Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR
|
|
- Sylwia Romanowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Filtry IIR Filtry IIR mają zazwyczaj dużo niższe rzędy przy osiągach takich jak FIR z dużo wyższymi rzędami. W matlabie mamy zaimplementowane kilka funkcji do projektowania óptymalnych pod różnymi względami filtrów w klasycznych konfiguracjach: dolno albo górnoprzepustowe i pasmowo przepustowe albo pasmowo zaporowe.
2 Filtry IIR W określaniu parametrów filtrów używa się często pojęcia decybel [db]. DwapoziomysygnałuPorazP 0 różniąsięondecybeli,jeżeli n =10log 10 P P 0 W funkcjach do projektowania filtrów w Matlabie używane są: Wp- pasmo przenoszenia Ws- pasmo tłumienia Rp-tętnieniewpasmieprzenoszeniawdB Rs-tłupieniewpasmietłumieniawdB częstości podawane są w częstościach znormalizowanych FN = 1
3 Funkcje dostępne w Matlabie Filtr Butterwortha daje gładką, monotoniczną funkcję przenoszenia [n,wn]=buttord(wp, Ws, Rp,Rs); [b,a]=butter(n,wn) Filtr Czebyszewa I rodzaju- gładka funkcja przenoszenia w paśmie tłumienia, minimalizowane tętnienia(ripple) w paśmie przenoszenia [n,wn]=cheb1ord(wp, Ws, Rp,Rs); [b,a]=cheby1(n,wn) Filtr Czebyszewa II rodzaju- gładka funkcja przenoszenia w paśmie przenoszenia, minimalizowane tętnienia (ripple) w paśmie tłumienia [n,wn]=cheb2ord(wp, Ws, Rp,Rs); [b,a]=cheby2(n,wn) Filtr eliptyczny daje najostrzejsze przejście pomiędzy pasmem tłumienia i przenoszenia przy najniższym rzędzie, tętnienia obecne zarówno w paśmie przenoszenia jak i w paśmie tłumienia [n,wn]=ellipord(wp, Ws, Rp,Rs); [b,a]=ellip(n,wn)
4 W powyższych funkcjach: Jeśli Wn jest skalarem to domyślnie robiony jest filtr dolnoprzepustowy, jeśli chcemy górnoprzepustowy to po liście argumentów podajemy high. Jeśli Wn jest wektorem to robiony jest filtr pasmowo-przepustowy z granicami pasma takimi jak Wn. Aby uzyskać filtr pasmowo-zaporowy piszemy stop po liście argumentów.
5 Filtry wielopasmowe: [b,a]=yulewalk(n,f,m) n-rząd f- częstości, dla których zachodzi zmiana w funkcji przenoszenia m- wartości funkcji przenoszenia wzadanychczestościach(wf)
6 Filtry IIR 1 Skonstruować filtry dolnoprzepustowe rzędu n = 5 częstość odcięcia 30 Hz, częstość próbkowania sygnału 128Hz, Rp=0.5dB, Rs=20dB, przy pomocy wszystkich podanych powyżej funkcji i porównać ich własności. 2 Dobrać rząd i zaprojektować, a następnie zbadać własność otrzymanego filtru butterwortha spełniającego poniższe kryteria: pasmo przenoszenia Hz pasmo tłumienia zaczyna się 500Hz od każdego z brzegów pasma przenoszenia, próbkowanie 10kHz, najwyżej 1 db tętnienia w paśmie przenoszenia, co najminiej 60dB tłumienia w paśmie tłumienia. 3 Zaprojektować filtr do wyławiania wrzecion snu z sygnału
7 Do góry: Zwiększamy częstość prókowania całkowitą ilość razy P. Najpowszechniej stosowana metoda polega na dodaniu P zer pomiędzy istniejące próbki sygnału tak aby osiągnął on P-krotnie większą długość. Następnie taki rozciągnięty sygnał filtrujemy filtrem dolnoprzepustowym o częstości odcięcia nie większej niż częstość Nyquista oryginalnego sygnału- rozciąganie sygnału nie dokłada do niego nowej informacji więc i tak nic nie tracimy.
8 Przykład przepróbkowania do góry: t=0:0.001:0.03;%czas x = sin(2*pi*30*t) + sin(2*pi*60*t); y=interp(x,4); figure(1) subplot(321) stem(x(1:30)); title( Original Signal ); subplot(323) stem(y(1:120)); title( Interpolated Signal ); subplot(322) stem(x(1:30)); subplot(324) X=zeros(1,4*length(x)); X(1:4:end)=x; stem(x(1:120)); b=fir1(10,1/4); figure(2) freqz(b,1,1000) figure(1) subplot(326) y=filtfilt(b,1,x); stem(y(1:120))
9 Do dołu: Zmniejszamy częstość próbkowania całkowitą ilość razy. Musimypamiętaćotym,żebywyfiltrowaćto,cobyłow oryginalnym sygnale powyżej docelowego Nyquista, żeby uniknąć aliasingu w wynikowym sygnale. przykład przepróbkowania do niższej częstości Fs1=128;%Hz FN1=Fs1/2; t=0:1/fs1:0.5-1/fs1;%czas probkowany 1/Fs f=6;%hz fi=pi/2; s=sin(2*pi*t*f+fi); subplot(311) stem(t,s) %obnizamy czestosc probkowania k razy k=2; Fs2=Fs1/k; FN2=Fs2/2; [b,a]=butter(5,fn2/fn1); ss=filtfilt(b,a,s); t2=0:1/fs2:0.5-1/fs2; subplot(312) stem(t,ss) axis tight subplot(313) ss2=ss(1:k:end); stem(t2,ss2) %przefiltrujemy filtrem dolnoprzepustowym tak aby nic nie zostało powyzej % nowa czestosc probkowania jest k razy niższa
10 Zmiana częstości o wymierną ilość razy: Zmieniamyczęstośćpróbkowaniaowymierną P Q ilośćrazyuzyskujemy składając powyższe kroki tzn. najpierw zwiększamy częstość P-krotnie, a następnie zmniejszamy Q-krotnie.
11 Funkcje do zmiany częstości w Matlabie interp zwiększa częstość próbkowania decimate zmniejsza częstość próbkowania upfirdn zmienia częstość próbkowania: musimy sobie sami zaprojektować antyaliasowy filtr FIR do ograniczania pasma resample zmienia częstość próbkowania: firls do zaprojektowania antyaliasowego FIR upsample dokłada zera zdo sygnału downsample wyjmuje co którąś probkę z sygnału
Notebook. Spis treści
Spis treści 1 Notebook 2 Implementacja filtrowania: funkcja lfilter 2.1 Dla przypomnienia: 2.1.1 Działanie filtra w dziedzinie czasu 2.1.2 Implementacja w pythonie 3 Badanie własności filtra w dziedzinie
Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry
Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie
Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową
Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania
Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:
1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku
BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza
Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź
Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Filtry elektroniczne sygnałów ciągłych - cz.1
Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów
5 Filtry drugiego rzędu
5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy
8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Szybkie metody projektowania filtrów aktywnych
Szybkie metody projektowania filtrów aktywnych Aby szybko rozpocząć projektowanie układów filtrów aktywnych należy znać: Wartości dostępnych źródeł zasilania: zasilanie plus/minus (symetryczne) czy tylko
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 7 Projektowanie filtrów cyfrowych dr inż. Robert Kazała 1 Literatura The Scientist and Engineer's Guide to Digital Signal Processing, Steven W. Smith - www.dspguide.com
Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych
Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych
PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały
Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne
Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo
Zaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Zalecane ustawienia zwrotnic i filtrów
Zalecane ustawienia zwrotnic i filtrów Systemy Christie Vive Audio zostały zaprojektowane do pracy ze specjalnymi ustawieniami zwrotnic i filtrów przy pracy w trybach bi-amping i tri-amping, efektów w
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,
Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3
CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Inżynieria Biomedyczna, studia stacjonarne pierwszego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów
Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3
CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Informatyka, studia stacjonarne drugiego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych
Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone
Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry bierne typu k i m... Z A Z + Z 4Z A Z Z + 4 Z Z Z Z Z ZT ZZ + Z + 4Z Filtry spełniające warunek filtrów typu k: 4 Z Z Z T Z Z Z k Można wykazać, że
Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
Autorzy: Jan Szajdziński Michał Bujacz Karol Kropidłowski. Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych
Autorzy: Jan Szajdziński Michał Bujacz Karol Kropidłowski Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych 1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie prostych filtrów pasywnych
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Zasady oznaczania filtrów PTH MATT
1. FILTRY GÓRNOPRZEPUSTOWE: RFG, WFG Zasady oznaczania filtrów PTH MATT f 2 f 1 Przy oznaczeniu filtru podajemy zawsze częstotliwość f 2 (np. RFG 88 88 MHz). Częstotliwość f 1, którą klient powinien podać
Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień
Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:
Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono
Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Przetwarzanie sygnałów z czasem ciągłym
Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
MODEL SYMULACYJNY DO BADANIA FILTRÓW ANTYALIASINGOWYCH STOSOWANYCH W STRUKTURACH CYFROWEJ AUTOMATYKI ZABEZPIECZENIOWEJ
ELEKTRYKA 2009 Zeszyt 2 (210) Rok LV Adrian HALINKA, Piotr PRUSKI, Michał SZEWCZYK Instytut Elektroenergetyki i Sterowania Układów, Politechnika Śląska w Gliwicach MODEL SYMULACYJNY DO BADANIA FILTRÓW
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Projektowania filtrów IIR Metoda niezmienności odpowiedzi impulsowej Podstawowa zasada określajaca: projektujemy
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Laboratorium Techniki Obliczeniowej i Symulacyjnej
Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami implementacji algorytmów cyfrowego przetwarzania sygnałów w programie MATLAB, w szczególności do
Ćwiczenie F3. Filtry aktywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:
Technika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Badanie filtrów antyaliasingowych
Politechnika Śląska w Gliwicach Wydział Elektryczny Badanie filtrów antyaliasingowych autor: mgr inż. Łukasz Roj Wstęp teoretyczny Próbkowanie sygnałów ciągłych W wielu gałęziach współczesnej nauki wykorzystywane
EiT_S_I_TF_AEwT Teoria filtrów Theory of Filters
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU EiT_S_I_TF_AEwT Teoria filtrów Theory of Filters Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
APARATURA BADAWCZA I DYDAKTYCZNA
APARATURA BADAWCZA I DYDAKTYCZNA Badanie filtrów analogowych FILIP KAGANKIEWICZ DOKTORANT, POLITECHNIKA WARSZAWSKA, WYDZIAŁ INŻYNIERII PRODUKCJI Słowa kluczowe: filtry, analogowe, aktywne, dolnoprzepustowe,
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Przykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
Analiza szeregów czasowych: 4. Filtry liniowe
Analiza szeregów czasowych: 4. Filtry liniowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry liniowe W dziedzinie fourierowskiej filtruje się bardzo prosto: oblicza się iloczyn
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
PTH MATT RODZAJE KORPUSÓW FILTRÓW
Zasady oznaczania filtrów PTH MATT RODZAJE KORPUSÓW FILTRÓW Filtry produkowane przez PTH MATT wykonywane są w różnych korpusach w zależności od stawianych wymagań i potrzeb funkcjonalnych. Najpopularniejsze
POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe
. el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do pracowni specjalistycznej Temat ćwiczenia: Numer ćwiczenia: 1-2 Badanie wybranych własności
OPROGRAMOWANIE WSPOMAGAJĄCE PROJEKTOWANIE FILTRÓW CYFROWYCH
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 22 XVI Seminarium ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 2006 Oddział Gdański PTETiS Referat nr 21 OPROGRAMOWANIE WSPOMAGAJĄCE
Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska
13.2. Filtry cyfrowe
Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo
POŁÓWKOWO-PASMOWE FILTRY CYFROWE
Krzysztof Sozański POŁÓWKOWOPASMOWE FILTRY CYFROWE W pracy przedstawiono połówkowopasmowe filtry cyfrowe. Opisano dwa typy filtrów: pierwszy z zastosowaniem filtrów typu FIR oraz drugi typu IIR. Filtry
H f = U WY f U WE f =A f e j f. 1. Cel ćwiczenia. 2. Wprowadzenie. H f
. el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie
LABORATORIUM ELEKTRONIKI
INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10
Filtry FIR i biblioteka DSPLIB
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Filtry FIR i biblioteka DSPLIB Wstęp Na poprzednim wykładzie napisaliśmy algorytm
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
A-4. Filtry aktywne RC
A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów
KOMPUTEROWE STANOWISKO DO POMIARU CHARAKTERYSTYK FILTRÓW ANALOGOWYCH
POZA UIVERSITY OF TECHOLOGY ACADEMIC JOURALS o 95 Electrical Engineering 208 DOI 0.2008/j.897-0737.208.95.000 Łukasz KOSICKI *, Stanisław MIKULSKI * KOMPUTEROWE STAOWISKO DO POMIARU CHARAKTERYSTYK FILTRÓW
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.2) Opracowali: prof. nzw. dr
Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne
Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję
METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH
INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie
Filtry. Przemysław Barański. 7 października 2012
Filtry Przemysław Barański 7 października 202 2 Laboratorium Elektronika - dr inż. Przemysław Barański Wymagania. Sprawozdanie powinno zawierać stronę tytułową: nazwa przedmiotu, data, imiona i nazwiska
PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04
PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura
L ABORATORIUM UKŁADÓW ANALOGOWYCH
WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima 2010 L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis:
FILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego
Politechnika Wrocławska Instytut Telekomunikacji, Teleinormatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego FILTY AKTYWNE . el ćwiczenia elem ćwiczenia jest praktyczne
Rys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat
Ćwiczenie F1. Filtry Pasywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.
1 Filtr górnoprzepustowy (różniczkujący) jest to czwórnik bierny CR. Jego schemat przedstawia poniższy rysunek:
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC
Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E BADANIE DOLNOPRZEPSTOWEGO FILTR RC opr. tech. Mirosław Maś Krystyna Ługowska niwersytet Przyrodniczo - Humanistyczny Siedlce 0 . Wstęp Celem
Laboratorium Elektroniki
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.