MATEMATYKA (około 20 min)
|
|
- Bartłomiej Cieślik
- 9 lat temu
- Przeglądów:
Transkrypt
1 CZĘŚĆ II MATEMATYKA (około 20 min) 1. Milion sekund, to mniej więcej: A) 3 dni B) 2 tygodnie C) 3 miesiące D) 2 lata 2. W pewnym trójkącie średni kąt jest dwa razy większy od najmniejszego, a największy jest trzy razy większy od najmniejszego. Jaki to trójkąt? A) równoramienny B) prostokątny C) równoboczny D) dowolny 3. Marysia ma 5 kredek. Michał ma ich mniej niż Marysia, zaś ich starsza siostra ma tyle kredek, ile mają łącznie Marysia i Michał. Cała trójka może mieć łącznie: A) 8 kredek B) 11 kredek C) 14 kredek D) 20 kredek 4. Liczba całkowita a przy dzieleniu przez 10 daje resztę identyczną z ilorazem. Ile jest takich liczb? A) 1 B) 9 C) 10 D) nieskończenie wiele 5. Architekt ma dwa plany tego samego budynku: jeden w skali 1:20, drugi w skali 1:50. Jaka jest na planie w skali 1:50 szerokość fasady tego budynku, jeśli jest ona równa 20 cm na planie w skali 1:20? A) 16 cm B) 8 cm C) 50 cm D) 4 cm 6. Mam w kieszeni 51 banknotów wyłącznie stu- i pięćdziesięciozłotowych. Wiedząc, że mam w sumie 3500 zł, powiedz ile mam banknotów pięćdziesięciozłotowych? A) 19 B) 20 C) 26 D) Ile jest kwadratów, których wszystkie cztery wierzchołki leżą w zaznaczonych punktach A) 1 B) 2 C) 3 D) 4 8. Ilość bakterii w hodowli laboratoryjnej podwaja się co godzinę. Ile razy zwielokrotniła się ta ilość w ciągu 10 godzin? A) 20 B) 512 C) 1024 D) Podczas próbnego egzaminu z matematyki 12% uczniów w klasie w ogóle nie rozwiązało tego zadania, 32% uczniów otrzymało wynik niepoprawny, a tylko 14 uczniów rozwiązało zadanie poprawnie. Ilu uczniów uczestniczyło w tym egzaminie? A) 25 B) 56 C) 44 D) 11 GIMNAZJADA 2006 strona 5
2 10. Pewien kryształ ma formę graniastosłupa o 27 krawędziach. Ile ma on wierzchołków? A) 27 B) 54 C) 18 D) Zofia uzyskała z czterech sprawdzianów średnią równą 12,5. Ile punktów musi ona uzyskać w kolejnym sprawdzianie, aby z pięciu sprawdzianów średnia wynosiła 13? A) 13 B) 14 C) 15 D) niestety, to już nie jest możliwe 12. Gdyby ciasto francuskie wysokości 4 cm (zwane "millefeuille" tzn. "tysiącpłatkowiec") składało się rzeczywiście z tysiąca cienkich płatków, to grubość każdego płatka wynosiłaby: A) 0,004 mm B) 0,004 dm C) 0,04 mm D) 0,04 cm (miejsce na obliczenia) RAZEM PUNKTÓW ( MATEMATYKA ) GIMNAZJADA 2006 strona 6
3 CZĘŚĆ III i IV Przeczytaj uważnie tekst HISTORIA (razem około 20 min) INKOWIE TWÓRCY KIPU. Inkowie to lud indiański, zamieszkujący terytoria przybrzeżne wzdłuż środkowych Andów w Ameryce Południowej. Państwo Inków, założone w XII wieku, rozbudowane zostało w rozległe imperium w ciągu niespełna 200 lat przed odkryciem Ameryki. Na początku XVI w. obejmowało prawie całe wybrzeże Pacyfiku wzdłuż Andów i tereny Peru i Boliwii w głębi kontynentu, a zamieszkane było wtedy przez ok. 12 milionów mieszkańców. Zajmowali się oni głównie rolnictwem, uprawiając kukurydzę, ziemniaki, trzcinę cukrową, bawełnę i kokę oraz hodowlą lam i alpak. Część pól nawadniano przy pomocy sztucznych kanałów irygacyjnych. Domy mieszkalne budowano z gliny lub kamienia. Bardzo rozwinięta była ceramika, zdobna inkrustacjami i malowidłami. Kraj pokryty był siecią dróg, chociaż nie znano koła i nie używano żadnych pojazdów do transportu. Najważniejszą część sieci drogowej stanowiły dwa trakty rozciągnięte na całej długości imperium, jeden wzdłuż wybrzeża a drugi przez Andy. Dzięki tym drogom Inkowie mogli względnie szybko przemieszczać swe wojska w czasie wojny czy zamieszek. Służyły też one do przesyłania wiadomości, czym zajmowali się specjalni biegacze, dla których przy drogach pobudowano stacje, gdzie mogli odpocząć i przebrać się. Przesyłanie wiadomości i drobnych przesyłek tym sposobem odbywało się na zasadzie sztafety tzn. w momencie kiedy jeden biegacz docierał do następnej stacji, drugi wybiegał mu na spotkanie i przejmował przesyłkę lub wiadomość. Same wiadomości zapisywane były w postaci wymyślnego układu węzełków na sznurach (kipu - pismo węzełkowe). Władcy Inków otoczeni byli wielkim przepychem i czczeni jak bogowie, po śmierci ich ciała mumifikowano i nadal oddawano im boską cześć. Do nich i kapłanów należała cała ziemia w państwie. Najważniejszymi bóstwami były Inti, czyli słońce i Illapa, władający siłami przyrody. Na ich cześć budowano kultowe kamienne piramidy. Stolicą państwa Inków było miasto Cuzco w Peru na Płaskowyżu Andyjskim. A najciekawszym i zagadkowym miastem, odkrytym w 1911 r., jest Machu Picchu, położone wysoko w górach, zbudowane tak, że nie jest widoczne z dołu. Z niewiadomych powodów zostało opuszczone przez mieszkańców krótko przed przybyciem Hiszpanów do Ameryki. W chwili rozpoczęcia podbojów przez Hiszpanów, imperium Inków zajmowało prawie wszystkie terytoria na zachodnich wybrzeżach Ameryki Południowej. Jeden z inkaskich władców Pachacutec Yupanqui ( GIMNAZJADA 2006 strona 7
4 HISTORIA. Pytania do tekstu (5 p.): 13. Dwa najważniejsze trakty w państwie Inków używane były głównie do: a) transportu kołowego, b) pieszych wycieczek, c) przemieszczania się wojsk i przesyłania informacji. 14. Mieszkańcy państwa Inków czcili: a) władców państwa i bóstwa związane z przyrodą b) władców państwa, za ich życia, c) dwóch bogów: Inti i Ilapę. 15. W jakim innym państwie, położonym na innym kontynencie, również dokonywano mumifikacji ciał zmarłych władców? 16. Machu Picchu jest miastem zagadkowym dlatego, że: a) jest położone wysoko w górach, b) zbudowane jest tak, że nie widać go z dołu; c) nie są znane przyczyny opuszczenia miasta przez jego mieszkańców. 17. Imperium Inków: a) upadło nim została odkryta Ameryka, b) zostało zniszczone przez Hiszpanów, c) istnieje do tej pory. RAZEM PUNKTÓW ( HISTORIA ) GIMNAZJADA 2006 strona 8
5 PRZYRODA (7 p.) 18. Góry w Ameryce Południowej to: a) Kordyliery, b) Alpy, c) Andy. 19. Wraz ze wzrostem wysokości temperatura powietrza: a) nie zmienia się, b) spada, c) rośnie. 20. Podaj cechę charakterystyczną roślinności występującej w górach: Charakterystyczny wiatr wiejący w górach to: a) bryza, b) bora, c) fen (halny). 22. Step wysokogórski to: a) puna, b) pampa, c) preria. 23. Stolicą Peru jest: a) Lima, b) Quito, c) Machu Picchu. 24. Andy zamieszkiwali: a) Majowie, b) Aztekowie, c) Inkowie. RAZEM PUNKTÓW ( PRZYRODA ) GIMNAZJADA 2006 strona 9
Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia
Matematyka Majów, Azteków, Inków Kowalska Wioleta, Latoch Weronika, Łubniewska Julia MAJOWIE Kim byli Majowie? Indiańskie plemię Majów zamieszkiwało południowo-wschodnią część Meksyku, Gwatemalę, Belize
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 8 zadań. 2.
Cywilizacje pozaeuropejskie
Cywilizacje pozaeuropejskie Wasza miłość jesteś bardzo wielkim władcą i zasługujesz na jeszcze więcej. Radujemy się widokiem waszych miast i proszę was o łaskę, jesteśmy oto w waszej wielkiej świątyni,
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019
.. pieczątka szkoły (dotyczy etapu szkolnego) Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka,
Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
LUBELSKA PRÓBA PRZED MATUR 2016
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Arkusz
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie Instrukcja dla ucznia KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI 1. Zestaw konkursowy zawiera 13
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Bednarska Szkoła Podstawowa Terytorium Raszyńska EGZAMIN Z MATEMATYKI. do klasy siódmej. na rok szkolny 2018/2019. Czas pisania: 75 minut.
Bednarska Szkoła Podstawowa Terytorium Raszyńska NUMER Dysleksja EGZAMIN Z MATEMATYKI do klasy siódmej na rok szkolny 2018/2019 Witaj na egzaminie! Nie otwieraj jeszcze egzaminu! Poczekaj na sygnał z naszej
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale
Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale zorganizowane paostwo o nazwie Tawantinsuyu (paostwo pszczół). Dzięki
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
czyli Prekolumbijskie Cywilizacje Andów
Spotkanie Dwóch Kultur cz.2 Spotkanie Dwóch Kultur cz.2 czyli Prekolumbijskie Cywilizacje Andów Kultury przedinkaskie Przed powstaniem Imperium Inków, w strefie andyjskiej dominowały następujące kultury:
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test
EGZAMIN Z MATEMATYKI
Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Gimnazjum nr 20 NUMER Dysleksja A GRUPA EGZAMIN Z MATEMATYKI Witaj na egzaminie do naszego gimnazjum.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018
Etap wojewódzki 17 lutego 2018 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1. Sprawdź, czy zestaw zawiera
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Rozwiązaniem nierówności A. B. C. 4 D. 2
(Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
r., godz Czas trwania 60 minut. Przepisz tutaj Twój kod
zdolny Ślązaczek MATEMATYKA XVI DOLNOŚLĄSKI KONKURS DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II ETAP - POWIATOWY 13.11.2018 r., godz. 12 00 Czas trwania 60 minut TWÓJ KOD Przepisz tutaj Twój kod Przepisz tutaj Twój
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera
WOJEWÓDZKI KONKURS PRZEDMIOTOWY
Pieczątka szkoły Kod ucznia Suma punktów Numer zadania 1-17 18 19 20 Liczba punktów WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 5 LISTOPADA 2014R. 1. Test konkursowy
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STYCZEŃ 2014 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY
5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
.......................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019 Instrukcja dla ucznia
KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017
Drogi Uczniu, KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017 Finał 5 maja 2017 r. Zestaw dla uczniów klas VI witaj na finale konkursu Omnibus Matematyczny. Przeczytaj uważnie instrukcję i postaraj
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019
Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka, numer porządkowy wynika z numeru stolika wylosowanego
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH
Etap szkolny 16 listopada 2011 r. Instrukcja dla ucznia Godzina 10.00 1. Sprawdź, czy zestaw zawiera 7 stron. Kod ucznia. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
WYPEŁNIA KOMISJA KONKURSOWA. Nr zadania Razem Liczba punktów możliwych do zdobycia
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Z matematyką przez świat
Imię i nazwisko ucznia Z matematyką przez świat konkurs matematyczny dla uczniów szkół podstawowych ETAP SZKOLNY 6 marca 2015 Czas 60 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwiązania 7 zadań zamkniętych
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Matematyka. Klasa V. Pytania egzaminacyjne
Matematyka Pytania egzaminacyjne Klasa V 07. Oblicz najprostszym sposobem. a) + 9 + 67 + b) 0 8. Oblicz łączny koszt zakupów: owoców za zł, książki za 9 zł, mapy za 7 zł i kosmetyków za zł.. Oblicz najprostszym
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 3 CZERWCA 2016 R. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM
WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
SPRAWDZIAN Z MATEMATYKI KLASA I
Imię i Nazwisko:.. Klasa:. SPRAWDZIAN Z MATEMATYKI KLASA I POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 11 stron (zadania 1 19). 2. Arkusz zawiera 13 zadań
Małopolski Konkurs Matematyczny r. etap wojewódzki
Kod ucznia Miejsce na metryczkę ucznia Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap wojewódzki rok szkolny 2017/2018 Drogi Uczniu! 1. Sprawdź, czy na kolejno
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
. kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 13.04.2018 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
Zadania z ułamkami. Obliczenia czasowe
Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012
... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP SZKOLNY rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP SZKOLNY rok szkolny 2018/2019 Instrukcja dla ucznia 1. Sprawdź,
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pierwiastek równania
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut
pieczęć szkoły pesel nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut 1. Otrzymujesz do rozwiązania
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2013/2014
Etap wojewódzki 22 lutego 2014 r. Godzina 11.00 M Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę swój Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018
Etap szkolny 20 listopada 2017 r. Godzina 9.00 Imię/ Imiona ucznia - Nazwisko ucznia - klasa - Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut
Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań
FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH. Zadania dla klasy 6
FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH Zadania dla klasy 6 Na rozwiązanie pięciu zadań masz 90 minut. Kolejność rozwiązywania zadań jest dowolna. Maksymalną liczbę punktów możesz uzyskać
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016
Etap wojewódzki 20 lutego 2016 r. Godzina 11.00 Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera