Rozkład prawdopodobieństwa przepływów maksymalnych rocznych (przepływów najwyższych w roku)
|
|
- Paweł Kalinowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Rozkład prawdopodobieństwa przepływów maksymalnych rocznych (przepływów najwyższych w roku) 1. metoda CUGW (Pearson III i metoda kwantyli) Metoda ta powstała w latach sześćdziesiątych zeszłego stulecia i jest oparta m. in. na pracach Kaczmarka (1960a, 1960b). W 1968 roku została opublikowana w postaci regulacji prawnej (CUGW 1968), a w 1991 roku nieco rozszerzona przez zespół IMGW (IMGW 1991). Metoda ta stosuje trójparametrowy rozkład Pearsona typu III, którego parametry są estymowane graficzną metodą decyli. Rozkład ten jest zapisany w formie kwantylowej [ ] Q 1 (, ) max, p = Q + cv Φ s p (1) gdzie Q max,p jest kwantylem dowolnego rzędu p przepływu maksymalnego w roku (tj. przepływu p% lub przepływu T-letniego, gdzie T = 1/p), Q jest medianą zmiennej Q max, c v kwantylowym współczynnikiem zmienności, Φ(s,p) stablicowaną funkcją kwantylowego współczynnika skośności s i prawdopodobieństwa przewyższenia p. Procedurę obliczeniowa składa się z kilku etapów, które najłatwiej prześledzić na konkretnym przykładzie. Niech będzie dana n-letnia chronologiczna próba losową przepływów maksymalnych w roku {Q max,1, Q max,2,..., Q max, n }, jak podaje poniższa tabela 1: Tabela 1. Przepływy maksymalne roczne Q max (m 3 /s) w przekroju Sucha na Skawie w okresie (źródło: Ozga-Zielińska i in. 1999) rok Q max rok Q max rok Q max co ilustruje graficznie rys. 1. Q m a x, m 3 ês SkawaêSucha Rys. 1. Ciąg chronologiczny przepływów maksymalnych rocznych Q max (m 3 /s) w przekroju Sucha na Skawie w okresie Posiadane dane powinny być starannie zweryfikowane pod względem ich jednorodności (stałość warunków formowania się wezbrań, brak czynników ubocznych, wiarygodność krzywych konsumcyjnych itd.). Ponieważ dane takie są przygotowywane przez wyspecjalizowane agencje, weryfikacja taka jeśli jest w ogóle prowadzona ogranicza się do badania jednorodności szeregu czasowego za pomocą jakiegoś testu jednorodności, zwykle testu na brak trendu liniowego lub trendu monotonicznego. Proponowane i zastosowane są tu takie
2 testy jak test na nieistotność współczynnika kierunkowego regresji liniowej, czy nieparametryczny test Manna-Whitneya. Następnym krokiem jest uporządkowanie posiadanej próby chronologicznej w ciąg malejący {Q max,(1), Q max,(2),..., Q max,(n) }, obliczenie kolejnych wartości p i empirycznego prawdopodobieństwa przewyższenia za pomocą wzoru ozn i ˆP( Qmax Qmax,( i) ) = pi =, i = 1,2,..., n (2) n + 1 umieszczenie punktów (p i, Q max,(i) ) na siatce pearsonowskiej (podanej w osobnym pliku siatka PIII.pdf), wyrównanie ich odręcznie i odczytanie wartości czterech decyli: ˆQ 90 i ˆQ 10, co ilustruje rys Skawa êsucha x, m 3 ês PHQ max xl, % Rys. 2. Empiryczna funkcja prawdopodobieństwa przewyższenia przepływów maksymalnych rocznych (punkty połączone łamaną) z zaznaczonymi odczytanymi z wykresu decylami ˆQ 90 i ˆQ (znak ). 10 Z rys. 2 można odczytać, że wartości kwantyli ˆQ 90 i ˆQ 10 wynoszą w przybliżeniu odpowiednio 10, 30, i 240 m 3 /s. Następnie, za pomocą podanych niżej wzorów, obliczane są dwie bezwymiarowe wartości: empiryczny (kwantylowy) współczynnik zmienności ĉ v oraz pewną wartość pomocniczą ˆb : cˆ v = (3) ˆ ˆ cˆ vq b = Wykorzystując znane wartości decyli i wzory (3) i (4) dostajemy ĉ v = ( ˆQ 10 ˆQ 90 )/(2 ˆQ ) = (240 30/(2 ) = 210/ = 1.05, oraz ˆb = 1.05 /( 10) = 1.05 /90 = Wartość ˆb służy do odczytania z podanej tabeli (tabela C.1 na końcu niniejszego tekstu) wartości s wielkości zwanej współczynnikiem skośności. Następnie z kolejnej tabeli (tabela C.3) odczytuje się wartości Φ(s,p) dla zadanej wartości s i zadanych wartości prawdopodobieństwa przewyższenia p. (4)
3 W naszym przykładzie interpolacja s dla wartości ˆb = w tabeli C.1 daje s = Tabela C.3 daje po interpolacji liniowej następujące wartości Φ(s = 0.725, p): p, % 99% 95% 90% 80% 70% % 30% 20% 10% 5% 3% 2% 1% Φ(s=0.725, p) które po wstawieniu do wzoru (1): max, p dają poszukiwany rozkład teoretyczny: 3 [ (0.725, p) ] Q ˆ = + Φ m /s (5) p, % 99% 95% 90% 80% 70% % 30% 20% 10% 5% 3% 2% 1% max, p m 3 /s Można teraz nanieść otrzymane wartości max, p na wykres empirycznego prawdopodobieństwa przewyższenia. Otrzymany wynik jest przedstawiony na rys. 3. Z wykresu tego można odczytać wartości innych żądanych kwantyli; można też ocenić wizualnie jakość dopasowania. SkawaêSucha x, m 3 ês PHQ max xl, % Rys. 3. Teoretyczna funkcja prawdopodobieństwa przewyższenia przepływu maksymalnego rocznego (linia gładka) obliczona metodą CUGW. Maksymalna różnica D max pomiędzy dystrybuantami (liczona w poziomie) wynosi około 10% dla Q max nieco ponad m 3 /s. Należy teraz zbadać, czy nie istnieją powody przeciwko przyjęciu, że badana zmienna losowa podlega znalezionemu rozkładowi prawdopodobieństwa. Do tego celu wytyczne CUGW (1968) i IMGW (1991) zalecają zastosowanie testu Kołmogorowa na poziomie istotności 5%. Zadanie to można wykonać w ten sposób, że znajduje się na wykresie takim jak na rys. 3 maksymalną różnicę D max pomiędzy prawdopodobieństwem empirycznym a teoretycznym (tj. różnicę w poziomie) i bada się, czy różnica ta nie przekracza wartości krytycznej tego testu. Z rys. 3 można z grubsza odczytać, że poszukiwana maksymalna różnica wynosi około 10% (dla przepływu ok. m 3 /s). Przyjmując tę wartość mamy: λ = D n = = < λ ( α = 5%) = 1.36 max A więc nie ma podstaw do odrzucenia hipotezy zerowej, przyjmujemy w takim razie, że znaleziony rozkład prawdopodobieństwa (1) ze estymowanymi parametrami jest rzeczywistym rozkładem przepływów maksymalnych rocznych Skawy w Suchej. kryt
4 Pozostaje jeszcze jeden problem: ocena niepewności (tzw. błędu) kwantyla Q ˆmax, p. Problem ten jest rozwiązywany za pomocą jednostronnego (lewostronnego) przedziału ufności dla rzeczywistej wartości kwantyla Q max,p (CUGW 1968, IMGW 1991): ˆ α Q = + t σ (6) ( ) max, p max, p α max, p lub dwustronnego przedziału ufności (IMGW 1991): ˆ α Q = ± t σ (7) ( ) max, p max, p α Q max, p gdzie t α jest kwantylem w rozkładzie normalnym N(0;1) rzędu odpowiednio: 1 α w (6) i 1 α/2 w (7) a σ odchylenie standardowe kwantyla Q ˆmax, p oblicza się ze wzoru: max, p σ max, p cˆ v = F( s, p) (8) Funkcja F(s,p) jest stablicowana (np. Kaczmarek 1970); jej wartości są podane w załączonej w niniejszym tekście tabeli C.2. Wartość t α w (6) i (7) wynikają odpowiednio z następujących wzorów: E Q max, p max, p P < tα = Pα = 1 α σ max, p E Q max, p max, p P < tα = Pα = 1 α σ max, p Ostatnią czynnością jest wykreślenie odpowiedniego obszaru ufności. P α 84% 90% 95% 99% t α dla (6) i (9) t α dla (7) i (10) n 4 (9) (10) SkawaêSucha x, m 3 ês PHQ max xl, % Rys % jednostronny obszar ufności (linia przerywana oznacza górną granicę) przepływów maksymalnych w roku Skawy w Suchej (metoda CUGW).
5 5 2. metoda 2: Pearson III, metoda największej wiarygodności Metoda ta stosuje również stosuje trójparametrowy rozkład Pearsona typu III, który zapisany w postaci jawnej ma np. taką postać: α fγ x = x e x > > Γ( λ) λ λ 1 α ( x ) ( ;, α, λ) ( ),, α, λ 0 Dolne ograniczenie jest szacowane np. z wykresu (jak na rys. 2) a pozostałe dwa parametry, tj. α i λ estymowane metodą największej wiarygodności. Jedna z postaci tej metody, najłatwiejsza do stosowania, ma postać gdzie: Aλ = ln( x ) ln( x ) ˆ 1 4A λ 1 1 4A + + λ 3 λ (11) (12) ˆ λ ˆ α = (13) x Dla analizowanych danych, przyjmując znalezioną już wartość dolnego ograniczenia = 10 m 3 /s, dostajemy: x = , ln( x ) = , ln( x ) = , A λ = , ˆλ = i ˆα = Mając te wartości i korzystając z Excela (bliższe informacje w osobnym pliku Excel- RozkłCiagłe1.pdf), łatwo dostajemy dowolną wartość przepływu Q max,p. Na przykład jak to pokazuje rysunek poniżej dla prawdopodobieństwa przewyższenia p = 5% Excel daje wartość Q max,5% = m 3 /s, skąd dostajemy Q max,5% = m 3 /s. Należy koniecznie zauważyć, że wartość ˆλ = wpisujemy w ramkę Alfa a wartość ˆα = wpisujemy ramkę Beta. Inne przykładowe wyniki uzyskane za pomocą Excela pokazane są niżej.
6 6 Utworzoną ten sposób zależność Q max,p od p dla metody największej wiarygodności została na rys. 5 poniżej porównana z zależnością z rys. 3. SkawaêSucha x, m 3 ês PHQ max xl, % Rys. 5. Teoretyczna funkcja prawdopodobieństwa przewyższenia przepływu maksymalnego rocznego (linia gruba przerywana) obliczona metodą CUGW i teoretyczna funkcja prawdopodobieństwa przewyższenia przepływu maksymalnego rocznego (linia cienka przerywana) obliczona metodą największej wiarygodności.
7 7 Tabela C.1. Wartości kwantylowego współczynnika skośności s w funkcji wielkości b (4) b s b s b s b s b s b s Tabela C.2. Wartości funkcji F(s,p) dla zadanych wartości s i p wymagane do stosowania wzoru (8). s p%
8 8 Tabela C.3. Wartości funkcji Φ(s,p) dla zadanych wartości s i p s p
9 9 Literatura CUGW, 1968, Zasady obliczania największych przepływów rocznych o określonym prawdopodobieństwie pojawiania się przy projektowaniu obiektów inżynierskich i urządzeń technicznych gospodarki wodnej w zakresie budownictwa hydrotechnicznego, Załącznik do Zarządzenia nr 26 Prezesa CUGW z dnia 9 lipca 1968 r. (Dz. Bud. nr 9 poz. 42), Wydawnictwo Katalogów i Cenników, Warszawa IMGW 1991: Biernat B., Bogdanowicz E., Czarnecka H., Dobrzyńska I., Fal B., Karwowski, S., Skorupska B., Stachý J. Zasady obliczania maksymalnych rocznych przepływów rzek polskich o określonym prawdopodobieństwie pojawiania się, IMGW., Seria: Instrukcje i podręczniki, Warszawa Kaczmarek Z., 1960a, Obliczanie parametrów rozkładu Fostera przy pomocy decyli, Gosp. Wodna., XX (2), Kaczmarek Z., 1960b, Przedział ufności jako miara dokładności oszacowania prawdopodobnych przepływów powodziowych, Wiad. Sł. Hydrol., VII (4), Kaczmarek Z.: Metody statystyczne w hydrologii i meteorologii, WKiŁ, Warszawa Ozga-Zielińska M., Brzeziński J., Ozga-Zieliński B.: 1999, Zasady obliczania największych przepływów rocznych o określonym prawdopodobieństwie przewyższenia przy projektowaniu obiektów budownictwa hydrotechnicznego. Długie ciągi pomiarowe przepływów, IMGW, Materiały Badawcze, Seria Hydrologia i Oceanologia, 27.
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Seminarium Metody obliczania przepływów maksymalnych w zlewniach kontrolowanych i niekontrolowanych, RZGW, Kraków 30 IX 2013 r. Metody obliczania przepływów maksymalnych rocznych o określonym prawdopodobieństwie
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
SEMINARIUM DANE HYDROLOGICZNE DO PROJEKTOWANIA UJĘĆ WÓD POWIERZCHNIOWYCH
Wyzsza Szkola Administracji w Bielsku-Bialej SH P Stowarzyszenie Hydrologów Polskich Beniamin Więzik SEMINARIUM DANE HYDROLOGICZNE DO PROJEKTOWANIA UJĘĆ WÓD POWIERZCHNIOWYCH Warszawa 18 wrzesnia 2015 r.
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11
Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
R Z G W REGIONALNY ZARZĄD GOSPODARKI WODNEJ W KRAKOWIE. Załącznik F Formuła opadowa wg Stachý i Fal OKI KRAKÓW
REGIONALNY ZARZĄD GOSPODARKI WODNEJ W KRAKOWIE R Z G W Załącznik F Formuła opadowa wg Stachý i Fal Formuła opadowa wg Stachý i Fal [1] Do obliczenia przepływów maksymalnych o określonym prawdopodobieństwie
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Zastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).
PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow
Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,
Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007
Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych
Badanie normalności rozkładu
Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
STOWARZYSZENIE HYDROLOGÓW POLSKICH
Sfinansowano ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej na zlecenie Krajowego Zarządu Gospodarki Wodnej Metodyka obliczania przepływów i opadów maksymalnych o określonym prawdopodobieństwie