( z) typowa dokładność δ( 1 ): nie więcej niŝ ± 0.01 ppm Wartość stałej sprzęŝenia J rozdzielczość spektralna ( z) (!!!) nakładanie się sygnałów typowa dokładność J: nie więcej niŝ ± 0.3 z dokładność moŝna zwiększyć poprzez optymalizację pomiaru Intensywność integralna: niepełna relaksacja próbki rozdzielczość spektralna zaburzenia linii podstawowej widma, nieprawidłowa faza widma typowy błąd: do 10%
55 Niepełna relaksacja próbki
56 Widmo pochodnej metioniny w Dl 3 integracja sygnałów d1 pw at AQ (at) = 2.34 s d1 = 1 ms d1 = 5 s d1 = 10 s O N O df. S OOMe
57 Optymalizacja pomiaru 1 NMR T1: dla s lub dłuŝej (!) A sygnał szum Typowe parametry: 1 : d1 = 0 s, at = 3 5 s, pw = o t (sek) d1 pw at A t (sek) Parametry do optymalizacji: d1 moŝna wydłuŝyć do kilkunastu sek. = bardziej wiarygodna intensywność integralna at powinien być optymalny (zazwyczaj nie trzeba zmieniać) zmiana powoduje zmianę np np ilość punktów FID-u; zmiana powoduje zmianę at fn ilość punktów widma (2 n ); zazwyczaj 32K lub 64K; moŝna zwiększyć do 128 K. Poprawia rozdzielczość spektralną widma; parametr waŝny przy pomiarze stałej sprzęŝenia J i dokładnym całkowaniu.!! Rozdzielczość jest ograniczona naturalną szerokością linii!! sw zakres występowania sygnałów; za duŝy = gorsza rozdzielczość; za mały = sygnały zawinięte (lub zgubione ). Krótki sw = długi czas at pw raczej nie zmieniać, ew. skrócić (zbyt długi puls = moŝliwość uszkodzenia aparatu!!) gain szczególnie waŝny przy pomiarach protonowych (za duŝy = deformacja widma)
58 Przypomnienie: dobór czułości odbiornika ( receiver gain ) gain gain = n lub 0 39 za mała wartość źle wykorzystana czułość aparatu za duŝa wartość obcięcie sygnału A t (sek) Jeśli gain = 0 za duŝy, naleŝy zmniejszyć pw (np. o 50%)
59 Przypomnienie: funkcje waŝące stosowane w 1 NMR (1D) A FT MnoŜenie przez funkcję wykładniczą (Exponential Multiplication, EM) y = exp(-at/t a ) t (sek) EM, FT LB = 1 y A t (sek) t (sek) MnoŜenie przez funkcję Gaussa (Lorentzian-to-Gauss Transformation) y = exp(at/t a - bt 2 /t a 2 )) y A FT GM, EM, FT LB = -1.2 GB = 0.5 t (sek) t (sek) LB = dla 1 EF lub EM i FT A LB = -1.2; GB = (Bruker) t (sek)
60 Tematy związane nie tylko z 1 NMR wpływ temperatury na widmo efekt Overhausera presaturacja sygnału (usuwanie sygnału rozpuszczalnika) echo spinowe rezonans podwójny ( homodecoupling )
61 Wpływ temperatury na widmo Ph N Ph N N 2 3 N + N- + N N O 2 N - 3 O K 303 K 253 K
62 Wpływ temperatury na widmo 3 N Dl K 233 K 1 2 1,
63 JĄDROWY EFEKT OVERAUSERA (Nuclear Overhauser Effect, NOE) Efekt Overhausera zmiana intensywności sygnału atomu połoŝonego w pobliŝu innego atomu naświetlanego jego częstością rezonansową J(,) = 0 z (duŝa odległość liczona po wiązaniach) D(,) 0 z (mała odległość liczona poprzez przestrzeń) υ 0 D.Neuhaus, M.Williamson The Nuclear Overhauser Effect (V 1989)
64 υ 0 I o widmo odniesienia naśw. widmo zaburzone I naśw. I intensywność integralna sygnału niezaburzonego I o intensywność integralna sygnału zaburzonego widmo róŝnicowe I - I o η współczynnik wzmocnienia η = (I I o )/I o
65 Przykład pomiaru efektu Overhausera Widmo odniesienia Widmo naświetlone Widmo naświetlone - widmo odniesienia O (B.Furman et al.)
66 A AX AMX ββ αβ βα αα W widmie NMR obserwowane są bezpośrednio wyłącznie przejścia jednokwantowe
67 ββ ββ αβ 1 2 βα αβ βα αα αα 2,3 1,4 2,3 1,4 1 4 przejścia jednokwantowe 5 przejście dwukwantowe 6 przejście zerokwantowe
68 Szybkość narastania NOE: υ 0 η 50% maksymalna wartość η dla układu 1 1 : 50% duŝa odległość między atomami mała odległość między atomami czas naświetlania [s] ZaleŜność η od czasu korelacji cząsteczki: η 1 { 1 } ruch molekuły = = fluktuacje B 0 ω częstość rezonansowa 1 τ c czas korelacji cząsteczki -1 log ωτ c!! Brak NOE nie jest potwierdzeniem struktury!!
69 50 % 50 % 28 % 50 % - 13 % 0 % 28 % - 13 % η [%] log ωτ c % 49 % 1 % % 49 % 1 % % 50 % 0 % α η [%] log ωτ c %
70 eksperyment NOE-build-up η η y = ax + b czas naświetlania [`s] ms a 1, a 2, a 3 wzorzec r a 1 (1/r 1 ) 6 a 2 (1/r 2 ) 6 a 3 (1/r 3 ) 6 a ~ 1/r 6
71 Uśrednianie odległości wg NOE <r -6 > x y (x+y)/2 Odległość wg NOE: {[ (1/x 6 ) + (1/y 6 ) ] / 2} -1/6 x = 0.4, y = 0.6 (x + y)/2 = 0.5 {[ (1/x 6 ) + (1/y 6 ) ] / 2} -1/6 = 0.443
72 υ o 90 o krótki czas naświetlania: truncated driven NOE (TOE) długi czas naświetlania: steady state NOE selektywny impuls 180 o : transient NOE dη/dt ~ 1/r 6 η czas
73 transient NOE rotating-frame NOE (ROE) 180 o 90 o spin lock η 0 steady state NOE η od 0.5 do -1 transient NOE η od do -1 ROE η od do log(ωτ c ) I.Bertini, oord. hem. Rev., 150 (1966) 163
74 NOE wykonanie eksperymentu Próbka: eliminacja zanieczyszczeń paramagnetycznych: kationów metali przejściowych (np. r 3+ z chromianki) tlenu atmosferycznego rozpuszczonego w roztworze Odgazowanie próbki: przepuszczanie gazu obojętnego mało skuteczne procedura zamraŝanie próŝnia rozmraŝanie 3 5 razy zastosowanie specjalnej probówki NMR Pomiar: wykonać kilka pomiarów (co najmniej dwa) brak NOE nie jest potwierdzeniem struktury obecność NOE nie jest potwierdzeniem struktury
75 REZONANS PODWÓJNY
76 REZONANS PODWÓJNY (homodecoupling, odsprzęganie) ν o ββ ββ ν αβ βα αβ βα ν 0 αα αα 2,3 1,4 1,4 2,3
77
78 PRESATURAJA SYGNAŁU
79 Uboczny skutek eksperymentu NOE: usunięcie sygnału z widma Widmo odniesienia υ 0 Widmo naświetlone Selektywne naświetlanie: wyrównanie obsadzeń poziomów energetycznych PRESATURAJA SYGNAŁU usuwanie sygnału rozpuszczalnika przez jego selektywne naświetlanie. ZASTOSOWANIE: usuwanie silnego sygnału rozpuszczalnika, np. w próbkach białek i DNA w środowisku 2 O (nie D 2 O!!)
80 PRESATURAJA SYGNAŁU (usuwanie sygnału rozpuszczalnika) 2 O
81 PRESATURAJA SYGNAŁU (usuwanie sygnału rozpuszczalnika) Problem: 1% związków organicznych w wodzie; nie moŝna odparować wody ani wydzielić związku Sygnał wody ponad 100 razy silniejszy niŝ sygnały badane 2 O Próbka: 60% roztworu + 40 % D 2 O 9.0 ppm -1.0
82 USUWANIE SZEROKIEGO SYGNAŁU Szerokość sygnału zaleŝy od czasu relaksacji T 2??? Szeroki sygnał = krótki T 2 Wąski sygnał = długi T 2 początek rejestracji sygnału
83 EO SPINOWE
84 exp(-t / T 2 ) 90 o 180 o τ τ Dwie przyczyny zaniku sygnału: czynniki aparaturowe (niejednorodność pola) relaksacja spin-spin t = 0 τ 2τ arr-purcell-meiboom-gill D1 90 o (τ 180 o τ) n - FID y x f s s f f po impulsie 90 o po czasie τ s po impulsie 180 o po czasie τ
85 Dwa zastosowania echa spinowego pomiar czasu T 2 y = I o exp(- τ / T 2 ) 90 o 180 o τ τ τ Usuwanie szerokich sygnałów N ok. 99% N ok. 1%
MAGNETYCZNY REZONANS JĄDROWY WODORU
MAGNETYZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe
MAGNETYCZNY REZONANS JĄDROWY WODORU
MAGNETYCZNY REZONANS JĄDROWY WODORU 1 NMR, ( 2 NMR, 3 NMR) Trzy aktywne izotopy wodoru: 1 99.98% spin ½ 500.000 Mz (11.744 T) 2 0.02% spin 1 76.753 Mz (11.744 T) 3 0 spin ½ 533.317 Mz (11.744 T) Przykładowe
NUKLIDY O SPINIE 1/2. Duża zawartość naturalna (%): H (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%):
UKLIDY O SPIIE 1/2 Duża zawartość naturalna (%): 1 (99.98), 19 F (100), 31 P (100) Średnia zawartość naturalna (%): 29 Si (4.7), 77 Se (7.58), 117 Sn (7.61), 119 Sn (8.58) iska zawartość naturalna (%):
ekranowanie lokx loky lokz
Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment
impulsowy NMR - podsumowanie
impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt
Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego
Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa
Spektroskopia Jader 13 C i efekt Overhausera
Spektroskopia Jader 13 C i efekt Overhausera Literatura : 1. A. Ejchart, L.Kozerski, Spektrometria Magnetycznego Rezonansu Jądrowego 13 C. PWN, Warszawa 1988 (1981). 2. F.W. Wehrli, T. Wirthlin ; z ang.
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C
SPEKTROSKOPIA MAGETYZEGO REZOASU JĄDROWEGO IZOTOPÓW IY Iś 1 i 13 o moŝna zmierzyć metodami MRJ? e Li Be B O F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru
PIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Zastosowanie spektroskopii NMR do określania struktury związków organicznych
Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której
ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)
h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...
Impulsy selektywne selektywne wzbudzenie
Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 ( 13 C) Fala ciągła (impuls o nieskończonej długości): jedna częstość o Impuls prostokątny
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge High-Resolution NMR Techniques in Organic Chemistry
1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge High-Resolution NMR Techniques in Organic Chemistry (Elsevier Science, 1999) 3. H.Friebolin Basic One- and Two-Dimensional
Spektroskopia. Spotkanie drugie UV-VIS, NMR
Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów
MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia
Magnetyczny rezonans jądrowy
Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez
Wykład 9 Wprowadzenie do krystalochemii
Wykład 9 Wprowadzenie do krystalochemii 1. Krystalografia a krystalochemia. 2. Prawa krystalochemii 3. Sieć krystaliczna i pozycje atomów 4. Bliskie i dalekie uporządkowanie. 5. Kryształ a cząsteczka.
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley, 2005) 2. T.Claridge
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Wiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz
FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II
SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
DWUWYMIAROWA SPEKTROSKOPIA NMR (2D NMR)
DWUWYMIARWA SPEKTRSKPIA MR (2D MR) W2D WIDM_2D Przykładowe dwuwymiarowe widmo MR Jednowymiarowy eksperyment MR (1D MR) z z M y y x M x I ~ M FT t A(t 1 ) A(t 2 ) A(t 3 ) A(t n ) I(ν 1 ) I(ν 2 ) I(ν 3 )
ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH
ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: IV. mgr inż. Marcin Płosiński
SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: IV DR INŻ. TOMASZ LASKOWSKI mgr inż. Marcin Płosiński PROLOGOS: ODSPRZĘGANIE SPINÓW (DEOUPLING) ODSPRZĘGANIE SPINÓW Eliminacja zjawiska sprzężenia spinowo-spinowego
ul. Umultowska 89b, Collegium Chemicum, Poznań tel ; fax
Wydział Chemii Zakład Chemii Analitycznej Plazma kontra plazma: optyczna spektrometria emisyjna w badaniach środowiska Przemysław Niedzielski ul. Umultowska 89b, Collegium Chemicum, 61-614 Poznań tel.
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Przesunięcie chemiczne, stałe sprzężenia
Przesunięcie chemiczne, stałe sprzężenia Widmo fal elektromagnetycznych WŁASNOŚCI MAGNETYCZNE NIEKTÓRYC JĄDER WŁASNOŚCI MAGNETYCZNE NIEKTÓRYC JĄDER Jądro 1 2 3 10 B 11 B 13 C 14 N 15 N 17 O 19 F 31 p 33
H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,
Teoria VSEPR. Jak przewidywac strukturę cząsteczki?
Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura
ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ
ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek
STEREOCHEMIA ORGANICZNA
STEREOEMIA ORGANINA Sławomir Jarosz Wykład 5 TOPOWOŚĆ Podział grup wg topowości 1. omotopowe (wymienialne operacją symetrii n ) 2. Enancjotopowe (wymienialne przez płaszczyznę σ) 3. Diastereotopowe (niewymienialne
Układ okresowy Przewidywania teorii kwantowej
Przewiywania teorii kwantowej Chemia kwantowa - oumowanie Czątka w ule Atom wooru Równanie Schroeingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - oumowanie rozwiązanie Czątka w ule Atom wooru Ψn
NUCLEAR MAGNETIC RESONANCE (NMR)
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) Klasyfikacja technik spektroskopowych NMR: Pomiary próbek gazowych Pomiary
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11
***Dane Pierwiastków Chemicznych*** - Układ Okresowy Pierwiastków 2.5.1.FREE Pierwiastek: H - Wodór Liczba atomowa: 1 Masa atomowa: 1.00794 Elektroujemność: 2.1 Gęstość: [g/cm sześcienny]: 0.0899 Temperatura
Chemia. Wykłady z podstaw chemii. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda
Chemia Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA
XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)
XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: III
SPEKTROSKOPIA NMR POEJŚIE PRAKTYZNE ZĘŚĆ: III R INŻ. TOMASZ LASKOWSKI ALGORYTM POSTĘPOWANIA I. Jeżeli dysponujesz wzorem sumarycznym badanego związku, oblicz stopień nienasycenia cząsteczki. Możesz to
Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018
LABORATORIA APARATURA BADANIA ISSN-1427-5619 3/ 2018 DWUMIESIĘCZNIK Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań ŚRODOWISKO TECHNIKI I
NMR Nuclear Magnetic Resonance. Co to jest?
1 NMR Nuclear Magnetic Resonance Co to jest? Spektroskopia NMR ang. Nuclear Magnetic Resonance Spektroskopia Magnetycznego Rezonansu Jądrowego (MRJ) Wykorzystuje własności magnetyczne jąder atomowych Spektroskopia
W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie.
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Chemia. Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda
Chemia Dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
CHEMIA WARTA POZNANIA
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne
SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW O SPINIE WIĘKSZYM NIŻ 1/2
SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW SPIIE WIĘKSZYM IŻ 1/2 PDZIAŁ IZTPÓW spin = 1/2 spin > 1/2 duża zawartość naturalna 1, 19 F, 31 P 14 mała zawartość naturalna 3, 13, 15 2, 17, 33 S Jądra o spinie
Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic NMR, D NMR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy
Chiralność i spektroskopia MRJ Badanie procesów wymiany (Dynamic MR, D MR) Wyznaczanie stałej trwałości kompleksów Technika pomiarowa MRJ: impulsy złoŝone i selektywne Czas relaksacji T 1 Czas relaksacji
1669 r Odkrycie fosforu przez Henninga Branda. Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej
1669 r Odkrycie fosforu przez Henninga Branda Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA 5 GAZY 3 TERMOCHEMIA 2 TERMODYNAMIKA 4 RÓWNOWAGA
Wykłady z podstaw chemii
Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady z podstaw chemii Lista wykładów STECHIOMETRIA GAZY TERMOCHEMIA TERMODYNAMIKA RÓWNOWAGA
Źródła światła w AAS. Seminarium Analityczne MS Spektrum Zakopane Jacek Sowiński MS Spektrum
Źródła światła w AAS Seminarium Analityczne MS Spektrum Zakopane 2013 Jacek Sowiński MS Spektrum js@msspektrum.pl www.msspektrum.pl Lampy HCL Standardowa Super-Lampa 3V 10V specyf. Lampy HCL 1,5 cala
XXIII Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych. Etap II. Poznań, Zadanie 1. Zadanie 2. Zadanie 3
XXIII Konkurs Chemiczny dla Uczniów Szkół Ponadgimnazjalnych Etap II Zadanie 1 Poniżej zaprezentowano schemat reakcji, którym ulegają związki manganu. Wszystkie reakcje (poza prażeniem) zachodzą w środowisku
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5 Janusz Typek Instytut Fizyki Plan prezentacji Jakie materiały badałem? (Krótka prezentacja badanych materiałów)
Struktura elektronowa
Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak
INADEQUATEID I DYNAMICZNY NMR MEZOJONOWYCH 3FENYLOlTIO2,3,4TRIAZOLO5METYUDÓW Wojciech Bocian, Lech Stefaniak Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01224 Warszawa PL9800994 WSTĘP Struktury
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by arcourt,
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIŻ 1 H i 13 C
SPEKTRSKPIA MAGETYZEG REZASU JĄDRWEG IZTPÓW IY IŻ 1 i 13 o można zmierzyć metodami MRJ? e Li Be B F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru Rh Pd Ag d
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
Anna Grych Test z budowy atomu i wiązań chemicznych
Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny
H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR...
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... (Początek: 1946 rok) 1. M.Levitt, Spin Dynamics Basics of Nuclear Magnetic Resonance (Wiley,
Spektroskopia magnetycznego rezonansu jądrowego (NMR)
Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.
Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego. Marta Szachniuk Politechnika Poznańska
Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego Marta Szachniuk Politechnika Poznańska Plan prezentacji 1. Wprowadzenie do problematyki badań: cel i zasadność projektu.
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład VI Magnetyczny rezonans jądrowy (NMR) Metody obserwacji NMR: indukcji jądrowej (Blocha), absorpcyjna (Purcella)
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)
Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał
Spektroskopowe metody identyfikacji związków organicznych / Robert. Spis treści
Spektroskopowe metody identyfikacji związków organicznych / Robert M. Silverstein, Francis X. Webster, David J. Kiemle. wyd. 2, dodr. 4. - Warszawa, 2012 Spis treści ROZDZIAŁ 1 SPEKTROMETRIA MAS 1 1.1
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 950
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 950 wydany przez POLSKIE CENTRUM AKREDYTACJI 01382 Warszawa, ul. Szczotkarska 42 Wydanie nr 3, Data wydania: 5 maja 2011 r. Nazwa i adres INSTYTUT PODSTAW
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Chemia. dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej r Odkrycie fosforu przez Henninga Branda
Chemia dr hab. Joanna Łojewska Zakład Chemii Nieorganicznej 1669 r Odkrycie fosforu przez Henninga Branda Wykłady Chemia Ogólna i Nieorganiczna Organizacja kursu WYKŁAD Seminarium Cwiczenia Zal. (ECTS
Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki
Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
FID Free Induction Decay. Rejestracja widm NMR metodą fali ciągłej CW (Continuous Wave)
Rejestracja widm NMR metodą fali ciągłej W (ontinuous Wave) metodą fali ciągłej ze stopniową zmianą zakresu częstości w spektrometrach W próbka jest umieszczona w polu magnetycznym i naświetlana przy powolnej
Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków
Układ okresowy pierwiastków Okresowość właściwości chemicznych pierwiastków 1. Konfiguracje elektronowe pierwiastków. Konfiguracje a układ okresowy 3. Budowa układu okresowego 4. Historyczny rozwój układu
PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2
PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-
Interpretacja widm 1 H NMR podstawy i przykłady
INTERPRETACJA WIDM Na ćwiczeniach obowiązuje materiał: zawarty w podręczniku - R. Kocjan Chemia analityczna. Podręcznik dla studentów. Analiza instrumentalna. Tom 2 rozdziały 6.1-6.6 (str. 111 126); 7.1
Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)
Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej