Fizyczne granice możliwości obliczeniowych
|
|
- Kamil Ostrowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Fizyczne granice możliwości obliczeniowych Opracował: Marcin Rociek 1. Aktualne trendy Prawo Moore a: prędkość / pojemność rośnie jak t 1 7 (t - czas w latach). Dzisiejszy komputer z procesorem 1,6GHz, 1GB pamięci RAM, 100GB HDD to 0,01% kosztu superkomputera z W tym tempie za 300 lat będziemy mogli rozwiazywać problemy rozważajace wszystkie czastek wszechświata. Czy aby na pewno? 2. Ograniczenia pojemności 2.1. Fizyczna reprezentacja informacji Entropia - rodzaj fizycznej informacji. Każda informacja, która możemy manipulować jest fizyczna z natury. Termin wprowadzony w 1850 przez Rudopha Clausiusa. Później Ludwig Boltzman określił maksymalna entropię S dowolnego układu fizycznego jako logarytm z ilości wszystkich rozróżnialnych stanów. Logarytm o podstawie 2 bity, logarytm naturalny naty (1nat log 2 e 1 44b). Nat jest znany inaczej jako stała Boltzmana k B lub stała gazu idealnego R. 1
2 Znana informacja - fizyczna informacja w części systemu, którego stan jest znany. Entropia - informacja w nieznanej części. Możemy zmienić entropię w informację poprzez pomiar, zaś informację w entropię poprzez zapomnienie lub wymazanie jej. Ich suma w danym systemie jest zawsze stała, chyba że zmieni się maksymalna ilość możliwych rozróżnialnych stanów systemu, poprzez np. zmianę jego rozmiaru, dodania lub odjęcia energii, itp Granice entropii Warren Smith postuluje górna granicę entropii S w układzie o objętości V w sposób następujacy: S V q π c M V 3 4 nat Gdzie: q - ilość rozróżnialnych typów czastek, c - prędkość światła, - stała Plancka, M - całkowita energia masy. Przykład: 1m 3 zawierajacy 1000kg światła 6 (fotony o dwóch stanach polaryzacji) może pomieścić maksymalnie bitów, czyli 60kb w 1A 3. Prawdopodobnie granica ta jest nieosiagalna, gdyż światło o takiej gęstości (t.j. wody) miało by temperaturę ok. miliarda stopni i ciśnienie rzędu ok funtów na cal kwadratowy. Seth Lloyd zaprezentował granicę niemal identyczna 2 na podstawie podobnych przesłanek różniac a się o mały współczynnik 2. Przykładowy 1kg 1l laptop (o gęstości wody) składajacy się z dwustanowych fotonów miałby maksymalna entropię bitów. 2
3 Granice te nie biora pod uwagę efektów grawitacyjnych i relatywistycznych. Jacob Bekenstein pokazuje dużo luźniejszy limit entropii: S c 2πER Gdzie: E - całkowita energia układu, R - promień układu. Aktualnie jedynym znanym układem osiagaj acym takie ilości entropii sa czarne dziury. Entropia czarnej dziury jest proporcjonalna do jej powierzchni (a nie objętości!). Czarna dziura ma dokładnie 1 4 nata entropii w kwadracie o boku długości Plancka ( ). Innymi słowy absolutnym fizycznym minimum dla 1 nata jest kwadrat o boku równym 2 długości Plancka. Granica wyznaczona przez Bekensteina jest duża: hipotetyczna maszyna o promieniu 1m posiadała by gęstość entropii 10 b/a Musiałaby być jednak czarna dziura o masie Saturna Ile bitów można przechować w atomie? Jadra moga przechowywać 1 bit informacji. Wzbudzone jadra nie sa jednak stabilne - staja się radioaktywne i szybko się rozpadaja emitujac wysokoenergetyczne szkodliwe promieniowanie. Konfiguracja elektronów. Atom w ciele stałym ma 6 stopni swobody. Zwiększajac odległości między atomami zwiększa się ilość entropii dla atomu, lecz nie zwiększa się gęstość dla obszaru lepiej pozostać przy stałych materiałach. Przykład: czysta miedź posiada gęstość entropii w granicach 0,5 1,5 bita na A 3 (w zależności od temperatury). 3
4 Można zwiększyć gęstość entropii stosujac większe ciśnienie. Aktualnie maksymalne wartości możliwe do utrzymania w stabilnych strukturach nie sa jasne. Jedynym jasnym limitem jest ciśnienie w jadrze gwiazdy neutronowej, tuż poniżej masy krytycznej powodujacej zapadnięcie się gwiazdy w czarna dziurę - ok atmosfer. Z powyższych obserwacji wynika, że wysoce nieprawdopodobne A będzie przekroczenie gęstości informacji większej niż 10 bitów / 3 w ciagu najbliższych 100 lat. Nawet jeśli będzie to tylko 1 bit /A 3, to 1cm 3 takiego materiału mógłby teoretycznie przechowywać bitów = 100 miliardów terabajtów - dużo więcej niż całkowita ilość cyfrowych danych przechowywanych obecnie na świecie Minimalna energia potrzebna do przechowywania informacji Minimalizacja zużycia energii przez układ wymaga minimalizacji całkowitej entropii generowanej przez system. Załóżmy, że posiadamy pewna informację i chcemy ja zapisać na stałe w stanie pewnego układu. Jaka ilość entropii musi być wytworzona w tym procesie? Trzeba założyć, że układ zawiera już jakaś informacje fizyczna, która może być zarówno znana informacja jak i entropia. Nie może ona być po prostu zniszczona, ponieważ na najniższym poziomie fizyka jest odwracalna, to znaczy w zamkniętym układzie przejście z jednego stanu do drugiego w pewnym czasie następuje w sposób matematycznie odwracalny. Odwracalność nie wymaga symetrii czasowej. Jak więc poradzić sobie z niechciana informacja? Jedna z możliwości jest po prostu przeniesienie jej do innego układu. 4
5 Wzrost entropii w układzie o S 1bit k B ln2 wymaga zainwestowania co najmniej k B T ln2 energii w postaci ciepła. Pierwszy uszczegółowił to Rolf Landauer łacz ac utratę znanej informacji z utrata energii. W dzisiejszych komputerach każdy zapis operacji, tzn. każda z operacji na bitach dokonana przez każda z dziesiatek milionów bramek logicznych w każdej nanosekundzie wykorzystuje ta metodę pozbywania się informacji. Zakłada się, że poprzednie informacje sa nieznane, powoduje to generację nowej entropii, wykorzystujac nieefektywnie energię. Istnieje pewna alternatywa: przestrzeń i energia zajmowana przez stara, niechciana (lecz znana) informację może być ponownie użyta. Wykorzystujac informację o poprzednim stanie dokonuje się przekształcenia starego stanu w nowy w termodynamicznie odwracalny sposób - w procesie, który nie generuje entropii. Dzisiejsza technologia stosujaca nieodwracalne zapisywanie informacji jest stosunkowo blisko sięgnięcia podstawowych ograniczeń w zakresie rozpraszania energii. W obecnym tempie limit k B T ln2 zostanie osiagnięty za 35 lat. W tym czasie wydajność jednostki obliczeniowej wykorzystujacej zwykłe i nieodwracalne (produkujace 5 entropię) operacje zapisu informacji będzie wynosić maksymalnie nieodwracalnych bitowych operacji na sekundę w 100W komputerze. Jakiekolwiek możliwe dalsze udoskonalenia wydajności poza ten punkt wymagaja odwracalnego obliczania. 5
6 3. Ograniczenia komunikacji Przesyłanie informacji ograniczone jest w sposób podobny do przechowywania informacji. Komunikacja z punktu A do punktu B jest przesyłaniem bitów, pewnym rodzajem ich przechowywania lecz w stanie ruchu. Podobnie przechowywanie informacji jest forma komunikacji na zerowym dystansie, ale za to w czasie. Majac ograniczenie gęstości informacji ρ oraz prędkość rozchodzenia się informacji v; otrzymujemy limit gęstości strumienia informacji ρv - ilość informacji przesyłanej w pewnym czasie dla pewnego obszaru. Oczywiście istnieje limit prędkości rozchodzenia się informacji - prędkość światła c. Smith pokazuje, że maksymalny strumień entropii F S z użyciem fotonów dla danego strumienia energii F E wynosi: 4 F S 3 σ1 4 F3 4 SB E gdzie σ SB to stała Stefana-Boltzmana π 2 k 2 B 60c 2 3. Przykład: kwadratowa płytka o boku 10cm transmitujaca bezprzewodowo z moca 1W nie może komunikować się z szybkościa większa niż bps, niezależnie od rozkładów częstotliwości czy użytego schematu kodowania, nawet w przypadku całkowitej nieobecności szumu. Wyglada to na dużo, lecz to tylko 68kbps/nm 2. Dla komunikacji pomiędzy sasiednimi elementami gęsto upakowanego nanoskalowego urzadzenia chcielibyśmy uzyskać dużo większe przepustowości, być może rzędu bps/nm 2. Ten 10 6 razy większy strumień informacji wymaga jednak razy więcej mocy (wg Smitha), czyli rzędu 1MW/cm 2. Odpowiada to temperaturze rzędu 14000K. Warto zauważyć, że przy zakodowaniu bitu w bardziej złożonych czastkach, przy gęstości informacji 1b/nm 3, możemy otrzymać wymagana przepustowość bps/nm 2 poprzez ruch atomów badź elektronów ze stosunkowo niewielka prędkościa 100m/s. 6
7 4. Ograniczenia szybkości obliczeń Jaka minimalna cenę, w sensie podstawowych zasobów fizycznych, musimy zapłacić za wykonywanie operacji obliczeniowych? Istnieje termodynamiczny limit wydajności obliczeniowej nieodwracalnych operacji jako funkcja rozpraszania mocy, spowodowanej koniecznościa usuwania niechcianej informacji. Jednak limit ten nie musi się odnosić do odwracalnych operacji. Czy sa jakieś inne ograniczenia odnoszace się do jakiegokolwiek typu obliczeń, nawet odwracalnych? Przy użyciu teorii kwantowej możemy określić maksymalna częstotliwość przy której moga zachodzić przejścia pomiędzy rozróżnialnymi stanami. Jedna z form tej górnej granicy zależy od całkowitej energii układu E i wynosi 4E 2π. Laptop Lloyd a posiada całkowita energię J, więc maksymalna częstotliwość pracy wynosi zmian stanów na sekundę. Jeśli całkowita energia układu nie bierze udziału w obliczniach, otrzymujemy mniejszy limit. Przykładowo hipotetyczne urzadzenie opierajace się na pojedynczych elektronach pracujacych na poziomie 1eV mogłoby pracować z częstotliwościa 1PHz (10 15 Hz). Zmieniajac wykorzystywany zbiór rozróżnialnych stanów w czasie komputer kwantowy może drastycznie skrócić czas obliczeń pewnych problemów. Jednakże częstotliwość ortogonalnych przejść oraz ilość oddzielnych stanów zawsze będa poniżej omówionych tu limitów. 7
8 5. Konkluzje Zgodnie z prawem Moore a za ok. 40 lat zostanie osiagnięty limit 1b/A 3, który prawdopodobnie będzie górna granica. Ok. roku 2035 osiagnięty zostanie termodynamiczny limit 0.7kT generacji ciepła wynikajacego z zapisywania bitu informacji w pamięci w sposób niszczacy poprzednia informację tam znajdujac a się. Limity te moga zostać przekroczone jeśli zostana opracowane techniki zapisywania informacji nie niszczace poprzedniej informacji. Częstotliwość pracy procesora nie przekroczy limitów ustalonych przez maksymalna częstotliwość przejść atomowych. Realistyczna granica jest wartość Hz - około 10 6 razy więcej niż dzisiejsze częstotliwości, która będzie osiagnięta za 30 lat. Bibliografia [1] Michael P. Frank, The Physical Limits of Computing, Computing in Science & Engineering, vol. 4, May/June 2002, pp ; [2] Douglas E. Post, Francis Sullivan, Limits on Computations, Computing in Science & Engineering, vol. 4, May/June 2002, pp ; [3] Charles H. Bennett, Rolf Landauer, The Fundamental Physical Limits of Computation, Scientific American 253 (1), 48-56, July 1985; [4] Michael P. Frank, Reversibility for Efficient Computing, Dec. 20, 1999; [5] Warren D. Smith; Fundamental physical limits on computation, May 5, 1995; [6] Warren D. Smith, Fundamental physical limits on information storage, May 13, 1999; 8
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.
Czarne dziury. Grażyna Karmeluk
Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku Wstęp czyli (próba) odpowiedzi na pewne pytania (Silna) Teza Church
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci
PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej
Protokół teleportacji kwantowej
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek
odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty
Technika cyfrowa Inżynieria dyskretna cz. 2
Sławomir Kulesza Technika cyfrowa Inżynieria dyskretna cz. 2 Wykład dla studentów III roku Informatyki Wersja 5.0, 10/10/2015 Generacje układów scalonych Stopień scalenia Liczba elementów aktywnych Zastosowania
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Cele RAID. RAID z ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków.
Macierze RAID Cele RAID RAID z ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków. - zwiększenie niezawodności (odporność na awarie), - zwiększenie wydajności transmisji
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017
B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Dydaktyka Informatyki budowa i zasady działania komputera
Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Architektura komputerów
Architektura komputerów Tydzień 10 Pamięć zewnętrzna Dysk magnetyczny Podstawowe urządzenie pamięci zewnętrznej. Dane zapisywane i odczytywane przy użyciu głowicy magnetycznej (cewki). Dane zapisywane
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Podstawy transmisji sygnałów
Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja
Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d
Jak rozwiązać test? Każde pytanie ma podane cztery możliwe odpowiedzi oznaczone jako a, b, c, d. Należy wskazać czy dana odpowiedź, w świetle zadanego pytania, jest prawdziwa czy fałszywa, lub zrezygnować
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Macierze RAID MARCEL GAŃCZARCZYK 2TI 1
Macierze RAID MARCEL GAŃCZARCZYK 2TI 1 Macierze RAID (Redundant Array of Independent Disks - nadmiarowa macierz niezależnych dysków Redundant Array of Inexpensive Disks - nadmiarowa macierz niedrogich
Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ
Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku
Elektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego
PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka
PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Pamięci masowe. ATA (Advanced Technology Attachments)
Pamięci masowe ATA (Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Teoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły Instrukcja dla zdającego PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Arkusz II (dla poziomu rozszerzonego)
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Wykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Entropia, demon Maxwella i maszyna Turinga
Entropia, demon Maxwella i maszyna Turinga P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 14 lutego 2013 Pojęcia z dwu różnych dyscyplin Fizyka Informatyka Demon Maxwella Maszyna Turinga podstawy termodynamiki
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2
Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące
Ciśnienie i temperatura model mikroskopowy
Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy
Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Kwantowe przelewy bankowe foton na usługach biznesu
Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Oprogramowanie IP - pytania i odpowiedzi. JPEG (Mb/s) kl./s BASIC SUPER FINE BASIC SUPER FINE 5 0,46 1,45 1,02 2,5 12,5 1,17 3,6 2,53 6,32
Oprogramowanie IP - pytania i odpowiedzi Ile kamer może pracować w sieci 100 Mb/s i 1 Gb/s? Liczba kamer mogących poprawnie pracować w sieci zależy od parametrów wysyłanego przez nie obrazu. Strumień danych
Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna
Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Redefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Postulaty szczególnej teorii względności
Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności
Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Fizyka dla wszystkich
Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1
Informatyka kwantowa
VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................
41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)
Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
Wstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Badanie absorpcji promieniowania γ
Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Metoda Elementów Skończonych
Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk Wykonali: Oguttu Alvin Wojciechowska Klaudia MiBM /semestr VII / IMe Poznań 2013 Projekt MES Strona 1 SPIS TREŚCI 1. Ogrzewanie laserowe....3