WIELKOŚCI ODWROTNIE PROPORCJONALNE
|
|
- Emilia Czajkowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 222 Proporcjonalność SPRAWDŹ, CZY UMIESZ 4 1. Z równania x 3 = 6 2x A. 4(x 3)=6 2x B. 6 4=(x 3) 2x wynika, że: C. 8x =6x 18 D. 8x =6x 3 2. Taką samą ilością karmy, jaką zjada 8 kaczek, można nakarmić 20 kur. Ilość karmy, jaką zjada 12 kaczek, wystarczy dla: A. 24 kur B. 30 kur C. 36 kur D. 40 kur 3. Pchła, która ma wysokość 1 mm, potrafi skoczyć na wysokość 13 cm. Na jaką wysokość mógłby skoczyć człowiek o wzroście 1,7 m,gdyby był tak skoczny jak pchła? A. 221 m B. 22,1 m C. 221 cm D m ZADANIA UZUPEŁNIAJĄCE 1 10 str WIELKOŚCI ODWROTNIE PROPORCJONALNE Główna wygrana w totolotku jest dzielona między tych, którzy odgadną sześć wylosowanych liczb. Załóżmy, że główna wygrana w najbliższym losowaniu wyniesie 120 tys. zł. Jeśli szóstkę trafią 2 osoby, to każda z nich wygra 60 tys. zł. Jeśli szóstkę trafi 8 osób, czyli 4 razy więcej, to każda osoba wygra 15 tys. zł, czyli 4 razy mniej.
2 Wielkości odwrotnie proporcjonalne 223 Gdy wraz ze wzrostem jednej wielkości druga wielkość maleje tyle samo razy, to mówimy, że wielkości te są odwrotnie proporcjonalne. Wielkościami odwrotnie proporcjonalnymi są więc liczba osób, które trafiły szóstkę, i przypadająca na każdą z nich wygrana, a także: pojemność jednego słoika i liczba słoików, do których mamy rozlać daną ilość miodu, liczba osób na przyjęciu i wielkość kawałka tortu, przypadająca na każdą z nich, liczba jednakowych części, na które dzielimy sznurek, i długość jednej części, cena benzyny i ilość benzyny, jaką możemy kupić za daną kwotę, średnia prędkość pojazdu i czas potrzebny na przejechanie danej odległości. Wyobraźmy sobie, że mamy rozlać 4,5 litramiodudojednakowych słoików. Tabelka przedstawia zależność między liczbą potrzebnych słoików a ich pojemnością: Pojemność słoika (w litrach) Liczba potrzebnych słoików 0,1 0,15 0,25 0,3 0,9 1, Gdybyśmy pomnożyli pojemność słoika przez odpowiadającą jej liczbę słoików, to w każdym przypadku otrzymalibyśmy taki sam wynik. Dla zaznaczonych w tabeli liczb otrzymujemy równość: 0,15 30 = 0,9 5 Wobec tego zachodzą następujące proporcje: 0,15 = 0, ,9 = 0,15 Porównaj te równości z równościami przedstawionymi na stronie 219. Zadania tekstowe, w których występują wielkości odwrotnie proporcjonalne, możemy rozwiązywać, układając odpowiednią proporcję (jak w pierwszym przykładzie na następnej stronie) lub porównując odpowiednie iloczyny (jak w kolejnym przykładzie).
3 224 Proporcjonalność PRZYKŁAD Kierownik schroniska obliczył, że jeśli schronisko odwiedzać będzie 250 turystów dziennie, to zapasów żywności wystarczy na 30 dni. Na ile dni wystarczyłoby tych zapasów, gdyby schronisko odwiedzało dziennie 300 turystów? liczba osób liczba dni x = x x = x =25 strzałki wskazują kierunek od liczby mniejszej do większej układamy proporcję zgodnie z kierunkami strzałek rozwiązujemy równanie Odp. Zapasów wystarczy na 25 dni. PRZYKŁAD Agata pocięła wstążkę na 5 jednakowych części. Gdyby podzieliła tę samą wstążkę na 8 części, to każda część byłaby o 6 centymetrów krótsza. Jaką długość miała wstążka, zanim Agata ją pocięła? Podział na 5 części: x długość jednego kawałka 5x długość wstążki Podział na 8 części: x 6 długość jednego kawałka 8(x 6) długośćwstążki 5x =8(x 6) 5x =8x 48 3x = 48 x =16 iloczyny 5x i 8(x 6)są równe, gdyż przedstawiają długość tej samej wstążki rozwiązujemy równanie 5 16 = 80 obliczamy długość wstążki Odp. Wstążka ma 80 cm długości.
4 Wielkości odwrotnie proporcjonalne 225 ZADANIA ZESZYT ĆWICZEŃ str Dawno, dawno temu w pewnym klasztorze dziesięciu mnichów w ciągu 300 dni przepisało całą Biblię. W klasztorze było jeszcze kilku zakonników, równie sprawnych w pisaniu. Ilu mnichów powinien był zaangażować opat zlecający tę pracę, aby przepisywanie trwało o 50 dni krócej? U prząśniczki siedzą jak anioł dzieweczki, Przędą sobie, przędą jedwabne niteczki. 2. Dzieweczki przędły niteczki. Po wykonaniu całej pracy każda dzieweczka otrzymała 12 talarów zapłaty. Gdyby dzieweczek było o 4 mniej, to każda otrzymałaby 3 razy większą zapłatę. Ile dzieweczek przędło niteczki? fragment pieśni Stanisława Moniuszki, słowa napisał Jan Czeczot. 3. Samochód ciężarowy przywiózł na budowę zapas piasku, wykonując 12 kursów. Inny samochód, o ładowności o 2 tony większej, przewiózł taki sam zapas piasku, wykonując o 3 kursy mniej. Jaką ładowność ma każdy z tych samochodów? 4. Osiemnastu niziołków długi rów kopało, Wtem jeden z nich zakrzyknął: Jest nas tu za mało! Jeszcze 20 godzin w tym rowie spędzimy, Wezwijmy jeszcze kilku, czas nieco skrócimy. I tak właśnie zrobili, ciężko pracowali, A po ośmiu godzinach ten rów wykopali. Ilu niziołków pomogło swoim kolegom? 5. Książki Hanki stoją na pięciu półkach, przy czym na każdej półce jest ich tyle samo. Gdyby na każdej półce było o 6 książek więcej, to wszystkie zajęłyby tylko 3 półki. Ile książek ma Hanka?
5 226 Proporcjonalność Mógłbyś się huśtać ze słoniem! Wystarczy tylko, by punkt podparcia huśtawki znajdował się znacznie bliżej słonia niż ciebie. Regułę pozwalającą obliczyć, w którym miejscu należy ustawić punkt podparcia, odkrył grecki matematyk Archimedes (ok r. p.n.e.). Reguła ta, zwana zasadą dźwigni, głosi, że jeśli na huśtawce (dźwigni) umieścimy dwa przedmioty tak, że są one w równowadze, to ciężary tych przedmiotów są odwrotnie proporcjonalne do ich odległości od punktu podparcia. Zasadę dźwigni można opisać równaniem: Q 1 Q 2 = d 2 d 1 Po jej odkryciu Archimedes miał powiedzieć: Dajcie mi punkt podparcia, a poruszę Ziemię. 6. Przeczytaj informacje w ramce i popatrz na rysunek. Przyjmij, że słoń waży 5 t, a człowiek 50 kg. Oblicz, jak daleko od punktu podparcia huśtawki musiałby usiąść człowiek, by mógł się huśtać ze słoniem. 7. Przeczytaj tekst w ramce, przyjrzyj sie rysunkom i oblicz x, y i z. 8. Asia wymyśliła sposób, jak wykorzystując zasadę dźwigni można oszacować, ile waży jej temperówka. Położyła temperówkę oraz gumę do żucia na końcach linijki o długości 30 cm. Linijkę położyła na brzegu stołu i delikatnie ją przesuwała. Gdy linijka wystawała 18 cm poza brzeg stołu, przechyliła się i temperówka spadła. Guma do żucia ważyła 14 g. Oblicz, ile mniej więcej ważyła temperówka. 9. Pan Zenek, kierowca ciężarówki, jedzie zwykle od granicy do domu ze średnią prędkością 60 km/h. Zajmuje mu to 4 godziny i 15 minut. Dzisiaj chciałby skrócić czas przejazdu o pół godziny. Z jaką przeciętną prędkością powinien jechać?
6 Wielkości odwrotnie proporcjonalne Reporter przeprowadził wywiad z dyrektorem firmy Siup, produkującejnapójotejsamej nazwie. Słyszałem, że Siup będzie sprzedawany w większych butelkach. Tak.DotejporySiup rozlewaliśmy do butelek o pojemności 0,25 l, a od przyszłego miesiąca będziemy go rozlewać do większych butelek opojemności0,33 l. Jak to wpłynie na liczbę butelek? Będziemy rozlewać tyle samo napoju, a liczba butelek zmieni się o 1200 sztuk dziennie. A jaka jest teraz wasza dzienna produkcja? Tego nie mogę powiedzieć, to tajemnica firmy. Odkryj tajemnicę firmy, tzn. oblicz, ile butelek dziennie produkuje teraz firma Siup. SPRAWDŹ, CZY UMIESZ 1. Pani Zosia przechowywała sok w kilku pełnych butelkach półtoralitrowych.postanowiłajednakprzelaćgodobutelekopojemności0,3 l. Pani Zosia będzie teraz miała: A. o pięć butelek więcej, B. o pięć butelek mniej, C. pięć razy mniej butelek, D. pięć razy więcej butelek. 2. Zając, który biega 1,5 raza szybciej niż wilk, przebiega całą polanę w 12 sekund. Wilk przebiega tę polanę: A. w 18 sekund B. w 8 sekund C. w 13,5 sekundy D. w 10,5 sekundy 3. Dla uczestników rajdu przygotowano kocioł grochówki, przewidując dla każdego uczestnika po 250 ml zupy. Zamiast 40 uczestników w rajdzie wzięło udział 50 osób. Teraz na każdego uczestnika przypada: A. po 20 ml grochówki B. po 200 ml grochówki C. po 80 ml grochówki D. po 312,5 ml grochówki ZADANIA UZUPEŁNIAJĄCE str. 229 Dokument pochodzi ze strony
Temat: Proporcje. Wielkości wprost i odwrotnie proporcjonalne.
Spotkanie 15 Temat: Proporcje. Wielkości wprost i odwrotnie proporcjonalne. Plan zajęć 1. Co to jest proporcja? Jak zapisujemy proporcję? Z czym kojarzy się nam słowo proporcja z proporcem. Wyobraźmy sobie,
Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2.
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE I GIMNAZJUM Temat: Wielkości odwrotnie proporcjonalne. Cele ogólne: -Rozwijanie umiejętności logicznego myślenia, współpracy i współodpowiedzialności. Cele operacyjne:
Skrypt 8. Równania. Opracowanie: GIM6. 1. Stosunek dwóch i kilku wielkości (cz. 1) 2. Stosunek dwóch i kilku wielkości (cz. 2)
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 8 Równania 1. Stosunek dwóch i kilku wielkości
WIELKOŚ CI WPROŚT PROPORCJONALNE I ODWROTNIE PROPORCJONALNE
WIELKOŚ CI WPROŚT PROPORCJONALNE I ODWROTNIE PROPORCJONALNE Równośd dwóch ilorazów nazywamy proporcją. Jeżeli wraz ze wzrostem jednej wielkości druga wielkośd rośnie tyle samo razy, to mówimy, że wielkości
Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?
pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?
XXII MINIKONKURS MATEMATYCZNY
KOD UCZNIA XXII MINIKONKURS MATEMATYCZNY DLA UCZNIÓW KLAS 4 etap szkolny 1. Liczba o dwa większa od liczby dwa razy większej od 6724 to: A. 6 728 B. 2 688 C. 13 42 D. 13 40 2. Do stołówki przyszła grupa
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI
Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 SUMA PUNKTÓW Max
5V2y_okl_2013 15 maja 2013 09:07:33
5V2y_okl_2013 15 maja 2013 09:07:33 Spis treści 0,5 UŁAMKI DZIESIĘTNE Zapisywanie ułamków dziesiętnych... 3 Porównywanie ułamków dziesiętnych... 7 Różne sposoby zapisywaniadługościimasy... 9 Dodawanie
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap szkolny 4 listopada 2014 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1. Sprawdź, czy arkusz zawiera
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
miesiące. Postanowił resztę puszek sprzedawać po cenie promocyjnej. Jaka powinna być nowa cena, by sprzedawca odzyskał zainwestowane pieniądze?
miesiące. Postanowił resztę puszek sprzedawać po cenie promocyjnej. Jaka powinna być nowa cena, by sprzedawca odzyskał zainwestowane pieniądze? Zadanie 3.3. Sklepowa cena pewnej lodówki wynosi 9 zł. Sprzedawca
NACIONALINIS EGZAMINŲ CENTRAS
2017 NACIONALINIS EGZAMINŲ CENTRAS Imię, Nazwisko Klasa Kod ucznia 4 MATEMATYKA 4KLASA 4. 1 Zapisz słowami liczbę 1 6. 2 Otocz kółkiem wszystkie liczby, które są dzielnikami liczby 18. 1 3 5 7 9 2 4 6
Zadanie 4. W akwarium, w kształcie naczynia prostopadłościennego, znajdowało się 50 litrów wody. Akwarium nie było pełne.
Zadanie. Prostokąt podzielono na 4 mniejsze prostokąty, jak pokazano na rysunku. Znane są pola trzech składowych prostokątów. Wartości pól są podane na rysunku (liczby umieszczone na odpowiadających prostokątach).
Test z matematyki. Małe Olimpiady przedmiotowe
Małe Olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie
Zadania dla klasy V. Zad 2. Oblicz sumę trzech liczb, z których pierwsza jest równa. mniejsza od drugiej liczby. kg jabłek i 7 ważyły zakupy mamy?
Zadania dla klasy V Zad. Zosia postanowiła przeczytać książkę w czasie trzech dni. Pierwszego dnia przeczytała książki, drugiego dnia 8, a trzeciego dnia 7 tej książki. Sprawdź, czy Zosia 24 przeczytała
15 w 13 mieści się 0 razy. Przecinek wstawiamy nad przecinkiem. Nie ma już cyfr w dzielnej? 27,6 = 27,60, więc możemy wpisać zero.
Wspólna praca, jeden wynik strona 6 Przykłady poziom A 8 4 6 5 2 2 9 6 5 5 4 8 7 2 7 2 : czyli: 52 : 2 = 846 poziom B 2 9 3 3 5 5 3 3 5 3 5 5 w 3 mieści się razy : czyli: 335 : 5 = 29 poziom C 4, 3 3,
Prędkość, droga i czas w matematyce
Prędkość, droga i czas w matematyce Często uczniowie dostają gęsiej skórki po usłyszeniu treści zadania typu : Z miejscowości A do miejscowości B wyjechał pociąg...itd. Z góry skazują rozwiązanie takiego
Spis treści 1. LICZBY I DZIAŁANIA
Spis treści 1. LICZBY I DZIAŁANIA 1. Liczby............................................................... 5 68 2. Rozwinięcia dziesiętne liczb wymiernych........................... 7 70 3. Zaokrąglanie
Matematyka podstawowa I. Liczby rzeczywiste, zbiory
Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz
P o w o d z e n i a!
Powiatowy Konkurs Matematyczny dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 14 zadań masz 75 minut.
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1.
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1. I. Ustalenie sposobu obliczenia pola prostokąta Uczeń zapisuje odpowiednie działania lub zapisuje wzór na pole prostokąta.
KONSPEKT LEKCJI MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ
Opracowała: Lidia Kalinowska KONSPEKT LEKCJI MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ Temat: Matematyczne Bingo, czyli sposób na powtórzenie działań pamięciowych na liczbach naturalnych. Cele lekcji:
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
Odp... Zadanie 2. Jeżeli 30 jajek pakuje się do 5 opakowań, to ile opakowań potrzeba, aby zapakować 48 jajek? Ile, aby zapakować 51jajek?
Witamy Cię w pierwszej serii zadań turnieju matematycznego dla wytrwałych,,pasjonat matematyki Przed Tobą 30 zadań. Zadania są numerowane, ale możesz je liczyć w dowolnej kolejności. W każdym zadaniu dysponujesz
PANGEA KONKURS MATEMATYCZNY
~ 1 ~ SP-4 PANGEA KONKURS MATEMATYCZNY Piątek, 28 marca 2014 Czas pracy: 90 minut Maksymalna liczba punktów do uzyskania: 120 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.
Środki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce.
Scenariusz lekcji I. Cele lekcji ) Wiadomości Uczeń zna: a) algorytm mnożenia ułamków zwykłych i liczb mieszanych przez liczby naturalne, b) sposób obliczania ułamka z liczby, c) algorytm mnożenia liczb
WYRAŻENIA ALGEBRAICZNE, RÓWNANIA, UKŁADY RÓWNAŃ. Zadanie 1. Wyrażenie algebraiczne 4ab-ab+2a+a można zapisać w postaci: C. s = v t C.
WYRAŻENIA ALGEBRAICZNE, RÓWNANIA, UKŁADY RÓWNAŃ ZADANIA ZAMKNIĘTE W zadaniach 1-6 wskaż jedną poprawną odpowiedź. Zadanie 1. Wyrażenie algebraiczne 4ab-ab+2a+a można zapisać w postaci: A. 4-a B. 4+a C.
ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)
FUNKCJE LINIOWE SCENARIUSZE LEKCJI OPRACOWAŁA EWA SKOROCH
FUNKCJE LINIOWE SCENARIUSZE LEKCJI OPRACOWAŁA EWA SKOROCH Iława 2006 Wstęp Opracowanie jest zbiorem sześciu scenariuszy lekcji z zakresu funkcji opartych na programie Matematyka z plusem. Służą one jako
Arkusz Urodziny Zosi
Arkusz Urodziny Zosi Informacje do zadań 1 2 Zosia obchodzi swoje imieniny 15 maja, natomiast urodziny ma 23 dni wcześniej. Zadanie 1. (1 pkt) Korzystając z powyższych informacji wskaż datę urodzin Zosi.
EGZAMIN WSTĘPNY Z MATEMATYKI
EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin z matematyki, który składa się z dwóch części. Osoby, które chcą się dostać do klasy matematycznej muszą napisać obie części poniższego egzaminu
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera
K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.
3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku
3.4. FUNKCJA LINIOWA ZADANIA TEKSTOWE. Sześć lat temu ojciec był 6 razy starszy od syna.
.4. FUNKCJA LINIOWA ZADANIA TEKSTOWE Przykład.4..Ojciec i syn mają razem 47 lat. Sześć lat temu ojciec był 6 razy starszy od syna. Ile lat ma obecnie kaŝdy z nich? x wiek ojca y wiek syna x Układamy pierwsze
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
3. Wpisz brakujące liczby: a) Wstążkę o długości 7,5 m przecięto na 5 równych części. Każda część ma długość...
Zestaw zadań...... imię i nazwisko lp. w dzienniku str. 1/3 grupa A...... klasa data 1. Podkreśl ilorazy równe 0,7. 2,8 : 4 7,7 : 11 0,42 : 6 0,98 : 14 2. Oblicz średnią arytmetyczną liczb 5,5; 3,4 i 7,9.
ZADANIA DO ROZWIĄZANIA. MAJ 2016 r.
MAJ 2016 r. 1. W turnieju szachowym, rozgrywanym w systemie każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. O ile zmniejszyła się liczba zaplanowanych rozgrywek?
UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ
TEST SPRAWDZAJĄCY UMIEJĘTNOŚCI Z MATEMATYKI W KLASIE V UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ program nauczania - Od Pitagorasa do Euklidesa test: sprawdzający nieformalny
Wymagania programowe w porządku związanym z realizacją programu
Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.
XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW
XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWO WIELKOPOLSKIE Etap rejonowy rok szkolny 011/01 wylosowany numer uczestnika konkursu Dane dotyczące ucznia: (wypełnia Komisja Konkursowa
Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów. rysowanie i analizowanie wykresów zależności funkcyjnych.
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów Cel ogólny : rysowanie i analizowanie wykresów zależności funkcyjnych.
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
ZESTAW EGZAMINACYJNY NR 1.
ZESTAW EGZAMINACYJNY NR 1. 1. (0-1p.) Ze zbiornika I, w którym znajdowało się 100 litrów wody, przelewano wodę do zbiornika II. Na wykresie przedstawiono, jak zmieniała się objętość wody w zbiorniku II
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2017 Czas 90 minut
kod Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2017 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3
zestaw nr 4 dla klasy 3 Muchy mają po 6 nóg. Ile par butów potrzebuje rodzina much złożona z mamy, taty i dziecka? Jeśli teraz wskazówka minutowa zegarka jest na czwórce, to za ile minut będzie na ósemce?
EGZAMIN Z MATEMATYKI
Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Gimnazjum nr 20 NUMER Dysleksja A GRUPA EGZAMIN Z MATEMATYKI Witaj na egzaminie do naszego gimnazjum.
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną
Określ zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
ROZWIĄZUJEMY ZADANIA Z FIZYKI
ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,
Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I
Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja
KONKURS MATEMATYCZNY dla uczniów klas trzecich
Tu wpisz swoje imię i nazwisko oraz nr szkoły, w której się uczysz KONKURS MATEMATYCZNY dla uczniów klas trzecich Drogi Trzecioklasisto! Masz do rozwiązania 13 zadań. W pierwszych siedmiu zaznacz jedną
Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli
Zestaw 6 funkcje Zad. 1 Zad.2 Funkcja określona jest przy pomocy tabeli 5 10 15 20 25 3 2 17 10-8 a) Określ dziedzinę i wypisz wartości tej funkcji. b) Jaka jest największa wartość tej funkcji? c) Dla
. c) do jej wykresu należą punkty A ( 3,2 3 3) oraz
Funkcja liniowa powtórzenie wiadomości Napisz wzór funkcji liniowej wiedząc, że: a) miejscem zerowym funkcji jest liczba oraz f()=, b) miejscem zerowym funkcji jest liczba i i wykres funkcji przecina oś
Informacja dla ucznia
Informacja dla ucznia rogi czwartoklasisto! rosimy cię o rozwiązanie zestawu zadań obejmującego działania na liczbach naturalnych. Nie jest to klasówka z matematyki, tylko sprawdzian, jak potrafisz wykorzystać
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania
SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska
Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
Matematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca
ZADANIA DO ROZWIĄZANIA. KWIECIEŃ 2016 r.
KWIECIEŃ 2016 r. 1. W pewnej szkole 40 uczniów to członkowie SKS-u. Wśród nich 26 gra w siatkówkę, 25 pływa, a 27 jeździ na nartach. Jednocześnie pływa i gra w siatkówkę 15 uczniów, gra w siatkówkę i jeździ
Małe olimpiady przedmiotowe
Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie
Liczby i działania str. 1/6
Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.
REGULAMIN SZKOLNEGO KONKURSU MATEMATYCZNEGO DLA KLASY TRZECIEJ
REGULAMIN SZKOLNEGO KONKURSU MATEMATYCZNEGO DLA KLASY TRZECIEJ Szkolny konkurs matematyczny zostaje ogłoszony wcześniej na apelu szkolnym. Organizator wywiesza również informację na tablicy ogłoszeń o
TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO
Semestr 3A, 3B, 3C TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO PRZYKŁAD 1 Temperaturę w stopniach Celsjusza x przelicza się na stopnie y w skali Fahrenheita według wzoru: y = 5
POMIAR DYDAKTYCZNY Z MATEMATYKI
POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE:
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.
Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających
Obliczanie jakim procentem jednej liczby jest druga liczba
Obliczanie jakim procentem jednej liczby jest druga liczba Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach,
Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy
Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawne dokończenie zdania. Drugą potęgą liczby jest A. B. C. D. 2. Zamień podany
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Trzej robotnicy pracujacy dziennie
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn
Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.
pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek?
ZADANIA 1 ZADANIE 1 Obwód czworokata wypukłego ABCD jest równy 50 cm. Obwód trójkata ABD jest równy 46 cm, a obwód trójkata BCD jest równy 36 cm. Oblicz długość przekatnej BD. ZADANIE 2 Huta szkła produkuje
EDUWAŻKA - sposób na pokazanie dzieciom jak matematyka opisuje zjawiska i prawa przyrody. Edutronika Sp. z o.o.
EDUWAŻKA - sposób na pokazanie dzieciom jak matematyka opisuje zjawiska i prawa przyrody. Edutronika Sp. z o.o. EDUWAŻKA wskazówki edukacyjne EDUWAŻKA to plastikowa waga w postaci symetrycznej listwy o
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA I - SZKOLNY 14 listopada 2017 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje
TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V
TEST MTEMTYZNY L UZNIÓW KLS IV - V Zadanie. daś waży 47,09 kg, a Monika 47, kg. Kto ważywięcejioile? Monika o 0,009 kg daś o 0,00 kg Monika o 0,00 kg daś o 0,009 kg Zadanie. Gdyby ciasto francuskie wysokości
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM
WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba
- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;
Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze
TRENING PRZED EGZAMINEM GIMNAZJALNYM Z MATEMATYKI
TRENING PRZED EGZAMINEM GIMNAZJALNYM Z MATEMATYKI Test przeznaczony jest dla uczniów przygotowujących się do egzaminu gimnazjalnego. Zawiera on 5 zadań zamkniętych punktowanych w skali 0-1 oraz 5 zadań