Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka podstawowa I. Liczby rzeczywiste, zbiory"

Transkrypt

1 Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz = 6. Oblicz = 7. Oblicz = 8. Oblicz = 9. Oblicz = 10. Oblicz = 11. Oblicz = 12. Oblicz = 13. Oblicz =

2 14. = 15. Przedstaw w postaci nieskracalnego ułamka zwykłego = 16. Cena brutto komputera wynosi 2100zł. Oblicz cenę netto (VAT=23%) 17. Wskaż liczbę, której 12% wynosi 7, % liczby x wynosi 18. Zatem liczba x to 19. Liczba 35 to p% liczby 28. Zatem p% to 20. Podaj przykład liczb całkowitych a oraz b spełniających nierówności 21. Ułamek zapisany w postaci dziesiętnej to 22. Oblicz = 23. Oblicz = 24. W klasie jest 40 uczniów, w tym 18 dziewcząt. Jaki procent uczniów stanowią chłopcy? 25. Usuń niewymierność z mianownika = = = 26. Oblicz 20% liczby Oblicz z jakiej liczby 15% wynosi Znajdź liczbę, która zwiększona o 20% daje Liczba przeciwna do podwojonej liczby a jest równa 31. Kwadrat liczby jest równy 32. Oblicz =

3 33. Średnia arytmetyczna liczb,, x, jest równa 3. Zatem x wynosi 34. Wyrażenie można zapisać w postaci 35. Liczba jest równa 36. Liczba 1,5 Zadania: 1. Liczbą przeciwną do jest. 2. Wartość liczby jest równa wartości liczby 3. Średni wzrost sportowców w drużynie siatkarskiej, liczącej 6 chłopców, wynosił 174cm. Po przyjęciu do zespołu dwóch braci o tej samej wysokości średnia wzrostu zwiększyła się o 0,5cm. Oblicz jak wysocy są bracia. 4. Zbiór jest rozwiązaniem nierówności: 5. Dana jest liczba. Wykaż, że liczba jest całkowita. 6. Turysta pokonał pieszo trasę długości 30km z miejscowości A do miejscowości B ze stałą prędkością. Rowerem poruszałby się z prędkością o 9km/h większą i przybyłby

4 do celu o 3 godziny wcześniej. Wyznacz prędkość marszu turysty i czas przejścia tej drogi. 7. Wskaż rysunek, na którym przedstawiony jest zbiór rozwiązań nierówności 8. Iloczyn jest równy 9. Liczba jest równa Pewna firma zatrudnia 6 osób. Dyrektor zarabia 8000zł, a pensje pozostałych pracowników są równe: 2000zł, 2800zł, 3400, 3600zł, 4200zł. Mediana zarobków tych 6 osób jest równa: 3400zł 3500zł 6000zł 7000zł 11. Kolarz pokonał trasę 114km. Gdyby jechał ze średnią prędkością mniejszą o 9,5km/h to pokonałby tę trasę w czasie o 2 godziny dłuższym. Oblicz, z jaką średnią prędkością jechał ten kolarz. 12. Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz ilu studentów jest w tej grupie. 13. Marża równa 1,5% kwoty pożyczonego kapitału była równa 3000zł. Wynika stąd, że pożyczono 45zł 2000zł zł

5 zł 14. Ułamek jest równy Uzasadnij, że suma kwadratów trzech kolejnych liczb całkowitych przy dzieleniu przez 3 daje resztę Wyrażenie jest równe % pewnej liczby jest o 16 mniejsze od tej liczby. Tą liczbą jest: Równość zachodzi dla 19. Liczbami spełniającymi równanie są 1 i -4 1 i 2-1 i 4-2 i Liczba jest równa 21. Cenę nart obniżono o 20%, a po miesiącu nową cenę obniżono o dalsze 30%. W wyniku obu obniżek cena nart zmniejszyła się o 44% 50% 56% 60%

6 22. Wskaż liczbę, która spełnia równanie 23. Uzasadnij, że jeżeli liczby rzeczywiste a, b, c spełniają nierówności, to 24. Miasto A i miasto B łączy linia kolejowa o długości 210 km. Średnia prędkość pociągu pospiesznego na tej trasie jest o 24km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o 1 godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny. 25. Liczba jest równa Liczba a stanowi 60% liczby b. Wówczas: 27. Średnia arytmetyczna liczb 2, 2, 2, 3, 7, 9, 9, x jest równa 4, 5. Liczba x jest równa -11,5 1 1, Dla wyrażenie po sprawdzeniu do wspólnego mianownika ma postać 29. Wskaż nierówność, której rozwiązaniem jest przedział

7 30. Wartość wyrażenia jest równa: 31. Wykaż, że dla każdych liczb rzeczywistych x oraz a prawdziwa jest nierówność. 32. Wartość wyrażenia dla jest równa 33. Uzasadnij, że dla każdej dodatniej liczby całkowitej n liczba jest wielokrotnością liczby Tabela przedstawia wyniki uzyskane na sprawdzianie przez uczniów klasy III. Oblicz średnią arytmetyczną i kwadrat odchylenia standardowego uzyskanych ocen. 35. Z dwóch miast A i B, odległych od siebie o 18 km wyruszyli naprzeciw siebie dwaj turyści. Pierwszy turysta wyszedł z miasta A o jedną godzinę wcześniej niż drugi z miasta B. Oblicz prędkość, z jaką szedł każdy turysta, jeżeli wiadomo, że po spotkaniu pierwszy turysta szedł do miasta B jeszcze 1,5 godziny, drugi zaś szedł jeszcze 4 godziny do miasta A. 36. Chłopiec przeszedł 11,2 m w 5,6s. Oblicz z jaką szybkością się poruszał. Zaokrąglij wartość drogi i czasu do całości i policz z tych wartości szybkość. Podaj błąd bezwzględny i względny tak policzonej szybkości. 37. Działka budowlana na mapach geodezyjnych ma długość 22m. Robotnik chcąc oszacować długość działki zmierzył ją za pomocą kroków i wyszło mu 20m. Oblicz błąd bezwzględny i względny tak przeprowadzonego pomiaru. 38. Książka kosztuje 40zł. Jej cenę podniesiono o 20%. Kolejnego dnia obniżono cenę o kolejne 20%. Ile kosztuje teraz książka? 39. Właściciel warzywniaka kupuje jabłka po 1zł, a sprzedaje po 2,5zł. Ile wynosi jego marża? 40. Wskaż liczbę, która spełnia równanie

8 41. Liczbę można przedstawić w postaci 42. Cenę pewnego towaru najpierw obniżono o 20%, a następnie nową cenę podwyższono o 10%. W wyniku obu tych zmian cena towaru zmniejszyła się w stosunku do pierwotnej o 43. Potęga (gdzie a i b są różne od zer jest równa 44. Mediana danych: -4, 2, 6, 0, 1 jest równa 6 0 2, Największa liczba naturalna n spełniająca nierówność to Liczba jest równa -1

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury

Bardziej szczegółowo

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik? Diagnoza klasa I Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania otwarte 1. Na wycieczkę pojechało

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów. Centralna Komisja Egzaminacyjna. MATERIAŁY ĆWICZENIOWE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy: 70 minut Materiały ćwiczeniowe z matematyki Poziom podstawowy Czas pracy: 70 minut Instrukcja dla zdającego:.

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia

Bardziej szczegółowo

KURS MATURA PODSTAWOWA

KURS MATURA PODSTAWOWA KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,

Bardziej szczegółowo

( Wynik podaj w postaci ułamka nieskracalnego.

( Wynik podaj w postaci ułamka nieskracalnego. Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 018/019 w CKZiU NR Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1 1 TEST WSTĘPNY 1. (2p) Liczbę zapisano w postaci ułamka dziesiętnego i zaokrąglono z dokładnością do jednego miejsca po przecinku. Błąd bezwzględny otrzymanego przybliżenia jest równy. Błąd względny otrzymanego

Bardziej szczegółowo

11. Liczby rzeczywiste

11. Liczby rzeczywiste . Liczby rzeczywiste Zdający: Wymagania, jakie stawia przed Tobą egzamin maturalny z przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 3).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ Czas pracy 170 minut Klasa 1 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 19 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od 1. do 20. są podane

Bardziej szczegółowo

STATYSTYKA POWTÓRZENIE WIADOMOŚCI

STATYSTYKA POWTÓRZENIE WIADOMOŚCI STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ Czas pracy 170 minut Klasa 1 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 19 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od 1. do 20. są podane

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA I dt

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA I dt Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr Ekonomik w Zielonej Górze KLASA I dt I. Pierwiastki (w tym usuwanie niewymierności), potęgi, działania

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 016/017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

Procenty zadania maturalne z rozwiązaniami

Procenty zadania maturalne z rozwiązaniami Każde zadanie 1 punkt. 1. Cena towaru bez podatku VAT jest równa 60 zł. Towar ten wraz z podatkiem VAT w wysokości 22% kosztuje 0,22 60 = 13,20 kwota VAT 60 + 13,20 = 73,20 Odp. A 2. Wskaż liczbę, której

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane

Bardziej szczegółowo

~ A ~ PANGEA KONKURS MATEMATYCZNY

~ A ~ PANGEA KONKURS MATEMATYCZNY PANGEA KONKURS MATEMATYCZNY Piątek, 17kwietnia 2015 Czas pracy: 90 minut 1. Ogólne zasady 1.1 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.2 Zadania mają formę testu jednokrotnego

Bardziej szczegółowo

SZKOLNA LIGA ZADANIOWA

SZKOLNA LIGA ZADANIOWA KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o

Bardziej szczegółowo

KONKURS MATEMATYCZNY organizowany przez Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli

KONKURS MATEMATYCZNY organizowany przez Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli KONKURS MATEMATYCZNY organizowany przez Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Zespół Szkół Elektronicznych w Lublinie i PWSZ w Zamościu ETAP I 03.12.2010r. ZADANIA DLA KLASY I Czas pracy

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

LICZBY - Podział liczb

LICZBY - Podział liczb 1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite

Bardziej szczegółowo

SUMA PUNKTÓW: 126 I (0, 2) 10 II (2, 5) 5 III 25 IV

SUMA PUNKTÓW: 126 I (0, 2) 10 II (2, 5) 5 III 25 IV POTEGI I PIERWIASTKI SUMA PUNKTÓW: 126 ZADANIE 1 (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest równa liczbom A) II i IV B) I i II

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +

Bardziej szczegółowo

Wartość danej Liczebność

Wartość danej Liczebność ZADANIE 1 (5 PKT) Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi liczba uczniów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 016/017 Etap II etap rejonowy- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 25 LUTEGO 2015 1. Test konkursowy zawiera 2 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

Wartość danej Liczebność

Wartość danej Liczebność IMIE I NAZWISKO ZADANIE 1 Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100 ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.

Bardziej szczegółowo

2. Wyrażenia algebraiczne

2. Wyrażenia algebraiczne 2. Wyrażenia algebraiczne Jeśli liczby r, s są liczbami całkowitymi, to równości od 1) do 5) są prawdziwe dla wszystkich liczb rzeczywistych a, b różnych od zera. Logarytm Logarytmem 10gab liczby dodatniej

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI:

Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI: Hanna MAREK Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Łomży Materiał uzupełniający dotyczący monitorowania osiągnięć uczniów Przykład sprawdzianu łącznie z obudową dla nauczyciela

Bardziej szczegółowo

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa:

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: LICZBY WYMIERNE I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: A. 66 B. 64 C. 46 D. 44 Zadanie 2 Wskaż jedną poprawną odpowiedź. Liczba

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klasy Ich w roku szkolnym 2018/2019 w CKZiU nr 3 "EKONOMIK" w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klasy Ich w roku szkolnym 2018/2019 w CKZiU nr 3 EKONOMIK w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klasy Ich w roku szkolnym 2018/2019 w CKZiU nr 3 "EKONOMIK" w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi, działania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ

ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ Redaktor serii: Marek Jannasz Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety i opracowanie graficzne: Kaja

Bardziej szczegółowo

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i Test z procentów 1. Liczba po zamianie na procent wyniesie: 2. Liczba po zamianie na procent wyniesie:

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Matematyka. dla. Egzamin. Czas pracy będzie

Matematyka. dla. Egzamin. Czas pracy będzie Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom podstawowy Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Symbol n! oznacza iloczyn liczb naturalnych od 1 do n tzn. n! = 1 3...

Bardziej szczegółowo

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4 Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawne dokończenie zdania. Drugą potęgą liczby jest A. B. C. D. 2. Zamień podany

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Małopolski Konkurs Matematyczny r. etap szkolny

Małopolski Konkurs Matematyczny r. etap szkolny Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap szkolny rok szkolny 2018/2019 1. Przed Tobą zestaw 20

Bardziej szczegółowo

Zadania: 1. Rozłóż na czynniki pierwsze liczby 228 i 72, a następnie wyznacz NWW i NWD tych liczb.

Zadania: 1. Rozłóż na czynniki pierwsze liczby 228 i 72, a następnie wyznacz NWW i NWD tych liczb. Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 201/2019 wkuie Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi, działania na liczbach

Bardziej szczegółowo

Średnie. Średnie. Kinga Kolczyńska - Przybycień

Średnie. Średnie. Kinga Kolczyńska - Przybycień Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

Lista 8 Wyrażenia wymierne. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji.

Lista 8 Wyrażenia wymierne. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji. Lista 8 Wyrażenia wymierne. Zad 1. Narysuj wykres funkcji. Przykład 1:. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji. Funkcję nazywamy funkcja podstawową, a

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

SPRAWDZIAN NR 1. Buty sportowe kosztowały 400 zł. Cenę butów obniżono o 50%. Ile kosztują buty po obniżce ceny?

SPRAWDZIAN NR 1. Buty sportowe kosztowały 400 zł. Cenę butów obniżono o 50%. Ile kosztują buty po obniżce ceny? SPRAWDZIAN NR 1 WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oblicz 10% z liczby 300. 2. Jakim procentem liczby 12 jest liczba 3? 3. Zaznacz poprawną odpowiedź. Buty sportowe kosztowały 400 zł.

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 016/017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod

Bardziej szczegółowo

MATEMATYKA. Porady i wskazówki. których nie ma w tablicach maturalnych

MATEMATYKA. Porady i wskazówki. których nie ma w tablicach maturalnych MATEMATYKA Porady i wskazówki których nie ma w tablicach maturalnych Spis treści Wstęp... 4 Symbole używane w książce... 5 I. Liczby rzeczywiste, zbiory, wyrażenia algebraiczne.. 6 II. Równania, nierówności

Bardziej szczegółowo

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014 I Ty możesz zostać itagorasem róbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz 1 Styczeń 2014 Liczba punktów 29, czas pracy 90min mgr Iwona Tlałka I Ty możesz zostać itagorasem próbny

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ

ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ ADAM KONSTANTYNOWICZ ANNA KONSTANTYNOWICZ ZBIÓR ZADAŃ Redaktor serii: Marek Jannasz Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety i opracowanie graficzne: Kaja

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Liczby i działania str. 1/6

Liczby i działania str. 1/6 Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.

Bardziej szczegółowo

WIELOMIANY SUPER TRUDNE

WIELOMIANY SUPER TRUDNE IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,

Bardziej szczegółowo

Skrypt 4. Liczby rzeczywiste: Opracowanie L5

Skrypt 4. Liczby rzeczywiste: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 4 Liczby rzeczywiste: 26.

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 11 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut pieczęć szkoły pesel nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut 1. Otrzymujesz do rozwiązania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

Powtórzenie - ułamki zwykłe i dziesiętne klasa 6

Powtórzenie - ułamki zwykłe i dziesiętne klasa 6 Powtórzenie - ułamki zwykłe i dziesiętne klasa 6 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oblicz. Wpisz w każdą lukę odpowiednią liczbę. = 0,2 3 = 2. Jola w swojej skarbonce ma 243,20 zł, a Marek

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo