Sieci Bayesowskie. Agnieszka Nowak Brzezińska
|
|
- Martyna Marciniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Sieci Bayesowskie Agnieszka Nowak Brzezińska
2 Riodzaje niepewności Niepewność stochastyczna np. nieszczęśliwy wypadek, ryzyko ubezpieczenia, wygrana w lotto (metody rachunku prawdopodobieństwa Niepewność wynikająca z niedokładności pomiarowej np. temp, czasu, wymiarów obiektu (metody statystyki Niepewność informacyjna (np. wiarygodny kredytobiorca, wiarygodność informacji (data mining, szukanie prawidłowości Niepewność lingwistyczna wysoko, mało, zimno, szybko (zbiory rozmyte, zbiory przybliżone
3 Definicja sieci Bayesowskiej Sied bayesowska to acykliczny (nie zawierający cykli graf skierowany, w którym: węzły reprezentują zmienne losowe (np. temperaturę jakiegoś źródła, stan pacjenta, cechę obiektu itp. łuki (skierowane reprezentują zależnośd typu zmienna X ma bezpośredni wpływ na zmienna Y, każdy węzeł X ma stowarzyszona z nim tablice prawdopodobieostw warunkowych określających wpływ wywierany na X przez jego poprzedników (rodziców w grafie, Zmienne reprezentowane przez węzły przyjmują wartości dyskretne (np.: TAK, NIE.
4 Konstruowanie sieci bayesowskiej zdefiniowanie zmiennych, zdefiniowanie połączeń pomiędzy zmiennymi, określenie prawdopodobieństw warunkowych i a priori (łac. z założenia wprowadzenie danych do sieci, uaktualnienie sieci, wyznaczenie prawdopodobieństw a posteriori ( łac. z następstwa
5 Bayesian networks Sieci Bayesowskie (belief networks, Bayesian belief networks nazywane są czasami tzw. sieciami przekonaniowymi lub przyczynowymi. Bayesowskie dlatego, że bazują na podstawach teorii decyzji i teorii prawdopodobieostwa Twierdzenie bayesa wyraża obliczenie konieczne do wykonania w celu przekonania się o prawdziwości wcześniejszych przekonao w świetle nowych dowodów: P( A, B P( B A P( A B * P( A P( B P( B
6 P( A, B P( B A P( A B * P( A P( B P( B Wyrażenie P(A B oznacza prawdopodobieostwo wystąpienia zdarzenia A zależnego od zdarzenia B a więc A jest prawdziwe, jeśli B miało miejsce. Dwie wartości są istotne: 1. Iloraz prawdopodobieostw P(B A/P(B które mówi jak ważne pod względem informacyjnym jest zdarzenie B w odniesieniu do zdarzenia A, 2. Prawdopodobieostwo zdarzenia A (P(A wyliczone jeszcze przed zajściem zdarzenia B.
7 Twierdzenie Bayesa dla prostych zdarzeo Jeśli A i B są prostymi zdarzeniami w przestrzeni prób, to prawdopodobieostwo warunkowe P(A/B będzie określone jako: P( A B P( A B P( B liczba wyników liczba zarówno wyników w w A jak B Również P(B/A = P(AB/P(A. Przekształcając ten wzór, otrzymujemy wzór na przecięcie zdarzeo P(AB = P(B/AP(A i po podstawieniu mamy: P( B / A P( A P( A B P( B Co jest tezą twierdzenia Bayesa dla prostych zdarzeo. i B
8 Sied bayesowska koduje informacje o określonej dziedzinie za pomocą wykresu, którego wierzchołki wyrażają zmienne losowe, a krawędzie obrazują probabilistyczne zależności między nimi.
9 Węzeł A jest rodzicem lub poprzednikiem wierzchołka X, a wierzchołek X jest potomkiem lub następnikiem węzła A, jeżeli istnieje bezpośrednia krawędź z wierzchołka A do X. p( X m 1 x1, X 2 x2,..., X m xm p( X i xi rodzice( X i i1 A więc prawdopodobieostwo pojawienia się wierzchołka potomnego zależy tylko od jego rodziców!
10 Sieć Bayesowska - graf A pogoda (słonecznie/pochmurno/deszczowo/wietrznie B czas wolny (tak/nie X humor (bardzo dobry/dobry/nietęgi C zajęcie na zewnątrz (spacer/basen/rower D zajęcie w domu(komputer/książka/gotowanie A X B C D
11 If A=a1 and B=b1 then X=x1 with 30% If A=a1 and B=b1 then X=x2 with 30% If A=a1 and B=b1 then X=x2 with 40% If A=a1 and B=b2 then X=x1 with 20% If A=a1 and B=b2 then X=x2 with 40% If A=a1 and B=b2 then X=x2 with 40% If A=a2 and B=b1 then X=x1 with 10% If A=a2 and B=b1 then X=x2 with 30% If A=a2 and B=b1 then X=x2 with 60% If A=a2 and B=b2 then X=x1 with 5% If A=a2 and B=b2 then X=x2 with 35% If A=a2 and B=b2 then X=x2 with 60% If A=a3 and B=b1 then X=x1 with 40% If A=a3 and B=b1 then X=x2 with 40% If A=a3 and B=b1 then X=x2 with 20% P(X A,B x1 x2 x3 a1b a1b a2b a2b a3b a3b a4b a4b If A=a3 and B=b2 then X=x1 with 20% If A=a3 and B=b2 then X=x2 with 50% If A=a3 and B=b2 then X=x2 with 30% If A=a4 and B=b1 then X=x1 with 60% If A=a4 and B=b1 then X=x2 with 35% If A=a4 and B=b1 then X=x2 with 5% If A=a4 and B=b2 then X=x1 with 30% If A=a4 and B=b2 then X=x2 with 40% If A=a4 and B=b2 then X=x2 with 30%
12 A a a a a P(X A,B x1 x2 x3 a1b a1b a2b a2b a3b a3b a4b a4b B b1 0.4 b2 0.6 P(C X c1 c2 c3 X X X P(DX d1 d2 d3 X X X
13 A a a a a B b1 0.4 b2 0.6 P(X A,B X1 x2 x3 a1b a1b a2b a2b a3b a3b a4b a4b P(C X c1 c2 c3 X X X P(DX d1 d2 d3 X X X *0.4*0.05*0.5*0.4 ( ( ( ( (,,,, ( ( ( ( ( (,,,, ( x X d D p x X c C p b B a A x X p b B p a A p x X d D c C b B a A p x X d D p x X c C p b B a A x X p b B p a A p x X d D c C b B a A p
14 A a a a a P(X A,B X1 x2 x3 a1b a1b a2b a2b a3b a3b a4b a4b B b1 0.4 b2 0.6 p( X x1 A a1 B b1 * p( A a1* p( B b1 0.3*(0.25* *
15 A a a a a B b1 0.4 b2 0.6 P(C X c1 c2 c3 X X X P(DX d1 d2 d3 X X X * * * * * * * *0.1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p b B a A p b B a A x X p x X p P(X A,B X1 x2 x3 a1b a1b a2b a2b a3b a3b a4b a4b
16 Przykład wnioskowanie w sytuacji niepewności Jakie są szanse zdania ustnego egzaminu u prof. X, który jest kibicem Wisły i nie lubi deszczu? Wynik egzaminu zależy od: dobrego przygotowania studenta dobrego humor egzaminatora awansu Wisły do Ligi Mistrzów Deszczu by nie padał!!!
17 Jak prawdopodobne jest zdanie egzaminu gdy humor egzaminatora i przygotowanie studenta jest pewne w skali pół na pół?
18 Jak prawdopodobne jest zdanie egzaminu gdy humor egzaminatora i przygotowanie studenta jest pewne przynajmniej w 70 %?
19 Jak prawdopodobne jest zdanie egzaminu gdy humor egzaminatora jest dobry ale przygotowanie studenta niestety fatalne!?
20 Zastosowanie Sieci Bayesowskich Sieci te mają wiele zastosowao m.in. w Sztucznej inteligencji, medycynie (w diagnozowaniu, w genetyce, statystyce, w ekonomii. O popularności SB zadecydowało to, że są dla nich wydajne metody wnioskowania. Możliwe jest proste wnioskowanie o zależności względnej i bezwzględnej badanych atrybutów. Niezależnośd może tak zmodularyzowad naszą wiedzę, że wystarczy zbadanie tylko części informacji istotnej dla danego zapytania, zamiast potrzeby eksploracji całej wiedzy. Sieci Bayesowskie mogą byd ponadto rekonstruowane, nawet jeśli tylko częśd właściwości warunkowej niezależności zmiennych jest znana. Inną cechą SB jest to, że taką sied można utworzyd mając niepełne dane na temat zależności warunkowej atrybutów.
21 Definicja SB Sięcią Bayesowską (Jensen, 1996 nazywamy parę (D,P, gdzie D jest skierowanym grafem acyklicznym (directed acyclic graph DAG a P- rozkładem prawdopodobieostwa. Każdy wierzchołek w sieci przechowuje rozkład P(X i (i gdzie X (i jest zbiorem wierzchołków odpowiadających (i poprzednikom (rodzicom wierzchołka (i.
22 Rozkład prawdopodobieostw w SB Rozkład prawdopodobieostw zapisuje się jako: P( x n,..., x P( x X 1 n i ( i i1 W grafie wierzchołki są etykietowane nazwami atrybutów. Przy każdym wierzchołku występuje tabela prawdopodobieostw warunkowych pomiędzy danym wierzchołkiem i jego rodzicami.
23 Rodzaje wnioskowań w SB: O wiarygodności poszczególnych hipotez dla zdanych obserwacji Poszukiwanie uzasadnienia dla zadanej hipotezy i obserwacji Znalezienie prawdodobieostwa prawdziwości wyrażenia logicznego przedstawionego w postaci koniunkcji wyrażeo elementarnych atrybut = wartośd Znalezienie odpowiedzi na złożone zapytanie O brzegowej i warunkowej niezależności zmiennych.
24 Metoda propagacji niepewności metodą lokalnych obliczeo 1990 rok Shafer i Shenoy oraz Lauritzen i Jensen niezależnie opracowują tę samą efektywną metodę polegającą na tym, że: Wnioskowanie w danym węźle odbywa się tylko na podstawie własnego wartościowania i wiadomości uzyskanych od wszystkich sąsiadów bezpośrednich. Węzeł wysyła do drugiego węzła wiadomośd będącą złożeniem wiadomości uzyskanych od wszystkich pozostałych sąsiadów i własnego wartościowania. Gdy węzeł uzyska wiadomości od wszystkich sąsiadów wówczas na ich podstawie aktualizuje własne wartościowanie, otrzymując wartościowanie pod warunkiem zadanych obserwacji.
25 Własności prawdopodobieństwa Bayesa
26 Klasyfikacja metodą Bayesa prawdopodobieostwo warunkowe i bezwarunkowe Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzied prawdopodobieostwo przynależności obiektu do klasy. Opiera się na twierdzeniu Bayesa. Niech dany będzie obiekt o o właściwości X. Niech H będzie hipotezą, że obiekt o należy do klasy C. Z punktu widzenia zadania klasyfikacji chcemy obliczyd prawdopodobieostwo P(H X tego, że dla obiektów o właściwości X prawdziwa jest hipoteza H. P(H X jest tzw. prawdopodobieostwem warunkowym (a posteriori zdarzenia H pod warunkiem zajścia zdarzenia X. Przykład: Rozważamy populację owoców. Przypuśdmy, że rozważaną właściwością X obiektu o jest:x : o jest owocem okrągłym i czerwonym, a H jest hipotezą: H : o jest jabłkiem. Wówczas P(H X wyraża nasze przekonanie, że owoc jest jabłkiem, jeśli zaobserwowaliśmy, że jest on okrągły i czerwony.
27 Przeciwieostwem prawdopodobieostwa warunkowego jest prawdopodobieostwo bezwarunkowe. W naszym przypadku P(H wyrażające prawdopodobieostwo, że każdy zaobserwowany owoc jest jabłkiem, jest prawdopodobieostwem bezwarunkowym (a priori. Prawdopodobieostwo warunkowe, P(H X, uwzględnia więcej informacji (wiedza X, podczas gdy prawdopodobieostwo bezwarunkowe P(H jest niezależne od X. Podobnie, P(X H jest prawdopodobieostwem warunkowym zajścia zdarzenia X pod warunkiem zajścia zdarzenia H. Jest więc na przykład prawdopodobieostwem, że owoc jest okrągły i czerwony, jeśli wiadomo, że jest jabłkiem. P(X jest prawdopodobieostwem bezwarunkowym. Jest więc na przykład prawdopodobieostwem tego, że obserwowany (wybrany losowo owoc jest czerwony i okrąg
28 W klasyfikacji Bayesa maksymalizujemy: Ponieważ P(X jest stałe, więc wystarczy maksymalizowad iloczynp(x CiP(Ci. Ponadto przyjmujemy:p(ci = si/ s, gdzie s oznacza liczbę obiektów w zbiorze treningowym, a si oznacza liczbę obiektów w klasie Ci. Dla X = (x1, x2,..., xn, wartośd P(X Ci obliczamy jako iloczyn:p(x Ci = P(x1 Ci*P(x2 Ci*... *P(xn Ci,przy czym:p(xk Ci = sik / si, gdzie sik oznacza liczbę obiektów klasy Ci, dla których wartośd atrybutu Ak jest równa xk, a si oznacza liczbę wszystkich obiektów klasy Ci w zadanym zbiorze treningowym.
29 Należy obliczyd, dla jakiej wartości i, i =1, 2, iloczyn P(X Ci*P(Ci,osiąga maksimum. P(Ci oznacza prawdopodobieostwo bezwarunkowe przynależności obiektu do klasy (inaczej: prawdopodobieostwo klasy Ci, i = 1, 2. Ze zbioru treningowego obliczamy: P(C1 = 9/14 = P(C2 = 5/14 = Prawdopodobieostwa warunkowe P(X Ci są odpowiednio równe iloczynom prawdopodobieostw warunkowych: P(X C1 = P(Wiek= <=30 C1 * P(Dochód= średni C1* P(Studia= tak C1 * P(OcenaKred= dobra C1, P(X C2 = P(Wiek= <=30 C2 * P(Dochód= średni C2* P(Studia= tak C2 * P(OcenaKred= dobra C2,
30 Celem propagacji niepewności w sieciach bayesowskich jest obliczenie prawdopodobieństwa warunkowego pewnej zmiennej (zwykle oznaczającej hipotezę: diagnozę czy prognozę względem zadanych wartości innych zmiennych (zwykle obserwacji, symptomów.
31
32 Zaobserwowano mokrą trawę. Mogą byd tego 2 przyczyny: padający deszcz bądź działania zraszacza. Która z nich jest bardziej prawdopodobna? Jak widad, bardziej prawdopodobnym jest, że trawa jest mokro po tym jak padał deszcz.
33 Wiadomo, że jeśli mamy m zmiennych, to występuje dokładnie 2 m możliwych przypadków do rozważenia.
34
35
36
37
38 Wnioskowanie
39
40 Przykład wnioskowania od początku do kooca
41 W pewnej klinice 15 % pacjentów stwierdzono obecnośd wirusa HIV. Załóżmy, że wykonano badanie krwi. Jeśli pacjent ma wirusa HTV to na 95 % test krwi wyjdzie pozytywny. Jeśli pacjent nie ma wirusa HIV to test krwi wyjdzie pozytywny jedynie z prawdopodobieostwem równym Jeśli więc wiemy, że test wyszedł pozytywnie to jakie są prawdopodobieostwa, że pacjent: a Ma wirus HIV? b Nie ma wirusa HIV? Jeśli test wyszedł negatywnie jakie są prawdopodobieostwa, że pacjent: a Ma wirus HIV? b Nie ma wirusa HIV?
42 Jeśli założymy, że: H = zdarzenie polegające na tym, że pacjent ma wirusa HIV P = zdarzenie polegające na tym, że wynik testu krwi wyszedł pozytywnie Wówczas: P(H = 0.15 P(P H = 0.95 P(P ~H = 0.02 Teraz pozostaje nam ustalid wartości następujących prawdopodobieostw: a P(H P b P(~H P c P(H ~P d P(~H ~P Aby je wyznaczyd potrzebujemy skorzystad ze wzoru na prawdopodobieostwo warunkowe Bayesa: P( H P P( P H P( H P( P
43 Mamy dwie wartości z prawej strony P(P H i P(H ale nie mamy wartości P(P a więc prawdopodobieostwa, że test wyszedł pozytywnie. Musimy je ustalid. Są 2 drogi do stwierdzenia, że pacjent ma pozytywny wynik testu krwi: Ma wirusa i wtedy ma test pozytywny test krwi: HP Nie ma wirusa a mimo to test krwi wyszedł pozytywnie: ~HP Musimy teraz ustalid wartości tych prawdopodobieostw i dodad je do siebie: Wówczas mamy: oraz ( ( ( P H P P H P P P ( ( ( H P H P P P H P ( ( ( H P H P P P H P
44 Skoro wiadomo, że wartośd P(P wyliczymy jako sumę: To podstawiając wartości do wzoru otrzymamy: = = Możemy to teraz podstawid do wzoru na prawdopodobieostwo warunkowe by uzyskad P(H P: = / = ( ( ( ( ( H P H P P H P H P P P P ( ( ( ( ( ( ( H P H P P H P H P H P H P P H P
45 Aby więc odpowiedzied sobie na pytanie o wartośd prawdopodobieostwa zdarzenia P(~H P wystarczy obliczyd go jako dopełnienie do wartości 1 dla prawdopodobieostwa wyliczonego wyżej. P( H P 1 P( H P = = Teraz by wyznaczyd wartośd dla P(H ~P podstawiamy go do wzoru na prawdopodobieostwa warunkowego: P( H P P(H ~P= ( /( = P(H ~P= = P( P H P( H P( P
46 Rozważmy teraz zdarzenie H powodujące zdarzenia P1 i P2. Taki diagram możemy nazwad siecią bayesowską. Przypuśdmy, że oba zdarzenia P1 i P2 są pozytywne. Chcemy wyznaczyd prawdopodobieostwa zdarzeo, że pacjenci mają wirusa. Innymi słowy, chcemy znaleźd wartośd prawdopodobieostwa: P( H P1 P2 Zatem możemy wyznaczyd prawdopodobieostwo warunkowe: P( H P1 P2 P( P1 P2 H P( H P( P1 P2 Mamy więc dwa obliczenia, których na razie nie znamy:p(p1^p2 H i P(P1 ^ P2. W celu wyznaczenia P(P1^P2 H potrzebujemy wiedzied na pewno, że dwa testy są niezależne. Ponieważ wiemy, że tak jest możemy zapisad, że: P(P1^P2 H = (P1 HP(P2 H
47 Teraz musimy znaleźd wartośd P(P1 P2. Tak jak poprzednio musimy rozważyd teraz dwa przypadki gdy wyznaczamy P(P: Pacjent ma wirusa i oba testy wypadły pozytywnie, Pacjent nie ma wirusa i oba testy wyszły pozytywnie. Tak jak poprzednio potrzebujemy użyd drugiego aksjomatu prawdopodobieostwa. P( P1 P2 P( P1 P2 H P( H P( P1 P2 H P( H Widzimy, że oba testy są niezależne dając H, wiec zapiszemy to jako: P( P1 P2 P( P1 H P( P2 H P( H P( P1 H P( P2 H P( H = =
48 Podstawiając wartości do wzoru na prawdopodobieostwo Bayesa otrzymamy: P( H P1 P Poprzednio obliczyliśmy prawdopodobieostwo zdarzenia, że pacjent ma wirusa HIV na podstawie jednego testu pozytywnego, i wynosiło ono Teraz po przeprowadzeniu dwóch testów prawdopodobieostwo wzrasta do wartości Więc po dwóch testach możemy byd bardziej pewni co do tego, że pacjent ma wirusa HIV.
49 Należy jeszcze rozważyd przypadek gdy jeden test będzie pozytywny a drugi negatywny. Oczywiście będzie to oznaka błędu w jednym z testów, ale przecież nie wiemy w którym. Czy jednak możemy coś powiedzied o tym, czy pacjent ma wirus czy nie? Musimy obliczyd prawdopodobieostwo zdarzenia: P( H P1 P2 Możemy to zrobid postępując tak samo jak w przypadku dwóch testów pozytywnych. Twierdzenie Bayesa będzie wyglądad następująco: P( H P1 P2 P( P1 P2 H P( H P( P1 P2
50 Teraz wystarczy wyznaczyd prawdopodobieostwo zdarzeo: P( P1 P2 H oraz P( P1 P2 Podobnie jak poprzednio możemy wykorzystad fakt, że zdarzenia P1 i P2 są niezależne dla zdarzenia H: P( P1 P2 P( P1 P2 H P( H P( P1 P2 H P( H P( P1 H P( P2 H P( H P( P1 H P( P2 H P( H co po podstawieniu odpowiednich wartości daje: = =
51 Możemy podstawid tę wartośd do wzoru na prawdopodobieostwo warunkowe by uzyskad: P( H P1 P Zauważmy, że nasza wiara w zdarzenie H wzrosła. Na początku było to tylko 15 % a teraz jest to już 29,9%. Prawdopodobieostwo pozytywnego testu gdy pacjent nie jest chory na wirus HIV jest niewielkie (0.02.Prawdopodobieostwo pozytywnego testu gdy pacjent jest chory na HIV jest równe Przez to jesteśmy bardziej skłonni uwierzyd w błąd w 2 teście i to znacznie zwiększa wiarę, że pacjent jest chory na HIV.
52 Genie & Smile SMILE Zestaw klas C++ implementujących różne modele decyzyjne w oparciu o analizę probabilistyczną. Wśród nich sieci Bayesa, modele równań strukturalnych. SMILE doskonałe sprawdzi się w roli engine'u dla różnego rodzaju aplikacji, których celem jest tworzenia graficznej reprezentacji model probabilistycznego. Biblioteka została zaprojektowana w ten sposób, iż może być wykorzystana w kodzie C poprzez wywołania funkcji. Co więcej, istnieje również wersja przeznaczona dla platformy.net. Platforma: Macintosh, Linux, Solaris, Windows Licencja: Decision Systems Laboratory, University of Pittsburgh License GeNIe 2 GeNIe stanowi komplementarny element dla SMILE. Jest graficzną nakładką dla tej biblioteki. Z uwagi na to, że twórcy SMILE rozwijali również GeNIe, można być pewnym bezproblemowej współpracy. Za sprawą wbudowanego edytora modeli GeNIe pozwala na swobodną modyfikację modeli probabilistycznych. Możliwa jest także wymiana danych z innymi aplikacjami (Excel. Platforma: Windows Licencja: Decision Systems Laboratory, University of Pittsburgh License
53 Przedstawione na grafie zależności są modelowane przez przedstawione liczbowo prawdopodobieostwo wyrażające siłę, z jaką oddziałują na siebie zmienne. Prawdopodobieostwo jest kodowane w tabelach dołączanych do każdego węzła i indeksowanych przez węzły nadrzędne. Górne wiersze tabeli przedstawiają wszystkie kombinacje stanów zmiennych nadrzędnych.
54 Węzły bez poprzedników są opisane głównymi prawdopodobieństwami. Węzeł Success będzie opisany przez rozkład prawdopodobieństw tylko jego dwóch wyników możliwych: Success i Failure. Węzeł Forecast będzie natomiast opisany przez rozkład prawdopodobieństw wyjściowych wartości (Good, Moderate, Poor uwarunkowanych dodatkowo przez ich poprzedniki (węzeł Success, i wyjściowe wartości Success i Failure.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 Przeznaczenie systemu Problemem w którego rozwiązaniu ma pomóc zrobiona przez nas sieć Bayesa jest zaproponowanie najodpowiedniejszej wycieczki dla klienta w biurze podróży po odpowiedzi przez niego na kilka pytań.
74 Hipotezy i symptomy Hipotezy : - Szalony karnawał w Rio - Wypoczynek na Mazurach - Stolice Europejskie - itd.
75 Symptomy: - Ciekawią Cię obce kultury - Lubisz zagraniczną kuchnię - Chcesz wypoczywać w ciepłym miejscu - itd.
76 Stan początkowy sieci
77
78
79
80
81
82
83 Przykłady działania 4 przykłady działania: - Bayex vs. Sieć Bayesa. - Wybieramy hipotezę patrzymy na symptomy - wybieramy symptomy patrzymy na hipotezy - model mieszany
84
85 Kolejne przykłady W tych przykładach pokażemy działanie sieci od dwóch stron: Wybieramy symptomy i patrzymy jakie wyjdą hipotezy Chcemy wybrać tak preferencje, żeby pojechać na narty Chcemy wybrać tak preferencje, żeby polecieć na tropikalną plażę Wybieramy hipotezy i patrzymy jakie wyjdą symptomy Narty w Alpach Leniuchowanie na tropikalnej plaży
86 Chcemy na narty
87 Chcemy na plażę
88 Wybieramy narty
89 Wybieramy plażę
90 Wybieramy narty
91 Przychodzi klient do biura i mówi Chciałbym polecieć na karnawał do Rio Ale nie mam kasy Lubię imprezować Chce też wybrać się z towarzystwem Co mi polecacie?
92 Co polecamy?
93 Sieci bayesowskie wnioskowanie w sytuacji niepewności Przykład: jakie są szanse zdania ustnego egzaminu u prof. X, który jest kibicem Wisły i nie lubi deszczu? Z - zaliczony egzamin N - dobre przygotowanie H - dobry humor egzaminatora A - awans Wisły do Ligi Mistrzów D - deszcz Łączny rozkład prawdopodobieństwa (JPD: P(Z, N, H, A,D wyznaczony przez 2 5 wartości (32 wartości
94 Sieci bayesowskie - wprowadzenie Prawdopodobieństwo dobrego humoru, jeżeli Wisła awansowała: P(H=trueA=true: D N Z D A H N Z P A H P,,,,,, (, ( D H N Z D A H N Z P A P,,,,,,, ( ( 8 sumowań 16 sumowań (, ( ( A P A H P A H P obliczymy z łącznego rozkładu P(Z, N, H, A,D, na podstawie prawdopodobieństw brzegowych:
95 Sieci bayesowskie (sieci przekonań - definicja Acykliczny graf skierowany Wierzchołki - zmienne losowe Topologa sieci: krawędzie reprezentują bezpośrednią zależność przyczyna skutek każda zmienna jest niezależna od nie-potomków (w szczególności dalekich przodków pod warunkiem rodziców, np.: P(Z H,D = P(Z H Dla każdego węzła X zdefiniowana jest tablica prawdopodobieństw warunkowych X pod warunkiem jego rodziców w grafie
96 Sieci bayesowskie - definicja, przykład P(A 0.20 P(D 0.30 P(N 0.20 A D P(H T 0.95 T F 0.99 T 0.05 F F 0.15 P(Z H,D = P(Z H N H P(Z T 0.90 T F 0.55 T 0.45 F F 0.05
97 Sieci bayesowskie - faktoryzacja Reguła łańcuchowa: z def. P(X 1,X 2 =P(X 1 X 2 P(X 2 P( X,..., X n P( X i X i1,..., X 1 n i Numerując wierzchołki grafu tak aby indeks każdej zmiennej był mniejszy niż indeks przypisany jego przodkom oraz korzystając z warunkowej niezależności otrzymujemy: P( X i Xi 1,..., X n P( Xi Parents ( Xi Model zupełny P( X1,..., X n P( X i i Parents ( X i
98 Sieci bayesowskie - faktoryzacja P(Z,N,H,A,D = P(Z N,H P(N P(H A,D P(A P(D Jaka jest szansa zaliczenia dla nieprzygotowanego studenta, gdy pada, Wisła odpadłą i egzaminator jest w złym humorze P(Z N H A D = = P(A 0.20 P(D 0.30 P(N 0.20 N H P(Z T 0.90 T F 0.55 T 0.45 F F 0.05 A D P(H T 0.95 T F 0.99 T 0.05 F F 0.15
99 Sieci bayesowskie - korzyści Musimy pamiętać mniej wartości: w naszym przypadku 11 zamiast 31 (ogólnie n2 k, n-liczba wierzchołków, k - maksymalna liczba rodziców; zamiast 2 n -1 wszystkich wartości w rozkładzie pełnym Naturalne modelowanie: łatwiej oszacować prawd. warunkowe bezpośrednich zależności niż koniunkcji wszystkich możliwych zdarzeń Dowolny kierunek wnioskowania Czytelna reprezentacja wiedzy Łatwa modyfikacja
100 Sieci bayesowskie wnioskowanie w sieci, twierdzenie Bayesa F pozwany jest ojcem G dziecko posiada tę samą co pozwany, unikalną (1/1000 osób cechę genetyczną P(G = P(G F*P(F+P(G F* P(F = = 1.0* *0.5 = Jeżeli wiemy, że dziecko posiada w/w cechę genetyczną, to z tw. Bayesa: P(F 0.50 F P(G F True 1 False P( G F P( F 10.5 P( F G P( G Posługując się regułą Bayesa, odpowiednie algorytmy (w ogólności problem wnioskowania np. trudny pozwalają wnioskować w sieci Bayesowskiej w dowolnym kierunku
101 Sieci bayesowskie możliwości wnioskowania: predykcja Prawdopodobieństwo Zaliczenia 74%
102 Sieci bayesowskie wnioskowanie diagnostyczne, wykluczanie Egzamin zaliczony, jakie były tego przyczyny? Wzrost P(A z 20% do 40%, przy spadku P(D - wykluczanie
103 Sieci bayesowskie analiza scenariuszy Jeśli się przygotowaliśmy, to jaka jest szansa na zaliczenie? Spadek P(Z z 26% do 17%
104 Sieci bayesowskie wspomaganie podejmowania decyzji... ale dodatkowo, Wisła awansowała i świeci słońce! Wzrost P(Z z 17% do 45%. Podchodzić?
105 Sieci bayesowskie bayesowskie drzewo decyzyjne (influence diagram Dodajemy wierzchołki decyzyjne (Podejście oraz użyteczności (Stypendium i możemy mierzyć wpływ ilościowy decyzji (Podchodzić, Nie Podchodzić Podej Zalicz Styp true false true true false false
106 Sieci bayesowskie drzewa decyzyjne Czy warto iść gdy jesteśmy nieprzygotowani, świeci słońce i Wisła awansowała?
Sieci Bayesowskie. Agnieszka Nowak Brzezińska Wykład III i IV
Sieci Bayesowskie Agnieszka Nowak Brzezińska Wykład III i IV Definicja sieci Bayesowskiej Sied bayesowska to acykliczny nie zawierający cykli graf skierowany, w którym: węzły reprezentują zmienne losowe
Sieci Bayesowskie. Agnieszka Nowak Brzezińska
Sieci Bayesowskie Agnieszka Nowak Brzezińska Rodzaje niepewności Niepewność stochastyczna np. nieszczęśliwy wypadek, ryzyko ubezpieczenia, wygrana w lotto metody rachunku prawdopodobieństwa Niepewność
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo przynależności obiektu do klasy. Opiera się na twierdzeniu Bayesa. Twierdzenia
Klasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
Algorytmy stochastyczne, wykład 08 Sieci bayesowskie
Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne
Systemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
Gdzie: N zbiór wierzchołków grafu, E zbiór krawędzi grafu, Cp zbiór prawdopodobieostw warunkowych.
Laboratorium z przedmiotu Sztuczna inteligencja Temat: Sieci Bayesa, Wnioskowanie probabilistyczne, GeNIe Laboratorium nr 1 Sied Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując
Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011
Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
P(F=1) F P(C1 = 1 F = 1) P(C1 = 1 F = 0) P(C2 = 1 F = 1) P(C2 = 1 F = 0) P(R = 1 C2 = 1) P(R = 1 C2 = 0)
Sieci bayesowskie P(F=) F P(C = F = ) P(C = F = 0) C C P(C = F = ) P(C = F = 0) M P(M = C =, C = ) P(M = C =, C = 0) P(M = C = 0, C = ) P(M = C = 0, C = 0) R P(R = C = ) P(R = C = 0) F pali papierosy C
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Wnioskowanie bayesowskie
Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Sztuczna inteligencja : Tworzenie sieci Bayesa
Instytut Informatyki Uniwersytetu Śląskiego 13 kwiecień 2011 Rysunek: Sieć Bayesa Rysunek: Sieć Bayesa Matura z matematyki na 60 %. Matura z matematyki na 100 %. Rozpatrzmy następujące przypadki: Uczeń
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II
PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II Szkic wykładu 1 Wprowadzenie 2 3 4 5 Weryfikacja hipotez statystycznych Obok estymacji drugim działem wnioskowania statystycznego jest weryfikacja hipotez
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x
Prawdopodobieństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźnie i wypełnia wnętrze kwadratu [0 x 1; 0 y 1]. Znajdź p-stwo, że dowolny
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Na podstawie: AIMA, ch13. Wojciech Jaśkowski. 15 marca 2013
Na podstawie: AIMA, ch13 Instytut Informatyki, Politechnika Poznańska 15 marca 2013 Źródła niepewności Świat częściowo obserwowalny Świat niedeterministyczny Także: Lenistwo i ignorancja (niewiedza) Cel:
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka Pierwotnie oznaczała stan rzeczy (od status) i do XVIII wieku używana dla określenia zbioru wiadomości o państwie Statystyka
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Statystyka i eksploracja danych
Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Niepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk
Zarządzanie wiedzą Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka Joanna Kołodziejczyk 13 maj 2011 Plan wykładu 1 Niepewność 2 Belief Networks 3 SE Pochodzenie niepewności
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
Prawdopodobieństwo i statystyka
Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Wstęp do rachunku prawdopodobieństwa
wykład : Wstęp do rachunku prawdopodobieństwa STTYSTYK OPISOW Wanda Olech Katedra Genetyki i Ochrony Zwierząt Statystyka zajmuje się Zjawiskami losowymi - które bada przez doświadczenie U podstaw współczesnej
Metody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety
mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Prawdopodobieństwo i rozkłady Zdarzenia losowe Prawdopodobieństwo warunkowe Prawdopodobieństwo bayesowskie
Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Nierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Modelowanie Niepewności
Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca 2014 Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 5: Sieci, drogi ekstremalne w sieciach, analiza złożonych przedsięwzięć (CPM i PERT) dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt