Rozpraszanie światła. Światło

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozpraszanie światła. Światło"

Transkrypt

1 Rozpraszanie światła Światło fala elektromagnetyczna o długości z zakresu widzialnego ( nm) strumień fotonów E.Banachowicz 1

2 Natura falowa światła E z (t)=e o sin(2πυt-ky) H x (t)=h o sin(2πυt-ky) E o,h o - amplitudy υ - częstotliwość k=(2π/λ)=ω/c - wektor falowy w kierunku rozchodzenia się fali ω=2πυ=2πc/ λ - częstość kątowa Natura falowa światła w liczach: prędkośćświatła c=2, m/s długość fali λ=( )nm (nm = 10-9 m = 10Å) częstotliwośćυ= (7,7-3,8) Hz (fioletowe-czerwone) licza falowa (częstośćυ=1/λ) cm -1 rozmiar cząsteczek rozpraszających: Å (1-10 nm) E.Banachowicz 2

3 Natura korpuskularna światła promieniowanie EM jest strumieniem fotonów E=hν=hνc, energia fotonu o częstotliwości ν Hemogloina ma kolor czerwony! - silnie asoruje promieniowanie żółte, zielone i nieieskie a przepuszcza czerwone Zaasorowany foton odpowiadający światłu żółtemu (λ=550nm) to energia 3, J Rozpraszanie światła Prawo elektrodynamiki klasycznej: drgający ładunek jest źródłem promieniowania rozchodzącego się we wszystkich kierunkach w płaszczyźnie prostopadłej do oscylacji Cechy: częstość i intensywność E.Banachowicz 3

4 Cechy promieniowania rozproszonego Intensywność (natężenie), I I ~ E o 2 (kwadrat amplitudy pola elektrycznego) I ~λ -4 (fale krótsze rozpraszają się silniej niż dłuższe) I zależy od kąta rozpraszania θ Częstość: równa częstości promieniowania padającego = rozpraszanie Rayleigha (1871r.) = elastyczne różna od częstości promieniowania padającego = rozpraszanie Ramana (1928r.) = nieelastyczne Dlaczego nieo jest nieieskie? E.Banachowicz 4

5 Dlaczego nieo jest nieieskie! I ~ 1/λ 4 (700 nm / 400 nm) 4 = = 9.4 Światło czerwone rozprasza się nawet 9-krotnie słaiej niż fioletowe. Dlaczego nieo jest nieieskie! I ~ 1/λ 4 (700 nm / 400 nm) 4 = = 9.4 Światło czerwone rozprasza się nawet 9-krotnie słaiej niż fioletowe. E.Banachowicz 5

6 Rozpraszanie w roztworze V Eo, λo v r ks θ ki q v R ES P v-mikroskopijnie mały element ojętości zawierający molekuły rozpraszające światło, k i, k s wektory falowe światła padającego i rozproszonego. q- wektor rozpraszania, P- punkt oserwacji natężenia pola elektrycznego E s, odległy o R od środka układu rozpraszającego, W elastycznym rozpraszaniu światła, k i i k s są soie równe, q = k i - k s = 2πn/λsin(θ). Częstotliwośćświatła rozproszonego Częstotliwość: równa częstotliwości promieniowania padającego = (rozpraszanie Rayleigha) = elastyczne oddziaływanie pola fali EM z dipolem elektrycznym cząsteczki różna od częstotliwości promieniowania padającego = (rozpraszanie Ramana) = nieelastyczne oddziaływaniezmiana stanu energetycznego atomu lu cząsteczki!!ale zmiana częstotliwość może wyniknąć z ruch cząsteczek rozpraszających - efekt Doplera E.Banachowicz 6

7 Zmiana częstotliwości Widmo światła rozproszonego E.Banachowicz 7

8 Fluktuacje natężenia Wielkość mierzona - rodzaj eksperymentu Natężenie całkowite (rozpraszanie statyczne) SLS (Statyczne Rozpraszanie Światła) Widmo światła rozproszonego (Interferometria Fary- Perota) Fluktuacje natężenia światła rozproszonego DLS lu PCS (Dynamiczne Rozpraszanie Światła lu Spektroskopia Korelacji Fotonów) E.Banachowicz 8

9 Układ pomiarowy próka θ I λ, I i laser I st - standard (enzen, toluen) detektor I o - rozpuszczalnik (uffor) I - roztwór (iałka, DNA, etc.) q = 2πn/λsin(θ) Układ pomiarowy E.Banachowicz 9

10 gdzie: Rozpraszanie promieniowania Natężenie promieniowania rozproszonego I(q): R R = Θ Θ = R st I I I st KMcP( q) S( q) o n n o st 2 2 4πno dn K = 4 N λ dc R Θ jest współczynnikiem Rayleigha q - wektor rozpraszania, K - stała zależna od przyrządu oraz kontrastu optycznego dn/dc, c - stężenie wagowe, M - masa cząsteczkowa (wagowo średnia), P(q) - czynnik kształtu (interferencja wewnątrzcząsteczkowa), S(q) - czynnik struktury (interferencja międzycząsteczkowa) A 2 E.Banachowicz 10

11 Rozpraszanie statyczne w roztworze Kc/R siła jonowa 1/M R = Θ KMcP( q) S( q) c Kc R Θ = B M 22 c P(q) 1 (interferencje wewnątrzcząsteczkowe) S(q) interferencje międzycząsteczkowe Indykatrysy rozpraszania światła I(θ) P(q) Dla cząsteczek małych w porównaniu z długością fali światła: d << λ Dla cząsteczek porównywalnych z długością fali światła: d λ E.Banachowicz 11

12 Rozpraszanie statyczne w roztworze I(θ) P(q) 1/I α tg α = 1/3 q 2 R g 2 q 2 P(q) interferencje wewnątrzcząsteczkowe ~ R g 1 Oliczone czynniki kształtu dla trzech rył o takiej samej ojętości P(q) kula kula wydrążona pałeczka Wymiary: R = 10 nm R = 17.7 nm, h = 1 nm L=333 nm, d = 20 nm 1E q / nm E.Banachowicz 12

13 Rozpraszanie dynamiczne światło rozproszone światło lasera widmo I ω I ω natężenie g(τ) t g(τ) t funkcja korelacji τ τ E.Banachowicz 13

14 Spektroskopia Korelacji Fotonów (Photon Correlation Spectroscopy - PCS) Zastosowanie do adań sumikrosopowych oiektów iologicznych. Co można zmierzyć: Współczynnik dyfuzji translacyjnej (D T ): makrocząsteczek iologicznych (iałka, kwasy nukleinowe), iologicznych układów supramolekularnych (organella komórkowe, pęcherzyki utworzone z łony lipidowej, asocjaty iałkowe, mniejsze komórki) G(t) = <I(0)I(t)> g (2) (t) = 1 + exp(-2 q 2 D T ). Informacje z pomiaru spektroskopii korelacji fotonów (PCS) Pomiar D T - informacje o rozmiarze i kształcie oiektu rozpraszającego kula elipsoida orotowa pałeczka model kulkowy D T = k B T/(6πηR H ) E.Banachowicz 14

15 Spektroskopia Korelacji Fotonów Z zależności D T od stężenia otrzymuje się informacje o sile i naturze oddziaływań między oiektami. D T odpychanie kompensacja przyciąganie c Kula -najprostszy model hydrodynamiczy D T = kt/(6πηr H ) Interpretacja np. np. współczynnika dyfuzji dyfuzji (+) (+) Rozmiar (?) (?) Kształt Kształt (?) (?) Upakowanie (?) (?) Hydratacja R H E.Banachowicz 15

16 Kominacja R H z v 2 iδ 1 v 1 V h = V o = V H2O (ojętość hydratowanego iałka) V o = (M w /N A )v 2 (ojętość suchego iałka) V H2O = δ 1 (M w /N A )v 1 (ojętość dołączonej wody) V h = h (M (M w /N w /N A )(v A )(v δ 1 v 1 1 ) 1 ) R h = h [(3/4π)V h ]1/3 h ] = [(3/4π)(M w /N /N A )(v )(v 2 +δ 2 1 v 1 1 )] 1 )] 1/3 1/3 vv 2-2 -ojętość ojętośćwłaściwa właściwacząsteczki, cząsteczki, dla dla iałek iałek (cm (cm 3 /g), 3 /g), średnio średnio (cm (cm 3 /g) 3 /g)[na [na podstawie podstawie sekwencji] sekwencji] δ 1-1 -hydratacja, dla dla iałek iałek (g (g H 2 O/g 2 O/g iałka), iałka), średnio średnio 0.35(g 0.35(g H 2 O/g 2 O/g iałka) iałka) [na [na podstawie podstawie sekwencji] sekwencji] vv 1 1 ojętość ojętośćwłaściwa właściwawody wody związanej związanej z z makrocząsteczką, makrocząsteczką, vv 1 = (cm (cm 3 /g) 3 /g) R H = R hh F a a Lizozym - model elipsoidy η N A g/cm s 6.02E+23 1/mol k B 1.38E-16 g cm2/s2k M w MU v v δ1 0.2 a a D T 1.14E-06 cm2/s R H 1.846E-07 cm R h 1.739E-07 cm R o 1.605E-07 cm f 3.549E-8 kt/d f h 3.344E-8 6πηR o f/f h max δ g/g F przy δ el.wydł. el.spłaszcz. a(wydl.) (wydl.) a(spl.) (spl) /a /a 30.0E-8 cm 13.3E-8 cm 09.9E-8 cm 23.0E-8 cm E.Banachowicz 16

17 a a d L Może się zdarzyć, że różne cząsteczki (modele) ędą miały taki sam współczynnik dyfuzji. Trudniej (niemożliwe) jest znaleźć dwie różne cząsteczki z dwoma takimi samymi parametrami hydrodynamicznymi (np. współczynnikiem dyfuzji translacyjnej i rotacyjnej) Kominacje różnych parametrów parametry hydrodynamiczne D T - współczynnik dyfuzji S - współczynnik sedymentacji τ - czas relaksacji rotacyjnej [η] - graniczna licza lepkościowa informacje M w (masa), R H, R g (rozmiar), υ 1, ρ (ojętość właściwa, hydratacja) a/ (kształt) giętkość stopień asocjacji E.Banachowicz 17

18 Kominacja parametrów D T i D R (lu τ ) S i D T D T i [η] D T i R g p=/a lu p=l/d + informacje o ojętości właściwej i hydratacji Proste modele hydrodynamiczne elipsoida orotowa wydłużona (p=a/) elipsoida orotowa spłaszczona (p=a/) BPTI pałeczka (cylinder) (p=l/d) aktyna 20mer DNA E.Banachowicz 18

19 Modele kulkowe Wymagają informacji o udowie (np. z NMR lu krystalografii) (F = -fv) i F i = ξ u v ), i = 1, 2,..., N i ( i i v i D T = kt Ξ -1 Programy oliczające parametry hydrodynamiczne na podstawie modelu kolkowego: HYDRO: HYDROPRO: HI4 (R. Pastor - u autora) Różne typy modeli kulkowych a) c) ) a) model kula-atom domeny katalitycznej CBD, ) model kulkaaminokwas inhiitora trypsyny, BPTI, c) model dużych podjednostek dla immunoglouliny IgG3. E.Banachowicz 19

20 Model powłokowy Kulka na atom pierwotny model lizozymu, model wypełniony (filling model) powłokowy model lizozymu (pusty w środku, shell model) Kulka na aminokwas 4.5 Å 4.5 Å 2.6 Å 2.6 Å E.Banachowicz 20

21 Kulka na nukleotyd Jedna kulka na nukleotyd Dwie kulki na nukleotyd Podsumowanie Informacje najczęściej wykorzystywane w adaniach iologicznych: Współczynnik dyfuzji translacyjnej (D T ), Promień hydrodynamiczny (R h ), Licza składników w roztworze, Masa cząsteczkowa (dla każdego składnika osono) w połączeniu z rozpraszaniem statycznym, Procentowy udział poszczególnych składników (w połączeniu z rozpraszaniem statycznym), Zjawiska asocjacji i agregacji, Kinetyka agregacji, Oddziaływania w roztworze, Ładunek efektywny cząsteczek, Mody drgań wewnętrznych dla dużych oiektów (np. długie fragmenty DNA), Kształt dużych oiektów (czynnik kształtu pomiary kątowe). E.Banachowicz 21

22 Koniec Zadania E.Banachowicz 22

Układy zdyspergowane. Wykład 5

Układy zdyspergowane. Wykład 5 Układy zdyspergowane Wykład 5 Treśd Układy zdyspergowane a światło Rozpraszanie światła Znakomite narzędzie badania cząstek w roztworach (ale także w żelach i kryształach). W szczególności pozwala na pomiar

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 21, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 21, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 21, 15.12.2017. wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 20 - przypomnienie

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 21, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 21, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 21, 14.05.2012. wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 20 - przypomnienie

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek

Bardziej szczegółowo

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv. Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala

Bardziej szczegółowo

Wykład 12. Anna Ptaszek. 16 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 12.

Wykład 12. Anna Ptaszek. 16 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 12. Wykład 12 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 16 września 2016 1 / 23 Pomiar lepkości wiskozymetry (lepkościomierze) 2 / 23 Pomiar lepkości reometry rotacyjne 3 / 23 Pomiar lepkości reometry

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

E ω 2 p. dt a natężenie do czwartej potęgi częstości: I E 2

E ω 2 p. dt a natężenie do czwartej potęgi częstości: I E 2 ROZPRASZANIE ŚWIATŁA W CIECZACH I. Cel ćwiczenia: pomiar stopnia polaryzacji światła rozproszonego oraz kształtu zależności natężenia promieniowania rozproszonego pod kątem θ do kierunku drgań wektora

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Ćwiczenie 5 Wyznaczanie parametrów makrocząsteczki za pomocą chromatografii żelowej.

Ćwiczenie 5 Wyznaczanie parametrów makrocząsteczki za pomocą chromatografii żelowej. Ćwiczenie 5 Wyznaczanie parametrów makrocząsteczki za pomocą chromatografii żelowej. Odkąd zdano sobie sprawę z dużej niejednorodności cząsteczkowej układów polimerowych chromatografia żelowa stała się

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Dlaczego niebo jest niebieskie?

Dlaczego niebo jest niebieskie? Dlaczego niebo jest niebieskie? Obserwując niebo, na pewno zastanawiacie się, jakie przyczyny powstawania różnych kolorów nieba, a zwłaszcza kolor błękitny. Odpowiedź na to pytanie brzmi: przyczyną błękitnego

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Układy zdyspergowane. Wykład 6

Układy zdyspergowane. Wykład 6 Układy zdyspergowane Wykład 6 Treśd Podwójna warstwa elektryczna Zjawiska elektrokinetyczne Potencjał zeta Nowoczesne metody oznaczania Stabilnośd dyspersji Stabilnośd dyspersji koloidalnej jest wypadkową

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 6 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest

Bardziej szczegółowo

Spektroskopia Ramanowska

Spektroskopia Ramanowska Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy) Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych RHEOTEST Medingen Reometr RHEOTEST RN służący do reologicznej oceny systemów dwuskładnikowych na przykładzie lakierów i mas uszczelniających przy pomocy testów oscylacji Zadania podstawowe Systemy dwuskładnikowe

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp

Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp Ćwiczenie 30 Metodyka poprawnych i dokładnych pomiarów absorbancji w zakresie UV- VS, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo