Modeling Go Game as a Large Decomposable Decision Process
|
|
- Wojciech Wysocki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modeling Go Game as a Large Decomposable Decision Process (autoreferat rozprawy doktorskiej) Łukasz Lew 4 października 2011 Od zarania dziejów ludzie marzyli o budowie maszyn, które byłyby godnymi przeciwnikami ludzi w grach logicznych. To marzenie stało się realne wraz z pojawieniem się komputerów, szczególnie ostatnio, gdy olbrzymia moc obliczeniowa jest w zasięgu ręki. Spektakularnym przykładem gracza komputerowego jest system Deep Blue, który wygrał z szachowym mistrzem świata Garrym Kasparowem. Rozwiązania użyte w szachach to przeszukiwanie drzewa gry do pewnej głębokości i użycie funkcji oceniającej w liściach drzewa do oceny szans wygranej. To podejście przeniosło się na wiele innych gier pozwalając komputerom grać lepiej niż najlepsi ludzie lub wręcz rozwiązać daną grę. Jednym z nielicznych wyjątków jest gra Go. Gra Go. Drugi rozdział rozprawy przedstawia historię gry Go i jej wielką popularność w Azji. Wyjaśnione są jej zasady oraz podstawowe elementy strategii i taktyki. Podkreślone są te elementy gry, które sprawiają komputerom trudność i odróżniają ją od innych tradycyjnych gier planszowych. Wyjaśnione są terminy dobry kształt i zły kształt w kontekście Go. Jest to forma wiedzy o grze, którą ludzie przyswajają i używają w trakcie gry. Ta wiedza jest także kluczowym elementem algorytmów grających. Algorytmy grające. Algorytmy grające w Go zawsze były relatywnie słabe. Powodów dla rozbieżności siły gry komputerów i ludzi w grze Go jest kilka. Jednym z nich jest brak znanej, dobrej funkcji oceniającej pozycje w grze. Jest tak, gdyż nie znamy algorytmu, który wydajnie estymowałby szanse wygranej dowolnej pozycji Go. Badacze i hobbyści tworząc algorytmy grające w Go, starając się odwzorować ludzi sposób myślenia. Rozdział 3.1 przedstawia 30 lat rozwoju klasycznych algorytmów Go. Podkreślona jest komplikacja programów tego typu i trudność ich dalszego ulepszania. Klasyczne podejście jest przedstawione na przykładzie popularnego programu Gnu Go [BGB05]. 1
2 Monte Carlo Go. Niedawnym i rewolucyjnym pomysłem poradzenia sobie z problemem braku funkcji oceniającej jest podejście Monte Carlo Go. Polega ono przeprowadzenie dla danej pozycji bardzo wielu playoutów rozgrywek złożonych z losowych ruchów prowadzących do samego końca gry. Dana pozycja jest oceniana na podstawie statystycznej analizy wyników tych rozgrywek. W ciągu kilku ostatnich lat, algorytmy z rodziny Monte Carlo Go znalazły zastosowanie nie tylko w grze Go, ale także w wielu innych grach, jak i w zupełnie odległych od Go dziedzinach [dmrvp09]. Rozdział 3.2 przedstawia niedawną historię odkrycia i rozwoju Monte Carlo Go. Kluczowym elementem rozwoju Monte Carlo Go było stworzenie algorytmu UCT [KS06] albo ogólniej Monte Carlo Tree Search oraz jego usprawnienia RAVE [GS07]. Jest to wariant algorytmu MINIMAX przystosowany do zaszumionej, randomizowanej funkcji oceniającej jaką są wyniki playoutów. Działanie algorytmów MCTS i RAVE jest wyjaśnione w rozdziale Wiedza dziedzinowa Go. Drugim kluczowym elementem rewolucji Monte Carlo Go jest wbudowanie w MCTS i w playouty wiedzy dziedzinowej Go [CWvdH + 07, GWMT06]. Wiedza ta może być reprezentowana za pomocą wag przypisanych do wielu konfiguracji (kształtów) mogących wystąpić na planszy. Użycie wiedzy w MCTS znacząco zwiększa wydajność przeszukiwania poprzez zawężenie przeszukiwania do obiecującego poddrzewa. Użycie wiedzy do losowania ruchów wewnątrz playoutów znacząco polepsza jakość funkcji oceniającej i ma jeszcze większy efekt na siłę gry Monte Carlo Go. Rozdziały i 3.4 wyjaśniają znane dobre sposoby implementacji użycia wag w MCTS i playoutach. Źródła wiedzy. Dobre wagi konfiguracji można próbować dobierać ręcznie metodą prób i błędów [GWMT06] lub znajdować je za pomocą algorytmów typu Machine Learning [Cou07]. Dobrze służy temu celowi model Bradley a Terry ego (BT) i algorytm jego optymalizacji Minorization Maximization (MM) [Hun04]. Ograniczeniem MM są duże wymagania pamięciowe. Komputer z 24 GB pamięci RAM może przetworzyć jedynie wyborów (pozycji Go z zagranym ruchem), podczas gdy dostępne dane są kilkadziesiąt razy większe. Pierwszym wynikiem tej rozprawy jest nowa rodzina algorytmów Laplace Marginal Propagation. Służy ona do trenowania modeli parametrycznych takich jak BT. Rozdział czwarty, po przedstawieniu podstaw modelowania Bayesowskiego i podstawowych algorytmów trenujących, stosuje LMP do modelu BT. Główną zaletą uzyskanego algorytm treningowego są małe wymagania pamięciowe dla danych, dla których MM potrzebował 24 GB RAM, LMP potrzebuje jedynie 15 MB. Jego innymi zaletami są prostota implementacji, możliwość pracy na danych strumieniowych o potencjalnie 2
3 nieskończonych rozmiarach (takich jak playouty) oraz brak parametrów takich jak współczynnik uczenia (w przeciwieństwie do np. Stochastic Gradient Descent). Rozdział czwarty przedstawia także dowód zbieżności algorytmu. Rozkładalność na podproblemy. Inną istotną cechą odróżniającą Go od innych gier, a upodobniającą Go do wielu innych problemów decyzyjnych, jest rozkładalność pozycji Go na wiele prawie niezależnych pod-gier. Ludzie grając w Go są w stanie wykorzystać tę cechę, oceniając wartość ruchów w każdej pod-grze niezależnie. Rozdział piąty analizuje finalną pozycję gry pomiędzy człowiekiem i komputerem jako ilustrację typowych słabości programów Go. Obecnie nie są znane algorytmy typu dziel i rządź, które można byłoby zastosować do gry w Go. Częściowo jest to spowodowane samą charakterystyką gry Go, częściowo koniecznością zintegrowania takich algorytmów z podejściem typu Monte Carlo, a częściowo faktem iż pod-gry Go są często tylko częściowo niezależne. Obecnie najlepsze algorytmy grające w Go, nie wykorzystują pod-gier i rozpatrują każdą konfigurację planszy jako niezależny punkt w globalnej przestrzeni stanów. Wynikiem tego jest kombinatoryczna eksplozja liczby stanów gry i wielkości drzewa gry. Z tego powodu wybór dobrego kolejnego ruchu na podstawie przeszukania drzewa gry jest bardzo trudny. Ten problem jest łatwo dostrzec w fakcie, że ludzie radzą sobie równie dobrze na dużej planszy 19 19, jak i na planszy małej 9 9, podczas gdy algorytmy grają dużo słabiej na dużej planszy niż na małej. Jest tak, gdyż na małej planszy niezależne pod-gry należą do rzadkości. Adaptatywne playouty. Nadzieją na pokonanie tej słabości algorytmów są tak zwane adaptatywne playouty. Jest to algorytm zbliżony ideą do podejścia dziel i rządź. Miałby on dostosowywać się podobnie jak algorytm MCTS do aktualnej pozycji. Dostosowanie powinno być lokalne zmiana pozycji w jednej części planszy nie powinna wpływać na dotychczas zebraną z playoutów wiedzę w innej, odległej pod-grze. Naturalnym podejściem do adaptatywnych playoutów jest algorytm modyfikujący wagi konfiguracji w sposób analogiczny do tego jak MCTS wykorzystuje wyniki playoutów. W prywatnej korespondencji autor ustalił że wielu badaczy próbowało zaimplementować ten algorytm i w każdym przypadku wyniki były niezadowalające. Nikt jednak nie zdołał ustalić przyczyn tej porażki. Rozdział 5.1 definiuje bardzo prostą wyidealizowaną grę składającą się z trzech niezależnych bardzo małych pod-gier. Mimo że globalna liczba stanów wynosi jedynie = 45 to ten adaptatywny algorytm nie potrafi jej rozwiązać. Rozdział 5.2 wskazuje na fundamentalny problem uniemożliwiający działanie algorytmu. Jest to drugi wynik referowanej rozprawy doktorskiej. 3
4 Model liniowy. Drugi popularnym podejściem do adaptatywnych playoutów jest przekazywanie wiedzy w poprzek drzewa pomiędzy podobnymi stanami. Jest to na ogół osiągane poprzez użycie modelu liniowego do składowania wiedzy o grze. Istnieje bardzo duża ilość badań nad połączeniem algorytmów z rodziny Monte Carlo (lub ogólniej Temporal Difference Learning) z modelem liniowym [BBK96]. Istnieją także rozbudowane badania nad zastosowaniem modelu liniowego go Go [CGJB + 08, GS07]. Referowana rozprawa argumentuje, że stosowanie model liniowego do Go jest skazane na porażkę. Rozdział 5.3 rozprawy przeprowadza eksperyment na tej samej prostej grze pokazujący, że model liniowy nie zbiega nawet na tak prostym przykładzie. Rozdział 5.4 analizuje ten wynik i wskazuje na fundamentalny problem modelu liniowego uniemożliwiający reprezentację dobrych strategii w grach składających się z pod-gier. Jest to trzeci wynik referowanej rozprawy. Dwa ostatnie wyniki oraz brak pozytywnych wyników innych badaczy wykazują trudność stworzenia poprawnego adaptatywnego lokalnego algorytmu. Algorytm oparty na teorii gier kombinatorycznych. Rozdziały 5.5 i 5.6 wprowadzają do teorii gier kombinatorycznych i termografów [BCG82] modelu, który w poprawny sposób modeluje niezależne pod-gry. Model ten jest zbyt skomplikowany by można go było bezpośrednio zastosować do podgier powstających w Go (z wyłączeniem końcówek). Rozdział 5.7 wprowadza trójkątną aproksymacje termografu, która pozwala na znaczne uproszczenie obliczeń. Trójkątna aproksymacja pozwala na stworzenie algorytmu Monte-Carlo analogicznego do MCTS, obliczającego termografy dla każdej z pod-gier. Eksperyment wykazuje bardzo szybką zbieżność i pozwala znaleźć strategie bliskie optymalnym. Trójkątna aproksymacja i korzystający z niej algorytm są czwartym wynikiem rozprawy. Libego. Ostatnim lecz nie mniej ważnym wynikiem jest biblioteka programistyczna Libego. Jest to oprogramowanie pozwalające na przeprowadzanie eksperymentów w komputerowym Go. Zostało ono opublikowane na otwartej licencji GPL i zostało użyte przez wielu niezależnych badaczy i hobbystów do przeprowadzania niezależnych badań nad algorytmami Go. Rozdział szósty opisuje funkcjonalność Libego oraz opublikowane wyniki uzyskane z pomocą Libego. 4
5 Literatura [BBK96] [BCG82] [BGB05] [CGJB + 08] [Cou07] Steven J. Bradtke, Andrew G. Barto, and Pack Kaelbling. Linear least-squares algorithms for temporal difference learning. In Machine Learning, pages 22 33, Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways, volume I and II. Academic Press, Daniel Bump, Farneback Gunnar, and Arend Bayer. GnuGo, Louis Chatriot, Sylvain Gelly, Hoock Jean-Baptiste, Julien Perez, Arpad Rimmel, and Olivier Teytaud. Combining expert, offline, transient and online knowledge in monte-carlo exploration, Rémi Coulom. Computing Elo ratings of move patterns in the game of Go. ICGA Journal, 30(4): , December [CWvdH + 07] Guillaume Chaslot, Mark Winands, Jaap H. van den Herik, Jos Uiterwijk, and Bruno Bouzy. Progressive strategies for Monte-Carlo tree search. In Joint Conference on Information Sciences, Salt Lake City 2007, Heuristic Search and Computer Game Playing Session, [dmrvp09] [GS07] [GWMT06] [Hun04] [KS06] Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and Markus Püschel. Bandit-based optimization on graphs with application to library performance tuning. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML 09, pages , New York, NY, USA, ACM. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In International Conference on Machine Learning, ICML 2007, Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification of UCT with patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France, November R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics, 32:2004, Levente Kocsis and Csaba Szepesvári. Bandit based montecarlo planning. In ECML-06,
UCT. Wybrane modyfikacje i usprawnienia
UCT Wybrane modyfikacje i usprawnienia UCT UCT Sposób wybierania kolejnego ruchu podczas symulacji (UCT): Q(s,a) średni dotychczasowy wynik pary stan-ruch N liczba wizyt w danym stanie/wykonań danej akcji
The game of NoGo. The state-of-art algorithms. Arkadiusz Nowakowski.
The game of NoGo The state-of-art algorithms Arkadiusz Nowakowski arkadiusz.nowakowski@us.edu.pl Faculty of Computer Science and Materials Science University of Silesia, Poland Sosnowiec 28.11.2016 Plan
Partition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
Jak oceniać, gdy nic nie wiemy?
Jak oceniać, gdy nic nie wiemy? Jasiek Marcinkowski II UWr 25 października 2012 Jasiek Marcinkowski (II UWr) Jak oceniać, gdy nic nie wiemy? 25 października 2012 1 / 10 Jak się gra w gry, o których dużo
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek
Zastosowanie metody UCT i drzewa strategii behawioralnej do aproksymacji stanu równowagowego Stackelberga w grach wielokrokowych
Zastosowanie metody UCT i drzewa strategii behawioralnej do aproksymacji stanu równowagowego Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział
MAGICIAN. czyli General Game Playing w praktyce. General Game Playing
MAGICIAN czyli General Game Playing w praktyce General Game Playing 1 General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI National Conference
Kurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling
Summary in Polish Fatimah Mohammed Furaiji Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling Zastosowanie symulacji wieloagentowej w modelowaniu zachowania konsumentów Streszczenie
Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5
Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie
Ocena pozycji szachowych w oparciu o wzorce
Ocena pozycji szachowych w oparciu o wzorce Stanisław Kaźmierczak s.kazmierczak@mini.pw.edu.pl 2 Agenda Motywacja Statystyki Metoda statyczna sortowania ruchów Metoda następstwa wzorców Metoda podobieństwa
Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji.
Spis Treści 1. Wprowadzenie... 2 1.1 Wstęp... 2 1.2 Cel pracy... 2 1.3 Zakres pracy... 2 1.4 Użyte technologie... 2 1.4.1 Unity 3D... 3 2. Sztuczna inteligencja w grach komputerowych... 4 2.1 Zadanie sztucznej
METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu
Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber
Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji
Algorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Architektura komputerów
Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna
Algorytmy dla gier dwuosobowych
Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI FUNKCJI OCENIAJĄCEJ W GRZE OTHELLO Tomasz Dąbrowski, Halina Kwaśnicka, Maciej Piasecki Wydziałowy Zakład Informatyki, Politechnika Wrocławska, ul. Wybrzeże
Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej
Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej mgr inż. Izabela Żółtowska Promotor: prof. dr hab. inż. Eugeniusz Toczyłowski Obrona rozprawy doktorskiej 5 grudnia 2006
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy
Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Porównanie rozwiązań równowagowych Stackelberga w grach z wynikami stosowania algorytmu UCT
Porównanie rozwiązań równowagowych Stackelberga w grach z wynikami stosowania algorytmu UCT Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI
Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w
25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I
124 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Mirosław Dąbrowski 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 6. GRY POSZUKIWANIA W OBECNOŚCI PRZECIWNIKA Gry Pokażemy, w jaki
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova
Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy
Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do
Techniki optymalizacji
Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
9. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. III
46 Mirosław Dąbrowski 9. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. III Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości podczas
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
GRA EDUKACYJNA INNA NIŻ WSZYSTKIE
GRA EDUKACYJNA INNA NIŻ WSZYSTKIE Przewodnik 5 9 Daje LAT dorosłym możliwość wspólnej zabawy z dziećmi Mnóstwo zabawy, mnóstwo nauki! Od 1967 Zawartość 4 5... Wstęp 6 7... Zasady gry 8... Grając w iknow
Aukcje groszowe. Podejście teoriogrowe
Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN
Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
AiSD zadanie trzecie
AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA
Szanowny Studencie, ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA bardzo prosimy o anonimową ocenę osiągnięcia kierunkowych efektów kształcenia w trakcie Twoich studiów. Twój głos pozwoli
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Listy z przeskokami jako drzewa wyszukiwań
Dariusz 16.10.2008 Wyszukiwanie Szczególne przypadki Lista z przeskokami. B 5 E B 1 3 4 5 6 9 E B 1 2 3 4 5 6 7 8 9 E Wyszukiwanie Szczególne przypadki Wyszukujemy 8. B 5 E B 1 3 4 5 6 9 E B 1 2 3 4 5
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
PROGRAM KSZTAŁCENIA DLA STUDIÓW PODYPLOMOWYCH: ZINTEGROWANE NAUCZANIE PRZEDMIOTOWO-JĘZYKOWE (JĘZYK ANGIELSKI)
PROGRAM KSZTAŁCENIA DLA STUDIÓW PODYPLOMOWYCH: ZINTEGROWANE NAUCZANIE PRZEDMIOTOWO-JĘZYKOWE (JĘZYK ANGIELSKI) Efekty kształcenia dla studiów podyplomowych: Po ukończeniu studiów ich absolwent: 1. swobodnie
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013 Problem decyzyjny Markova
Kognitywne podejście do gry w szachy kontynuacja prac
Kognitywne podejście do gry w szachy kontynuacja prac Stanisław Kaźmierczak Opiekun naukowy: prof. dr hab. Jacek Mańdziuk 2 Agenda Motywacja Kilka badań Faza nauki Wzorce Generowanie ruchów Przykłady Pomysły
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
CogGGP - kognitywnie inspirowany agent GGP - opis architektury
CogGGP - kognitywnie inspirowany agent GGP - opis architektury C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych C. Dendek, prof nzw. dr hab. J.
INNOWACJA PEDAGOGICZNA Małymi krokami w świat programowania dla klas I pierwsze półrocze roku szkolnego 2018/2019. Opracowała: Małgorzata Pietruch
INNOWACJA PEDAGOGICZNA Małymi krokami w świat programowania dla klas I pierwsze półrocze roku szkolnego 2018/2019 Opracowała: Małgorzata Pietruch W roku szkolnym 2018/2019 w klasach Ia, Ib i Ic szkoły
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Raport oceny kompetencji
Symulacje oceniające kompetencje Raport oceny kompetencji Rut Paweł 08-01-2015 Kompetencje sprzedażowe dla efactor Sp. z o.o. Dane osobowe Rut Paweł CEO pawel.rut@efactor.pl more-than-manager.com 2 z 13
Badania w sieciach złożonych
Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar
BIOINFORMATYKA. Copyright 2011, Joanna Szyda
BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach
(4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226 (4g) gry optymalne decyzje w grach algorytm
Opinia o pracy doktorskiej pt. On active disturbance rejection in robotic motion control autorstwa mgr inż. Rafała Madońskiego
Prof. dr hab. inż. Tadeusz Uhl Katedra Robotyki i Mechatroniki Akademia Górniczo Hutnicza Al. Mickiewicza 30 30-059 Kraków Kraków 09.06.2016 Opinia o pracy doktorskiej pt. On active disturbance rejection
Uczenie maszynowe end-to-end na przykładzie programu DeepChess. Stanisław Kaźmierczak
Uczenie maszynowe end-to-end na przykładzie programu DeepChess Stanisław Kaźmierczak 2 Agenda Wprowadzenie Dane treningowe Trening i struktura sieci Redukcja rozmiaru sieci Zmodyfikowane alfa beta Wyniki
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów