Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała
|
|
- Agnieszka Laskowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Cyfrowe przetwarzanie sygnałów Wykład 7 Projektowanie filtrów cyfrowych dr inż. Robert Kazała 1
2 Literatura The Scientist and Engineer's Guide to Digital Signal Processing, Steven W. Smith - 2
3 Sygnały ciągłe 3
4 Sygnały ciągłe 4
5 Sygnały ciągłe 5
6 Sygnały ciągłe 6
7 Sygnały ciągłe 7
8 Sygnały ciągłe 8
9 Sygnały ciągłe 9
10 Sygnały ciągłe 10
11 Filtry cyfrowe 11
12 Filtry cyfrowe 12
13 Filtry cyfrowe 13
14 Filtry cyfrowe 14
15 Filtry cyfrowe 15
16 Filtry cyfrowe odwracanie spektrum 16
17 Filtry cyfrowe odwracanie spektrum 17
18 Filtry cyfrowe odwracanie spektrum 18
19 Filtry cyfrowe filtr pasmowo-przepustowy 19
20 Filtry cyfrowe filtr pasmowo-zaporowy 20
21 Filtry cyfrowe rodzaje filtrów cyfrowych 21
22 Filtry cyfrowe filtr uśredniające 22
23 Filtry cyfrowe filtr uśredniające 23
24 Filtry cyfrowe filtr uśredniające 24
25 Filtry cyfrowe filtr uśredniające 25
26 Filtry cyfrowe filtr okienkowe 26
27 Filtry cyfrowe filtr okienkowe 27
28 Filtry cyfrowe filtr okienkowe 28
29 Filtry cyfrowe filtr okienkowe 29
30 Filtry cyfrowe filtr dowolne 30
31 Filtry cyfrowe filtr rekursywne 31
32 Filtry cyfrowe problem fazy 32
33 Filtry cyfrowe problem fazy 33
34 Filtry cyfrowe problem fazy 34
35 Filtry cyfrowe problem fazy 35
36 Filtry cyfrowe filtry Czebyszewa 36
37 Filtry cyfrowe filtry Czebyszewa 37
38 Scipy Systemy liniowe ciągłe Continuous-Time Linear Systems freqresp(system[, w, n]) - Obliczanie odpowiedzi częstotliwościowej układu czasu ciągłego. lti(*args, **kwords) klasa implementująca układ liniowy niezmienny w czasie (Linear Time Invariant). lsim(system, U, T[, X0, interp]) Symulacja odpowiedzi układu liniowego czasu ciągłego. lsim2(system[, U, T, X0]) Symulacja odpowiedzi układu liniowego czasu ciągłego z wykorzystaniem ODE. impulse(system[, X0, T, N]) Odpowiedź impulsowa czasu ciągłego. impulse2(system[, X0, T, N]) Odpowiedź impulsowa czasu ciągłego dla jednego wejścia. step(system[, X0, T, N]) Odpowiedź skokowa układu czasu ciągłego. step2(system[, X0, T, N]) Odpowiedź skokowa układu czasu ciągłego z wykorzystaniem lsim2. bode(system[, w, n]) Wyznaczanie charakterystyk Bodego amplitudowych i fazowych dla układu ciągłego. 38
39 Scipy Systemy liniowe dyskretne Discrete-Time Linear Systems dlsim(system, u[, t, x0]) Symulacja wyjścia układu liniowego dyskretnego. dimpulse(system[, x0, t, n]) Odpowiedź impulsowa układu liniowego dyskretnego. dstep(system[, x0, t, n]) Odpowiedź skokowa układu liniowego dyskretnego. 39
40 Scipy Reprezentacje obiektów LTI tf2zpk(b, a) Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter. zpk2tf(z, p, k) Return polynomial transfer function representation from zeros tf2ss(num, den) Transfer function to state-space representation. ss2tf(a, B, C, D[, input]) State-space to transfer function. zpk2ss(z, p, k) Zero-pole-gain representation to state-space representation ss2zpk(a, B, C, D[, input]) State-space representation to zeropole-gain representation. cont2discrete(sys, dt[, method, alpha]) Transform a continuous to a discrete state-space system. 40
41 Scipy Projektowanie filtrów bilinear(b, a[, fs]) Return a digital filter from an analog one using a bilinear transform. firwin(numtaps, cutoff[, width, window,...]) FIR filter design using the window method. firwin2(numtaps, freq, gain[, nfreqs,...]) FIR filter design using the window method. freqs(b, a[, worn, plot]) Compute frequency response of analog filter. freqz(b[, a, worn, whole, plot]) Compute the frequency response of a digital filter. iirdesign(wp, ws, gpass, gstop[, analog,...]) Complete IIR digital and analog filter design. iirfilter(n, Wn[, rp, rs, btype, analog,...]) IIR digital and analog filter design given order and critical points. kaiser_atten(numtaps, width) Compute the attenuation of a Kaiser FIR filter. kaiser_beta(a) Compute the Kaiser parameter beta, given the attenuation a. kaiserord(ripple, width)design a Kaiser window to limit ripple and width of transition region. remez(numtaps, bands, desired[, weight, Hz,...]) Calculate the minimax optimal filter using the Remez exchange algorithm. 41
42 Scipy Projektowanie filtrów IIR w stylu programu Matlab butter(n, Wn[, btype, analog, output]) Butterworth digital and analog filter design. buttord(wp, ws, gpass, gstop[, analog]) Butterworth filter order selection. cheby1(n, rp, Wn[, btype, analog, output]) Chebyshev type I digital and analog filter design. cheb1ord(wp, ws, gpass, gstop[, analog]) Chebyshev type I filter order selection. cheby2(n, rs, Wn[, btype, analog, output]) Chebyshev type II digital and analog filter design. cheb2ord(wp, ws, gpass, gstop[, analog]) Chebyshev type II filter order selection. ellip(n, rp, rs, Wn[, btype, analog, output]) Elliptic (Cauer) digital and analog filter design. ellipord(wp, ws, gpass, gstop[, analog]) Elliptic (Cauer) filter order selection. bessel(n, Wn[, btype, analog, output]) Bessel digital and analog filter design. 42
43 Scipy Filtracja symiirorder1((input, c0, z1 {,...)Implement a smoothing IIR filter with mirrorsymmetric boundary conditions symiirorder2((input, r, omega {,...)Implement a smoothing IIR filter with mirror-symmetric boundary conditions lfilter(b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter. lfiltic(b, a, y[, x]) Construct initial conditions for lfilter. lfilter_zi(b, a) Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response. filtfilt(b, a, x[, axis, padtype, padlen]) A forward-backward filter. deconvolve(signal, divisor) Deconvolves divisor out of signal. get_window(window, Nx[, fftbins]) Return a window. decimate(x, q[, n, ftype, axis]) Downsample the signal by using a filter. detrend(data[, axis, type, bp]) Remove linear trend along axis from data. resample(x, num[, t, axis, window]) Resample x to num samples using Fourier method along the given axis. 43
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry
Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
AiR_CPS_1/3 Cyfrowe przetwarzanie sygnałów Digital Signal Processing
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Filtry elektroniczne sygnałów ciągłych - cz.1
Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Komputerowo wspomagane projektowanie systemów sterowania
Komputerowo wspomagane projektowanie systemów sterowania OCENA KOŃCOWA: F1 ocena z laboratorium (sprawozdania z ćwiczeń laboratoryjnych) F2 kolokwium pisemne z wykładu (dopuszczeniowe) F3 egzamin pisemny
Filtry IIR. Zadania Przepróbkowywanie. Filtry IIR
Filtry IIR Filtry IIR mają zazwyczaj dużo niższe rzędy przy osiągach takich jak FIR z dużo wyższymi rzędami. W matlabie mamy zaimplementowane kilka funkcji do projektowania óptymalnych pod różnymi względami
PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały
MODEL SYMULACYJNY DO BADANIA FILTRÓW ANTYALIASINGOWYCH STOSOWANYCH W STRUKTURACH CYFROWEJ AUTOMATYKI ZABEZPIECZENIOWEJ
ELEKTRYKA 2009 Zeszyt 2 (210) Rok LV Adrian HALINKA, Piotr PRUSKI, Michał SZEWCZYK Instytut Elektroenergetyki i Sterowania Układów, Politechnika Śląska w Gliwicach MODEL SYMULACYJNY DO BADANIA FILTRÓW
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową
Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR
Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)
MODULE DESCRIPTION Module code Module name Teoria sygnałów Module name in English Signal Theory Valid from academic year 01/013 MODULE PLACEMENT IN THE SYLLABUS Subject Level of education Studies profile
Notebook. Spis treści
Spis treści 1 Notebook 2 Implementacja filtrowania: funkcja lfilter 2.1 Dla przypomnienia: 2.1.1 Działanie filtra w dziedzinie czasu 2.1.2 Implementacja w pythonie 3 Badanie własności filtra w dziedzinie
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne
Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję
REDUCTION OF PASS BAND AMPLITUDE DISTORTIONS IN THE EEG FILTERING SYSTEM BASED ON SELECTED IIR FILTERS
ELEKTRYKA 2009 Zeszyt 2 (2) Rok LV Michał LEWANDOWSKI Instytut Elektrotechniki i Informatyki, Politechnika Śląska w Gliwicach REDUCTION OF PASS BAND AMPLITUDE DISTORTIONS IN THE EEG FILTERING SYSTEM BASED
CYFROWE PRZETWARZANIE SYGNAŁÓW
Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje
Projektowanie i implementacja filtru FIR
POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW Pracownia Układów Elektronicznych i Przetwarzania Sygnałów PROGRAMOWALNE UKŁADY CYFROWE I PROCESORY SYGNAŁOWE Instrukcja do ćwiczeń laboratoryjnych
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:
1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją
Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3
CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Inżynieria Biomedyczna, studia stacjonarne pierwszego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów
Narzędzia wspomagające projektowanie - Matlab. PID Tunner. step, bode, margin, rlocus lqr, lqreg kalman,...
Narzędzia wspomagające projektowanie - Matlab Obiekt LTI (Linear Time-Invariant System) Schemat pod Simulinkiem SCDesign linearyzacja SCOptimization linearyzacja Linear Analysis Tools LTI Viewer step,
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych Ćwiczenie 3
CYFROWE PRZETWARZANIE SYGNAŁÓW Laboratorium Informatyka, studia stacjonarne drugiego stopnia imei Instytut Metrologii, Elektroniki i Informatyki Temat: Filtracja cyfrowa okresowych sygnałów deterministycznych
Technika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Narzędzia wspomagające projektowanie UR SISO Design. step, bode, margin, rlocus lqr, lqreg kalman,...
Narzędzia wspomagające projektowanie UR SISO Design Obiekt LTI (Linear Time-Invariant System) Linear Analysis Tools LTI Viewer step, impluse bode, nyquist pool/zero map... Matlab+Control+... Schemat pod
ZJAWISKO ALIASINGU W CYFROWYCH STRUKTURACH ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ
ELEKTRYKA 29 Zeszyt 2 (2) Rok LV Adrian HALINKA, Piotr PRUSKI, Michał SZEWCZYK Instytut Elektroenergetyki i Sterowania Układów, Politechnika Śląska w Gliwicach ZJAWISKO ALIASINGU W CYFROWYCH STRUKTURACH
13.2. Filtry cyfrowe
Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
OPROGRAMOWANIE WSPOMAGAJĄCE PROJEKTOWANIE FILTRÓW CYFROWYCH
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 22 XVI Seminarium ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 2006 Oddział Gdański PTETiS Referat nr 21 OPROGRAMOWANIE WSPOMAGAJĄCE
Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż.
Adam Korzeniewski - adamkorz@sound.eti.pg.gda.pl, p. 732 dr inż. Grzegorz Szwoch - greg@sound.eti.pg.gda.pl, p. 732 dr inż. Piotr Odya - piotrod@sound.eti.pg.gda.pl, p. 730 Plan przedmiotu ZPS Cele nauczania
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych Kod przedmiotu 06.5-WE-EP-PSzZPS
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Macierz A nazywamy macierzą systemu, a B macierzą wejścia.
Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia
Zastosowanie algorytmu FFT do filtrowania sygnału z relukltancyjnego czujnika prędkości obrotowej
PAPRZYCKI Igor 1 Zastosowanie algorytmu FFT do filtrowania sygnału z relukltancyjnego czujnika prędkości obrotowej WSTĘP Sygnał w dziedzinie czasu reprezentowany jest jako wykres amplitudy w funkcji czasu,
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS
POLITECHNIKA SU^KA ZESZYTY NAUKOWE NM684 Marek PAWELCZYK FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS SUB Gottingen 7 219 023 859 2006 A 3802 Gliwice 2005 CONTENTS Objective Structure. Contribution
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania
Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania Wykład w ramach przedmiotu Komputerowe systemy sterowania i wspomagania decyzji Plan wykładu Potrzeba estymacji parametrów Estymacja
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert
Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
POŁÓWKOWO-PASMOWE FILTRY CYFROWE
Krzysztof Sozański POŁÓWKOWOPASMOWE FILTRY CYFROWE W pracy przedstawiono połówkowopasmowe filtry cyfrowe. Opisano dwa typy filtrów: pierwszy z zastosowaniem filtrów typu FIR oraz drugi typu IIR. Filtry
ĆWICZENIE I SYGNAŁY DYSKRETNE W CZASIE, ALIASING (00)
Zakład Elektrotechniki Teoretycznej ĆWICZENIE I SYGNAŁY DYSKRETNE W CZASIE, ALIASING () Celem ćwiczenia jest generacja sygnałów dyskretnych w czasie oraz ilustracja zjawiska aliasingu. Celem ćwiczenia
Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych
SILESIAN UNIVESITY OF TECHNOLOGY FACULTY OF ENERGY AND ENVIRONMENTAL ENGINEERING INSTITUTE OF POWER ENGINEERING AND TURBOMACHINERY POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT
PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04
PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii
A-4. Filtry aktywne RC
A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.
SIGAL PROCESSIG Prezentacja multimedialna współfinansowana przez Unię Europejsą w ramach Europejsiego Funduszu Społecznego w projecie pt. Innowacyjna dydatya bez ograniczeń - zintegrowany rozwój Politechnii
Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź
Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
Kompensacja wpływu charakterystyk częstotliwościowych nieminimalnofazowych układów zniekształcających
Mirosław KOZIOŁ Uniwersytet Zielonogórski, Instytut Metrologii Elektrycznej Kompensacja wpływu charakterystyk częstotliwościowych nieminimalnofazowych układów zniekształcających Streszczenie. W artykule
Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader
2017-01-24 Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader Program CS27 Reader należy uruchomić przez wybór opcji CS27 i naciśnięcie przycisku START. Programme
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania
Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Urządzenia elektroniczne w akustyce Rok akademicki: 2012/2013 Kod: RIA-1-611-s Punkty ECTS: 4 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Inżynieria Akustyczna Specjalność: - Poziom
Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień
Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże
0.002 0 0.0048 0.0095 0.0143 0.019. t Rysunek 2: Wykres drgań podstawy wspornika u(t)
Przykład dynamicznej analizy MES lekkiej konstrukcji wspornika w systemie ABAQUS Model 3D Opracował dr inż. Paweł Stąpór Sformułowanie problemu Wykonaj analizę 3D problemu zdefiniowanego w części pierwszej
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing
POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem
OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver
OPBOX ver.0 USB.0 Mini Ultrasonic Box with Integrated Pulser and Receiver Przedsiębiorstwo BadawczoProdukcyjne OPTEL Sp. z o.o. ul. Morelowskiego 30 PL59 Wrocław phone: +8 7 39 8 53 fax.: +8 7 39 8 5 email:
Przekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera
SYNTEZA obwodów. Zbigniew Leonowicz
SYNTEZA obwodów Zbigniew Leonowicz Literatura: [1]. S. Bolkowski Elektrotechnika teoretyczna. Tom I. WNT Warszawa 1982 (s.420-439) [2]. A. Cichocki, K.Mikołajuk, S. Osowski, Z. Trzaska: Zbiór zadań z elektrotechniki
Jednostka mnożąco-sumującą EMAC (Enhanced Multiply-ACcumulate unit)
Jednostka mnożąco-sumującą EMAC (Enhanced Multiply-ACcumulate unit) 1 Moduł MAC (1) Jednostka arytmetyczna przeznaczona do operacji wykorzystywanych podczas cyfrowej obróbki sygnałów DSP (Digital Signal
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 2. REPREZENTACJA
Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 3 Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Przyrządy elektroniki oscyloskop
Przyrządy elektroniki oscyloskop Urządzenie które służy do wizualizacji i pomiarów parametrów czasowych i napięciowych sygnałów. Na przykład pomiar: okresu sygnału amplitudy sygnału czasu narastania sygnału
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Filtry FIR i biblioteka DSPLIB
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Filtry FIR i biblioteka DSPLIB Wstęp Na poprzednim wykładzie napisaliśmy algorytm
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
7.2.1 Przeglądarka elementów i dostęp do pomocy
7. Badania układów dynamiki w trybie graficznym Cenioną przez użytkowników własnością opisywanych programów obliczeniowych jest możliwość graficznego definiowania badanych układów. Tą funkcjonalność zapewniają
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu