a) Utworzyć wykres kołowy dla stanu cywilnego danej grupy kobiet. Porównać różne formy opisu wykresu.
|
|
- Bartosz Piotrowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1 Badania demograficzne przeprowadzone w 1988 roku w USA wykazały, że wśród kobiet (mających 18 i więcej lat) było: tyś. panien, tyś. mężatek, tyś. wdów i 8170 tyś. rozwódek. a) Utworzyć wykres kołowy dla stanu cywilnego danej grupy kobiet. Porównać różne formy opisu wykresu. panie = c(17364, 56128,11239, 8170) /// cos = c() - tworzenie wektora stan = c ("panny", "mezatki", "wdowy", "rozwodki") pie (panie, labels = stan) /// wykres kołowy dla wektora panie pie (panie, /// wektor z danymi labels = stan, /// wektor z etykietami col=kol, /// wektor z kolorami main = "stan cywilny", /// tytuł wykresu col.main = "violet", /// kolor tytułu radius = 1) // promien koła(wykresu) b) Utworzyć wykres słupkowy dla stanu cywilnego danej grupy kobiet. Porównać różne rodzaje wykresów i formy ich opisu. barplot (panie, names.arg = panie, /// podpisy słupkow legend.text = stan, /// wektor z etykietami col = kol) Zadanie 2 Koncern paliwowy planuje otworzyć nową stację benzynową w pewnym mieście. Rozważane są cztery możliwe lokalizacje stacji w południowej, północnej, zachodniej i wschodniej dzielnicy miasta (oznaczenia dzielnic: S południowa, N północna, W zachodnia i E wschodnia). W ramach badania opinii społecznej odnośnie preferowanej lokalizacji stacji zapytano o to tysiąc kierowców. Ich odpowiedzi znajdują się w pliku stacje.csv. Utworzyć wykres słupkowy i wykres kołowy dla badanych preferencji. stacja = read.csv('p:/smwd/stacje.csv') dim(stacja) /// rozmiar ts = table(stacja) /// tabelaryzacja barplot(ts, names.arg=ts) pie(ts) Zadanie 3 Poniższe dane odpowiadają notowaniom pewnej spółki (w PLN) w kolejnych 20 dniach: 23,30 24,50 25,30 25,30 24,30 24,80 25,20 24,50 24,60 24,10, 24,30 26,10 23,10 25,50 22,60 24,60 24,30 25,40 25,20 26,80 Utworzyć wykres cen akcji jako funkcję czasu (szereg czasowy). ceny=c(23.30,24.50,25.30,25.30,24.30,24.80,25.20,24.50,24.60,24.10,24.30,26.10,23.10,25.50,22.60,24.60,24.30,25.40,25.20,26.80) plot(ceny, type="b", /// typ bez kropki, l - kreski, b kropki i kreski col = 3, pch = 16, /// kolor lini i styl kropki xlab ="dzien", ylab="ceny akcji" ) Zadanie 4 Wytrzymałość na ciśnienie wewnętrzne szkła butelek jest ich ważną charakterystyką jakościową. W celu zbadania wytrzymałości butelek umieszcza się je w maszynie hydrostatycznej, po czym zwiększa się ciśnienie
2 aż do zniszczenia butelki. Plik butelki.csv zawiera dane opisujące graniczną wytrzymałość na ciśnienie wewnętrzne szkła badanej partii butelek (mierzone w psi). butelki = read.csv('p:/smwd/butelki.csv') a) Utworzyć zmienną o nazwie cisnienie, opisującą wytrzymałość na ciśnienie wewnętrzne szkła butelek mierzone w MPa Wskazówka: 1psi = 0, MPa cis = *butelki$strength b) Utworzyć histogram dla danych opisujących wytrzymałość butelek. Prześledzić wpływ liczby klas na kształt histogramu. Porównać różne rodzaje histogramów. hist(cis, labels =T, prob = T) breaks liczba klas ale nie do końca bangla h=hist(cis,labels=t) h /// wyświetla info o histogramie c) Utworzyć wykres łamanej liczności i nałożyć go na wykres histogramu. xll=c(1.1, h$mids, 2.7) ylc=c(0,h$intensities,0) lines (xll,yll, col=4) ====Liczność skumulowana==== lk =numeric(length(7)) lk[1]= h$counts[1] for (i in 2:7 ) lk [i]=h$counts[i]+lk[i-1] lk2=c(0,lk) barplot(lk2,space=0,names.arg=lk2) c) Utworzyć wykres łodygowo-liściowy. stem(cis) d) Utworzyć i zinterpretować wykres skrzynkowy dla wytrzymałości butelek. boxplot(cis,horizontal=t) summary(cis) f) Wyznaczyć i zinterpretować podstawowe statystyki próbkowe dla danych opisujących wytrzymałość butelek. boxplot(cis,horizontal=t)$out /// outsider mean(cis) /// srednia median(cis) /// mediana var(cis) /// wariancja sd(cis) /// odchylenie standardowe IQR(cis) quantile(cis, 0.75) /// kwantyl rzędu 75% - 75% obserwacji ma mniejsza wartość g) Obliczyć i zinterpretować 5, 10, 25, 50, 75, 90 i 95 percentyl dla rozważanych danych.
3 rz=c(.05,.1,.25,.75,.9,.95) quantile(cis, rz) h) Wyznaczyć 10% średnią uciętą dla danych opisujących wytrzymałość butelek. Porównać średnią uciętą ze średnią arytmetyczną i medianą. Prześledzić, jak zmienia się wartość średniej wraz ze zmianą stopnia ucięcia próbki. mean(cis,trim=0.1) Zadanie 6 W pliku samochody.csv zamieszczono dane dotyczące parametrów samochodów kilku wybranych marek. samochody= read.csv2("p:/smwd/samochody.csv") a) Zmienna mpg zawiera dane odpowiadające liczbie mil, przejechanych przez dany samochód na galonie paliwa. Utworzyć zmienną zp opisującą zużycie paliwa mierzone w litrach na 100 kilometrów. Wskazówka: 1 mila = 1609 m 1 galon (amerykański) = 3,785 l zp=378.5/(1.609*samochody$mpg) samochody=cbind(samochody,zp) ///dodaje kolumnę zp b) Utworzyć wykres łodygowo-liściowy dla zużycia paliwa. stem(zp) c) Utworzyć histogram dla danych opisujących zużycie paliwa. hist(zp) d) Utworzyć wykres skrzynkowy dla zużycia paliwa. boxplot(zp,horizontal=t) e) Wyznaczyć i zinterpretować podstawowe statystyki próbkowe dla danych opisujących zużycie paliwa (takie jak: średnia, mediana, wariancja, odchylenie standardowe, rozstęp, kwartyle, rozstęp międzykwartylowy, wartości ekstremalne, współczynnik asymetrii, kurtoza, współczynnik zmienności). mean(zp,na.rm=t) /// na.rm=t usuwa wartosci NA przed liczeniem zp2=na.omit(zp) /// na.omit - pominiecie wartości NA max(zp2)-min(zp2) /// rozstęp range(zp2) /// wartości ekstremalne mean((zp2-mean(zp2))^3)/sd(zp2)^3 /// współczynnik asymetrii mean((zp2-mean(zp2))^4)/sd(zp2)^4-3 /// kurtoza sd(zp2)/mean(zp2) /// współczynnik zmienności f) Obliczyć i zinterpretować 5, 10, 90 i 95 percentyl dla rozważanych danych. g) Wyznaczyć 5% średnią uciętą dla danych opisujących zużycie paliwa. mean(cis,trim=0.05) Zadanie 7 Analizowane w poprzednim zadaniu dane dotyczące zużycia paliwa postanowione poddać kategoryzacji tworząc następujące klasy:
4 Zużycie paliwa [litry na 100 km] nie więcej niż 7 więcej niż 7 ale nie więcej niż 10 więcej niż 10 Kod opisujący kategorię zużycia paliwa mało średnio dużo Utworzyć wykres słupkowy dla wyznaczonych w ten sposób kategorii i wskazać, jaki procent badanych samochodów należy do każdej kategorii. m=zp2[zp2<=7] s=zp2[zp2>7 & zp2<=10 ] d=zp2[zp2>10 ] sp=c(length(m),length(s),length(d)) barplot(sp,names.arg=sp) prop.table(sp) /// procent całości round(prop.table(sp),2) /// zaokrąglone Zadanie 8 Przeprowadzić wstępną analizę statystyczną danych dotyczących zużycia paliwa oddzielnie dla samochodów produkowanych w Europie, Ameryce i Japonii (wykorzystać zmienne producent i legenda). Zestawić wykresy skrzynkowe zużycia paliwa dla samochodów produkowanych w Europie, Ameryce i Japonii. boxplot(zp~samochody$producent) attach(samochody) // załącz amer = subset(samochody,producent == 1) /// subset zwraca wektor spełniający warunek eu = subset(samochody,producent == 2) jap = subset(samochody,producent == 3) mean(jap$zp) mean(amer$zp) mean(eu$zp, na.rm=t ) ale też mean(zp[producent==3], na.rm=t) Zadanie 9 Przeprowadzić wstępną analizę statystyczną danych dotyczących zużycia paliwa przez samochody o jednakowej liczbie cylindrów (dane dotyczące liczby cylindrów znajdują się w zmiennej cylindry). median(zp[cylindry==6],na.rm=t) summary(zp[cylindry==6],na.rm=t) Zadanie 10 Przeprowadzić wstępną analizę statystyczną danych dotyczących zużycia paliwa przez samochody mające wyłącznie 6 lub 8 cylindrów. median(zp[cylindry==6 cylindry==8],na.rm=t) summary(zp[cylindry==6 cylindry==8],na.rm=t) Zadanie 11 Porównać przyspieszenie samochodów produkowanych w Ameryce i Japonii (dane dotyczące przyspieszenia znajdują się w zmiennej przysp). przyspa=c(przysp[producent==1]) przyspj=c(przysp[producent==3])
5 boxplot(przyspa, przyspj) Zadanie 12 Przeprowadzić wstępną analizę statystyczną danych dotyczących zużycia paliwa wyłącznie dla samochodów ważących mniej niż 2500 funtów (wykorzystać zmienną waga). zpw=zp[waga<2500] summary(zpw) KOLOKWIUM Zadanie 1 Zbiór Orange zawiera dane dotyczące wieku (zmienna age) mierzonego w dniach i obwodu pnia (zmienna circumference) mierzonego w mm, 5 gatunkow drzewek pomarańczowych (zmienna Tree) Zbiór ten można otworzyć poleceniem data(orange) a)podać wartość obwodu pnia której nie przekracza 70% badanych drzewek pomarańczowych quantile(orange$circumference, 0.7) b)podać średni wiek oraz odchylenie standardowe wieku drzewek pomarańczowych 1 gatunku mean(orange$age[orange$tree==1]) sd(orange$age[orange$tree==1]) c)narysować i opisać wykres skrzynkowy dla obwodu pnia drzewek mających co najmniej 500 ale nie więcej niż 1300 dni. Zadanie 2 drzewka= Orange$circumference [Orange$age >=500 & Orange$age <=1300 ] boxplot(drzewka,horizontal=t) summary(drzewka) Analizowaną w poprzednim zadaniu zmienną circumference (ze zbioru Orange), opisującą obwód pnia drzewek pomarańczowych poddać następującej kategoryzacji: Obwód Kategoria Mniej niż 100mm A Co najmniej 100mm ale mniej niż 200mm B Co najmniej 200 mm C Utworzyć wykres kołowy dla wyznaczonych w ten sposób kategorii i wskazać, jaki procent drzewek pomarańczowych należy do danej kategorii A = subset(orange,orange$circumference< 100) B = subset(orange,orange$circumference>= 100 & Orange$circumference < 200 ) C = subset(orange,orange$circumference>= 200) drzewkazkategoryzowane = c(length(a$age),length(b$age),length(c$age)) pie(drzewkazkategoryzowane, labels = drzewkazkategoryzowane) prop.table(drzewkazkategoryzowane) round(prop.table(drzewkazkategoryzowane),2)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję
Zadanie 1 Plik Nowy Kod lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję libname nazwa biblioteki lokalizacja na dysku ; np. libname lab 'N:\sas2007\';
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
STATYSTYCZNE METODY WSPOMAGANIA DECYZJI
STATYSTYCZNE METODY WSPOMAGANIA DECYZJI zestaw zadań nr 1 Cel: wybrane rozkłady prawdopodobieństwa; statystyka opisowa danych jakościowych Zadanie 1 Utworzyć wykresy gęstości, dystrybuanty i funkcji przeżycia
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Zadanie 1. Analiza Analiza rozkładu
Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
author: Andrzej Dudek
Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez
Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions
Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:
1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Parametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych.
Laboratorium z ekonometrii (GRETL) 2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. 2.1 Zaimportuj dane z pliku zatrudnienie.csv z przecinkiem jako separatorem danych i kropką jako
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Materiał dotyczy generowania różnego typu wykresów w środowisku R.
Materiał dotyczy generowania różnego typu wykresów w środowisku R. Pamiętajmy, że niektóre typy wykresów są dedykowane do pewnych typów danych. Na potrzeby ćwiczeń początkowych załadujemy sobie zbiór danych
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda
ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności Przedmiotem statystyki jest zbieranie, prezentacja oraz analiza danych opisujących zjawiska losowe. Badaniu statystycznemu podlega próbka losowa pobrana
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Podstawy statystyki - ćwiczenia r.
Zadanie 1. Na podstawie poniższych danych wyznacz i zinterpretuj miary tendencji centralnej dotyczące wysokości miesięcznych zarobków (zł): 1290, 1500, 1600, 2250, 1400, 1600, 2500. Średnia arytmetyczna
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Wykład 3: Prezentacja danych statystycznych
Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:
NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ
WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch
Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Ćwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi
Nowoczesne techniki matematyczne, statystyczne i informatyczne
Nowoczesne techniki matematyczne, statystyczne i informatyczne Wykładowca : Krzysztof Bogdan Biuro : C-11, p. 2.12 http://prac.im.pwr.wroc.pl/~bogdan/ Twój wynik z wykładów: zadania domowe (25%) kartkówki
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA
Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
> x <-seq(-2*pi, 2*pi, by=0.5) > plot(x, sin(x), type="b",main="wykres funkcji sin(x) i cos(x)", col="blue") > lines(x, cos(x), type="l",col="red")
Rachunek Prawdopodobieństwa i Statystyka lab 4. Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) 1. Wprowadzenie do grafiki: - Program R ma szerokie możliwości w zakresie graficznego prezentowania danych.
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.
Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.
Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
ZADANIE 1 (7pkt./15min.)
ZADANIE 1 (7pkt./15min.) ZUMI to jeden z najpopularniejszych lokalizatorów internetowych. Wykorzystując jego możliwości, wyznacz trasę jazdy samochodem z Opola, z ulicy Gospodarczej, do Dobrzenia Wielkiego
Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego
Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1
Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU
Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 9 Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
Seria 7 1. 18 studentów drugiego roku zapytano na ilu wykładach z RPiS byli w ciagu semestru. Uzyskano nastepujace odpowiedzi: 12,15,9,13,15, 13, 1~ 10, 13, 1, 12, 1~ 1~ ~ 1~ 11, 13,1 Sporządzić wykres
Opisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
author: Andrzej Dudek
Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ
STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ Opracowała: Milena STATYSTYKA OPISOWA LAB.1. Zadanie 1 Następujące dane są liczbami pasażerów korzystających z
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Analiza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
> E0swiatKobiety <- subset(x0, Plec == "Female-Femmes") > E0swiatKobiety [1]
> getwd() [1] "C:/Users/DC/Documents" > setwd("c:/users/dc/desktop/statdem") > list.files() [1] "Bliskosc.csv" "Dominanta_R.txt" [3] "Eo_World_Baza.csv" "Eo_World_bis.xlsx" [5] "Eo_World_Red.xlsx" "funkcyjki.txt"
MapInfo Professional - 5
Analiza danych na mapach tematycznych Mapy tematyczne to narzędzie do analizy i wizualizacji danych. Rozkłady i trendy, które trudno zauważyć na wykazach danych można łatwo wyśledzić na mapach tematycznych.
Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.
Wykład Zmiana wartości wynikająca ze zmiany jednostek dana jest zwykle funkcją liniową: y = ay + c Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym, gdy zmienimy jednostki? Przykłady:
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji